0

7
1

文字

分享

0
7
1

仲夏不寧靜,「 17 年蟬」大舉回歸美國

DQ地球圖輯隊_96
・2021/06/25 ・1709字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

今年( 2020),美國某些州注定要度過一個震耳欲聾的夏天。

百萬雄兵登陸美國

COVID – 19 (武漢肺炎)疫情還沒結束,今年 ( 2020 ) 夏天美國部分地區還有另一場重頭戲正在等著上演。不過好消息是,這場重頭戲幾乎可以說是人畜無害,還有可能為糟糕的 2020 年帶來一場夏日饗宴。

按照規律,今年 ( 2020 ) 美國維吉尼亞州西南部、北卡羅萊納州及西維吉尼亞州的夏天,將被大批「 17 年蟬」攻佔,注定度過一個不平靜的夏天。維吉尼亞理工學院暨州立大學 (Virginia Polytechnic Institute and State University) 昆蟲學系的戴伊 (Eric Day) 教授預測:「大批 17 年蟬出沒的農場及社區,今年 ( 2020 ) 可能會遇上一點噪音問題。」

美國伊利諾伊州波普郡的週期蟬。圖/Wikipedia

壽命最長昆蟲, 17 年就見這一面

周期蟬 (periodical cicadas) 主要分布於北美洲,依照生命周期長短不同,還能細分為「 13 年蟬」及「 17 年蟬」,其中 17 年蟬可以說是全球最長壽的昆蟲,壽命就如其名,可以長達 17 年。

不過在這 17 年裡, 17 年蟬們大多以若蟲[註]的型態生活於土壤中,花費 17 年的時間轉變為成蟲,破土而出。然而,出土後的 17 年蟬,將在接下來 2-4 周完成產卵後迅速死亡,結束一生。

-----廣告,請繼續往下閱讀-----
17 年蟬,紅色的大眼是牠們外觀上的重要特徵。圖/Wikipedia

編號第九群,參上!

依照不同的起訖年份及影響地區,現存的 17 年蟬共可分為 15 個不同的群體。

今夏 ( 2020 ) 預計要破土而出的是第 9 群,預計受影響地區則是前述的維吉尼亞、北卡羅萊納和西維吉尼亞州,上回牠們破土而出的時間恰恰是在 2003 年的夏天。

美國農業部林務局發佈各期週期蟬出現的繁殖地點和時間。圖/Wikipedia

為什麼是 17 年和 13 年?

至今,昆蟲學家們也沒能清楚解釋為何兩種蟬的生命周期偏偏就是 17 年和 13 年,但昆蟲學家們猜測這可能和躲避天敵有關。

由於 17 年蟬每回現身數量龐大,很容易就成為天敵們眼中的佳餚,因此 17 年蟬逐漸演化出超長生命周期,避免和天敵的生命周期重疊,提高存活率。

-----廣告,請繼續往下閱讀-----

果農的大麻煩

對果農來說,17 年蟬的生命周期表示每 17 年他們就會遇上一回大麻煩,因為牠們每每出現,數量必定是成千上萬。根據昆蟲學家的換算,今年受影響地區每畝的 17 年蟬數量將高達 150 萬隻。

17 年蟬的母蟬在產卵時會將卵產在樹枝內部,很容易導致那段樹枝上的樹葉全數枯萎。對大型樹木來說影響不大,但是對樹苗來說是非常大的負擔,枯萎的樹枝太多,有時候甚至會導致樹苗死亡,造成果農的損失。

17 年蟬可以稱得上人畜無害;但在果農眼中, 17 年蟬就是 17 年一回的大麻煩。圖/Wikipedia

前兩年盡量別種樹苗

許多昆蟲學家都會建議果農以及種樹者,在本地 17 年蟬出沒前 1 – 2 年盡量不要種植樹苗,免得屆時白白損失血汗錢。如果種了,還是可以透過殺蟲劑等方式防治,但是效果通常不明顯,因為 17 年蟬的數量實在是太多了。

除此之外,對一般人來說,17 年蟬可以說是人畜無害,就是稍微吵雜了一點,維吉尼亞理工大學在一篇文章中,將大群 17 年蟬的叫聲比喻為「整片田野像訊號沒有調準的汽車收音機」。

-----廣告,請繼續往下閱讀-----

17 年不到就急著亮相?

然而,最近昆蟲學家逐漸觀察到 17 年蟬常常提早數年破土而出的現象。實際原因仍然不清楚,但昆蟲學家推測可能和氣候變遷有關。

對於即將來臨的夏天,昆蟲專家戴伊告訴受影響地區的人們:「希望對蟬鳴感到厭煩的人,可以因為這項活動有多麼難得及令人驚艷而稍微紓解他們的情緒。」

註解

若蟲是指不完全變態昆蟲在幼蟲階段的稱呼。

文章難易度
DQ地球圖輯隊_96
3 篇文章 ・ 10 位粉絲
身為地球的一份子,你今天關心地球事了嗎?地球圖輯隊致力提供多元資訊,以淺顯文字、豐富圖片,希望能為大家打開一扇關心地球大小事、理解國際要聞的入門窗。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
1

文字

分享

0
0
1
【成語科學】噤若寒蟬:為什麼蟬在冬天不會叫?
張之傑_96
・2023/10/18 ・1085字 ・閱讀時間約 2 分鐘

章老師寫這篇「噤若寒蟬」時,適逢 6 月初,住在美國東部的同學傳來十七年蟬的影片。一般的蟬,幼蟲在土裡生活 1-5 年;十七年蟬的幼蟲(若蟲)卻在地下生活 17 年!今年的大發生過後,下次是 2038 年。

十七年蟬大發生時,數以億計的蟬傾巢而出,鳴聲震天,排泄物落如雨下,這時人們出門都要打傘,在戶外舉行的婚禮、球賽和其他活動均被迫延期或改在室內。

十七年蟬大發生時,數以億計的蟬傾巢而出,鳴聲震天。圖/giphy

不過喧鬧不出 3 個星期,十七年蟬交配、產卵後就會死去,新的一輪生命週期又開始了。

蟬屬於半翅目、蟬科。一般的蟬,不會像十七年蟬般集體行動。到了夏季,幼蟲陸續的從土裡鑽出來,然後爬到樹上,抓著樹幹,脫掉蟬殼(蟬蛻),羽化為成蟲。蟬的成蟲壽命很短,通常不到一個月。雄蟬羽化出來後,一俟翅膀硬了,就開始大聲鳴叫,用來吸引雌蟬。雌蟬沒有發聲器官,不會鳴叫。

-----廣告,請繼續往下閱讀-----
日本暮蟬。圖/wikipedia

雄蟬的腹部有一對鳴器,裡面有發音肌、鼓膜和共鳴室。雄蟬求偶鳴叫時,發音肌會不停的收縮,使鼓膜上下振動,有如打鼓般發出聲響;共鳴室則有如擴音器,使鳴聲擴大。

蟬的發聲,和直翅目的蟋蟀、螽斯、蝗蟲不同,牠們以磨擦翅膀發聲。蟋蟀、螽斯的翅基部,有一條橫脈,上頭有齒,稱為「音銼」,左右翅磨擦,就會發聲。蝗蟲則是利用牠的腿節內側和前翅縱脈,互相摩擦而發聲。

當雌蟬被雄蟬的鳴聲吸引過來,交配過後,雌蟬將卵產在小樹枝上,夏季時大約經過一個月就可以孵化成幼蟲。接下去,幼蟲落到地面,鑽入土中,吸取植物根部的養分,經過若干年(視種類而異),才能長大成熟,然後鑽出地面,羽化為成蟲。

蟬經過若干年才能長大成熟,羽化為成蟲。圖/giphy

蟬是夏季活動的動物,從初夏到初秋,蟬的幼蟲陸續鑽出地面,羽化為成蟲,使得整個夏季都可聽到蟬聲。秋季才羽化的蟬,通常鳴聲較弱,如果天氣突然轉冷,就會凍得不再鳴叫,這個自然現象衍生為成語「噤若寒蟬」,比喻因某種原因而不再出聲。讓我們造兩個句吧。

-----廣告,請繼續往下閱讀-----

極權國家沒有言論自由,人們噤若寒蟬,不敢隨便發表意見。

爸爸嚴肅的眼神一掃過來,我們就噤若寒蟬,再也不敢吵鬧。

張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

5
0

文字

分享

0
5
0
雪橇宅急便,白喉終結者:百年名犬的基因組
寒波_96
・2023/06/22 ・3697字 ・閱讀時間約 7 分鐘

公元 2023 年 4 月 28 日 Science 期刊發表專題「Zoonomia 計畫」,包含多篇定序、分析大量哺乳類的論文。其中一篇論文的分析尺度最小,研究對象的知名度卻最高,那就是一百年前名犬「巴圖(Balto)」的古代基因組。

先來緬懷巴圖的事蹟:他在 1925 年 2 月 1 日頂著低於零下 30 度的氣溫,駕駛雪橇 7.5 個小時,穿越 85 公里,與同儕成功將白喉血清送到目的地,拯救許多人命。

巴圖本尊,位於克利夫蘭博物館,毛色比活跳跳時褪色一些。圖/參考資料2

白雪季節,白喉來襲

巴圖的飼主 Leonhard Seppala 於挪威成長,後來搬到阿拉斯加,是駕駛雪橇以及培育雪橇犬的專家。巴圖 1919 年在阿拉斯加出生,從小與眾多同儕一起訓練,成為優秀的雪橇犬。

阿拉斯加西部的小鎮諾姆(Nome)在 1924 年底約三千居民,只有一位醫師 Curtis Welch 和四位護士。1925 年一月中,醫師確認恐懼的事正在發生,白喉已經入侵,人類開始死亡。

-----廣告,請繼續往下閱讀-----

幾年前 H1N1 大流感(西班牙流感)襲擊諾姆,在醫療資源有限的當地造成重傷害。如果不及時阻止,白喉恐怕也將導致大災難。那時已經有白喉抗毒素(antitoxin)可以對付白喉桿菌,醫師緊急請求支援,也得到回應。

然而,地點、時節都很尷尬。諾姆離海港較近,可是時值嚴冬,被凍結的港口無法水運。那個年代已經有飛機,評估空運的成功機率卻不高。陸路是有鐵路,但是距離也相當遙遠。

陸海空方案中,陸路機會最高。最終人們下了艱難的決策:交給傳統技藝「雪橇宅急便」。當局緊急招募多位老經驗的雪橇駕駛人,與精銳雪橇犬組隊,一隊接力一隊,將白喉抗毒素血清送往諾姆。

1925 年雪橇宅急便的路線。圖/維基百科「1925 serum run to Nome」

一千公里的雪橇宅急便

任務極為困難,路途遙遠、氣候惡劣以外,血清預計只能維持 6 天。那時兩地郵件寄送預計為一個月,意思是要把本來普通天候下的一個月,縮短為酷寒下的 6 天時程。

-----廣告,請繼續往下閱讀-----

最後擬定的計畫相當精密,貨物先由鐵路送到最近的尼納納(Nenana)。接著雪橇隊將從兩端同時出發,一邊從尼納納向前狂奔,送到努拉托(Nulato);另一邊從諾姆出發,各隊依序就位,到努拉托收件,接著往回狂奔。

用台灣類比,像是把東西從台北送往高雄,一邊從台北經由桃園、新竹、苗栗、向台中前進,另一邊從高雄先向台中,沿路在台南、嘉義、彰化就位,再往回走。

從台北到高雄,國道一號的路程約為 350 公里,尼納納到諾姆則超過 1000 公里。大部分隊伍頂著零下 30 到 50 度的氣溫,前進 40 到 80 公里的距離。最後在 20 位雪橇駕駛員及 150 位雪橇犬日夜不停接力下,只花 5 天半就將血清送到諾姆。

開路先鋒 Bill Shannon 的 84 公里過程最凶險,他與 9 狗在零下 40 到 52 度的風雪中趕路,半路 3 狗不敵酷寒,不幸犧牲(三狗名為 Cub、Jack、Jet),人臉也嚴重凍傷,所幸隊伍依然完成任務。

-----廣告,請繼續往下閱讀-----
完成任務後,Leonhard Seppala 與他最信任的狗狗們留影,圖哥在最左邊。圖/維基百科「1925 serum run to Nome」

貢獻最大的人是倒數第三棒,也就是巴圖的飼主 Leonhard Seppala。他帶領 20 狗,讓最信任的「圖哥(Togo)」與 Fritz 領隊,先從諾姆向東前進 270 公里就位,收件後又狂飆 146 公里,成為里程最長的隊伍。

圖哥也成為這趟任務中,貢獻最大的狗狗。他生於 1913 年,雪橇宅急便時 12 歲,後來活到 1929 年,16 歲去世。

英雄旅程,以及英雄的餘生

巴圖的飼主不特別看重他,所以沒有帶他同行,而是交給同樣來自挪威,在阿拉斯加工作的 Gunnar Kaasen。巴圖和同儕 Fox 是最後一棒共 13 狗的領隊,他們原本預計是倒數第二棒,負責從 Bluff 到 Safety 的 40 公里。

不過凌晨 2 點多抵達交棒地點時,預計接手的 Ed Rohn 判斷暴風雪會延誤行程,正在睡覺。Gunnar Kaasen 決定自己繼續趕路,最後累積 85 公里,在 2 月 1 日 5 點 30 分抵達諾姆。

-----廣告,請繼續往下閱讀-----

及時獲得支援的 Curtis Welch 醫師,與手下成功控制白喉疫情,將傷害減到最輕。Alaskan Lives Matter!

當時雪橇宅急便是全美國關注的新聞,廣大民眾都很緊張是否能成。雪橇犬、駕駛人都被視為英雄,成為焦點話題。巴圖的貢獻應該算第二名,不過最後是他將血清送到目的地,這位 6 歲的狗狗也獲得最大的名聲。

完成任務不久後,巴圖與駕駛猿 Gunnar Kaasen 的留影。圖/參考資料1

熱潮過去後,巴圖被賣到洛杉磯,成為展示動物。1927 年,拳擊手轉職商人的 George Kimble 在洛杉磯見到巴圖,覺得這位英雄的待遇有夠爛,便運作讓巴圖與 6 位同儕搬到他的家鄉克利夫蘭。

巴圖抵達克利夫蘭時,受到遊行熱烈歡迎。他在動物園度過餘生,1933 年 3 月 14 日去世,享年 13 歲。接著化身為標本,成為克利夫蘭博物館的一員陪伴大家,直到 90 年後的現在。

-----廣告,請繼續往下閱讀-----

遺傳一極棒,卻已經消逝的狗群

2023 年發表的論文由巴圖的皮膚取得 DNA,平均覆蓋率 40,品質相當好。歷史記載看他是西伯利亞哈士奇(Siberian husky),但是要等到他出生後 11 年, 1930 年這個品系才被美國犬業俱樂部(American Kennel Club)認證。

和現代品系相比,巴圖合計有 68% 血緣與多款北極狗一致。西伯利亞哈士奇只有 39%,格陵蘭雪橇犬 18%。有趣的是還配備 24% 的亞洲狗狗血緣,而且毫無任何狼的成分。

根據 DNA 預測巴圖的外貌特徵,都正確。圖/參考資料1

巴圖所屬的狗群,依照歷史記載源自西伯利亞,由於體型小、速度快、適合雪橇,所以被帶到阿拉斯加培育。和如今所有的品系狗比較,他配備的潛在有害變異較少,DNA 多樣性較高,遺傳上更加健康。

和一百年前的巴圖相比,如今的北極狗近親繁殖更嚴重,有害變異更多。巴圖 6 個月大便已絕育,沒有後代。他所屬遺傳更多元的族群,也已經消逝了。

-----廣告,請繼續往下閱讀-----

根據 DNA 變異能預測古狗的形貌,只是以前都不知道準不準。巴圖有照片也有標本,可以精確比較。預測他有雙層狗毛、大部分黑毛加上少量白毛、肩高 55 公分,都符合實況。現今西伯利亞哈士奇的肩高介於 53 到 60 公分,巴圖算是範圍內略矮的。

另外有意思的是澱粉。遺傳上,狼、北極狗消化澱粉的能力最差,其餘狗從好一點到好很多。巴圖看來比其餘北極狗好一點,但是離多數狗差一截,符合他大量北極、少量亞洲血緣的遺傳背景。

狗狗們。圖/參考資料1

他們都是英雄

巴圖的飼主 Leonhard Seppala 沒有將其選進自己的小隊,加上臨時更動計畫,反倒使得巴圖成名。其實知道多一點歷史就會覺得,歷史上最不意外的,就是發生意外。

Leonhard Seppala 事後曾經抱怨,他的難波萬愛犬圖哥應該享有的鋒芒,被巴圖獲得。歷來也不缺少貶抑巴圖的好事之徒,指控他不是隊長等等(巴圖也許不是唯一的隊長,但是反駁他擔任隊長的證據都弱弱的)。

-----廣告,請繼續往下閱讀-----

可是稍微想想就知道,比圖哥年輕 6 歲的巴圖,當然不是弱雞。運送血清的漫長過程,只要一次失誤便前功盡棄,能參與的肯定都是精英。而巴圖也不辱使命,證實飼主調教有方。

重要的是,1925 年的雪橇宅急便及白喉保衛戰中,不論每一位有什麼貢獻,所有的狗與人都冒著巨大的風險工作,拯救許多人。他們都是英雄,我們懷念他們。

延伸閱讀

參考資料

  1. Moon, K. L., Huson, H. J., Morrill, K., Wang, M. S., Li, X., Srikanth, K., … & Shapiro, B. (2023). ​ Comparative genomics of Balto, a famous historic dog, captures lost diversity of 1920s sled dogs. Science, 380(6643), eabn5887.
  2. Genome of famed sled dog Balto reveals genetic adaptations of working dogs
  3. Hidden details of world’s most famous sled dog revealed in massive genomics project

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。