0

0
0

文字

分享

0
0
0

太陽能電池裡加病毒?!有效!

cbug
・2011/04/28 ・538字 ・閱讀時間約 1 分鐘 ・SR值 564 ・九年級

在傳統的太陽能電池中,陽光被矽或二氧化鈦電池吸收,釋放出電子,而這些電子會跑去電子收集電極(electron collector, or electrode)。這些太陽能電池的一個問題是,很多電子會無法找到往電子收集電極的路。

奈米碳管(carbon nanotubes )可以被用作這些電子和電極間的橋樑,但奈米碳管會傾向糾結成一團,降低效率並產生短路的情形。研究者現在透過基因改造創造一種病毒,可以用以穩定奈米管的位置,並增加將近三分之一的能源轉換。「一點點的生物學就有很大的幫助」研究團隊的領導人 Angela Belcher 提到,整個病毒式奈米管的連接層,只占了電池完成品的0.1%的重量。

這個叫作 M13 的病毒以縮氨酸(peptide)來維持奈米管的位置,而這是蛋白質的基礎材料。單一個病毒可以支承五到十個奈米管,每一個奈米管都藉由該病毒的300個縮氨酸分子穩固地維持在原位。

除此之外,這些病毒被設計以產生二氧化鈦,對於以相同材料製作的太陽能電池頗有幫助,而此病毒模板裝配線可以讓研究者在二氧化鈦的奈米粒子和奈米碳管間建立起較好的接觸,讓光電子(photo-generated electrons)移動更快,更有效率。

資料來源:Materials Scientists’ Solar Cell Has a Virus—and That’s a Good Thing-DISCOVER(April 26th, 2011)

相關TED演講:Angela Belcher: Using nature to grow batteries

編譯:cbug

文章難易度
cbug
22 篇文章 ・ 0 位粉絲
各位先進大家好,很高興加入PanSci。希望專欄 Nutrition Buiscuits 能如其名,跟大家分享小份量卻高營養的文章。

0

1
1

文字

分享

0
1
1
對腫瘤最終兵器!癌症療法新選擇,基改溶瘤病毒為何備受期待?
PanSci_96
・2023/09/04 ・5570字 ・閱讀時間約 11 分鐘

我們先前詳細介紹過用細菌以毒攻毒對付癌細胞的新進展,另一種我們也很熟悉但是避之惟恐不及的微生物,現在居然也華麗轉身,成了抗癌新利器,那就是——病毒。

科學家已經製造出基因改造病毒,注射到癌症患者體內,讓病毒感染癌細胞,把惡性腫瘤像一坨冰淇淋般溶化。這些超微型對癌必殺兵器是怎麼打造出來的呢?而且這樣做,就像開大門放一群餓狼進來咬老虎,難道不會害死正常細胞嗎?

能殺死癌細胞的病毒是什麼?請叫我「溶瘤病毒」!

很多病毒能感染人體,造成各種不舒服和損害,舉個例子,疱疹病毒讓人長出一片又熱又痛的水泡,腺病毒害人發燒、眼睛佈滿血絲或腹瀉。更具體地說,病毒有鑽進活細胞的特殊能力,接著搶走細胞裡面製造各種生物分子的生產線,用來組裝和複製它自己,最後一窩蜂的病毒再一起打破或鑽出細胞,繼續向四面八方擄掠燒殺。經歷過 covid-19,大家應該都很清楚了。 

從另一個角度看,病毒就像是一群強行入侵人體的超微型機器人,準確鎖定攻擊目標,把細胞的物資掠奪個精光,臨走前還從內部爆破活細胞,手段可說相當的惡劣。

然而病毒這種高效率的惡劣,就如同其他危險且糟糕的事物一樣,吸引了科學家的好奇心,激發了他們的創意,有科學家就問啦:那有沒有辦法挑選出病毒煉成新藥,去爆破癌細胞呢?打一針兇惡的病毒去獵殺狡詐的癌細胞,使腫瘤崩潰溶解,以毒攻毒,豈不是一等巧招。

而且,溶瘤病毒可以引發後續一連串針對癌細胞的免疫反應,繼續擴大戰果。也因為病毒會激發免疫反應,所以溶瘤病毒也歸類為癌症免疫治療的一種。

我們在之前介紹免疫新藥的影片,有說明過癌細胞躲過免疫系統偵查的三大詭異功夫,這邊超快速回顧一下:第一招是癌細胞把身上的識別分子減少,使自己隱形;第二招是癌細胞戴上面具假裝成好細胞,矇騙過關;第三招是強行踩下免疫細胞的剎車板,中斷免疫攻擊。

癌細胞有躲過免疫系統偵查的三大詭異功夫。圖/PanSci YouTube

溶瘤病毒的根本原理,是只要癌細胞的細胞膜表面存在著病毒的受體,病毒就能強行突破防禦、攻進細胞,無視癌細胞的第一和第二招。這就好像癌細胞耍大刀耍得虎虎生風,病毒根本不管這些,直接先給它一槍就對了。

2015 年,美國食品及藥物管理局(FDA)核准一款治療黑色素細胞瘤的 T-VEC 溶瘤病毒上市,使用的素材是第一型單純疱疹病毒(HSV-1),被視為是這個領域的里程碑。這種病毒其實我們很熟悉,它就是唇疱疹的病原體,感染後容易在嘴唇、鼻子、下巴這一帶長出一片水泡或潰瘍。

T-VEC 也是目前唯一一款世界多國普遍核可使用的溶瘤病毒。其他像是中國 2005 年核准治療鼻咽癌的 H101,或是日本 2021 年核准治療腦部惡性腫瘤的 Delytact,取得的都只有本國或少數幾個國家的許可證。

T-VEC 是目前唯一一款世界多國普遍核可使用的溶瘤病毒。圖/PanSci YouTube

病毒連續技,打得癌細胞難以招架

病毒為什麼能溶解摧毀腫瘤?大致來說,溶瘤病毒能以三連發的連續技來攻擊癌細胞。

第一擊,經過基因改造的病毒先感染癌細胞,侵入細胞內,開始繁殖,然後破壞癌細胞。這些病毒先經過人工移除掉一些致病基因,降低危險性,同時放入能增加治療效果的基因,例如常用的一種基因是顆粒單核球群落刺激生長因子,簡稱 GM-CSF,這種因子能活化和吸引更多免疫細胞來圍攻癌細胞,這個功效就和病毒的第二擊有關係。

第二擊,癌細胞死掉後散落出大量抗原和分子訊號,會吸引免疫系統的注意,將樹突細胞、T 細胞等多種免疫細胞從身體各處召喚過來。還有,病毒一進到人體,很短時間內樹突細胞就會辨識出病毒,接著釋放第一型干擾素。第一型干擾素是一種能刺激免疫系統的細胞激素,經過一連串下游反應,可以直接造成腫瘤損傷。同時,第一型干擾素也會促使 T 細胞聚集到腫瘤所在地,一起圍剿癌細胞。

接著是第三擊,病毒殺掉癌細胞以後也有機會連帶引發遠端效應(abscopal effect)。什麼是遠端效應呢?破掉的癌細胞散出抗原,身體借由這些抗原當作教材,培育出一群擁有辨識癌細胞能力的免疫細胞。這些免疫細胞順著血液循環,跑到遠方沒有感染病毒的腫瘤位置,把這些癌細胞一併消滅掉,這就叫做遠端效應,可說是「犯我免疫者,雖遠必誅」。

看到這裡,你應該會好奇,病毒會感染癌細胞,難道健康細胞就不會一同遭殃嗎?這就要回到剛剛提到的干擾素下游反應。正常情況下,第一型干擾素能啟動人體細胞內建的清除入侵病毒的機制,但是大多數癌細胞的干擾素反應路徑有缺陷,換句話說,同樣都會被病毒感染,健康細胞有能力排除掉病毒,癌細胞卻沒辦法,到最後矜不住,傷重斃命。這種效應是溶瘤病毒能瓦解腫瘤,同時減少傷害患者身體的重要關鍵。

干擾素下游反應是溶瘤病毒能瓦解腫瘤,同時減少傷害患者身體的重要關鍵。圖/PanSci YouTube

但是,可不是每種病毒經過基因改造以後,都能像魔法少女般華麗變身。天底下病毒那麼多,怎麼樣才能找到合適的病毒來改造成抗癌的超微型機器人呢?

哪些「人選之毒」能變身對癌細胞特攻兵器?

病毒萬萬種,要從裡面挑到合適的素材,簡直像大海撈針。不過,以目前的醫療技術,還是有一些路徑可循。

一般來說,基因體比較大的病毒相對於基因體小的病毒,有更大的空間能加入其他基因來修飾病毒,因此在製造過程上,大病毒比小病毒容易操作。

除此之外,DNA 病毒比較容易透過重組 DNA 的分子工程技術來改造,例如治療黑色素細胞瘤的 T-VEC 溶瘤病毒就是 DNA 病毒,改造 RNA 病毒所需的技術相對比較困難。

不過臨床上的真實需求比技術層面的考量複雜得多,像是基因體較大的病毒雖然容易操作,但是病毒的體積也大,很難通過血腦障壁。血腦障壁是一層包圍在腦部外面的緊密組織,就好像城牆一樣,是身體對腦的保護措施,只有小尺寸的物質才能通過牆上的孔隙。

大病毒過不去,小病毒卻有機會藉由一些特殊的生化機制潛入,因此想要治療腦部惡性腫瘤,或是其他血液或淋巴系統擴散到腦內落地生根的癌細胞,選擇小病毒就比較有利。

另一個臨床上的考量是,DNA 病毒雖然技術門檻相對低,但因為天然環境裡很多種 DNA 病毒容易感染人類,許多人的血液裡已經存在抗體,病毒注射進患者體內後很快被抗體中和,還來不及抵達腫瘤就沒力了。

在這種情況下,通常會考慮不把病毒輸注進靜脈血管,而是直接注射到病灶位置,避免病毒在血液循環過程中被清除。或者是,不使用 DNA 病毒,改用更容易在體內自行複製的 RNA 病毒,而且一般來說,人體帶著有效的 RNA 病毒抗體的機率比較低,就有機會減少這一類問題。

還有最關鍵的一點,就是癌細胞表面一定要有病毒的受體,病毒才能鑽進癌細胞,否則就算病毒的殺傷力再厲害,也無用武之地,所以癌細胞的種類和性質會直接決定能選擇哪些病毒來製成藥物。

最後還有一些實務上的環節要克服,像是製作、儲存、搬運到醫院和注射的過程中,病毒必須能保持穩定,不因為熱、光線、酸鹼度等因素而分解。這難度可不低啊。

這樣一關一關篩選下來,目前只有少數的病毒能滿足這些需求。根據 2023 年 1 月《Nature Reviews Clinical Oncology》和 4 月《Nature》旗下子刊《訊息傳遞與標靶治療》的回顧性文章,現在用來開發溶瘤療法的病毒有疱疹病毒、腺病毒、麻疹病毒、克沙奇病毒和水疱性口炎病毒等等。

現在用來開發溶瘤療法的病毒中,疱疹病毒和腺病毒是 DNA 病毒,麻疹、克沙奇和水疱性口炎病毒是 RNA 病毒。圖/PanSci YouTube

溶瘤病毒還要突破哪些關卡?

溶瘤病毒雖然吸引全球許多的關注,一批批科學家和企業投入大筆時間金錢往這個方向衝刺,不過,擋在前面等待突破的難關一點也不比其他癌症新療法少。

一個很骨感的現實是,雖然溶瘤病毒已經發展超過 20 年,截至 2023 年 6 月為止,各國核准的溶瘤病毒只有四款而已,可見得把病毒煉成抗癌藥這條路並不好走。

截至 2023 年 6 月,各國核准的溶瘤病毒只有四款而已。圖/PanSci YouTube

大致來說,溶瘤病毒療法需要通過三關的考驗。第一個關卡是腫瘤異質性。腫瘤來自身體細胞突變誕生的壞細胞,腫瘤在長大過程中,內部各處的細胞也會繼續發生突變和複製,因此會演變成一顆腫瘤是由一小群一小群帶有不同基因突變的癌細胞聚集起來的情況,這種現象叫做異質性。

打一針病毒瓦解了一部分腫瘤,但其他帶有不同突變的癌細胞因此訓練出抗藥性,下一針再打同樣的病毒可能效果就變差了,這是臨床治療的一個難題。

可能的解套辦法之一,是注射了幾次病毒以後,換成其他病毒,就好比替換抗生素使感染身體的細菌來不及適應,因而遭到殲滅。

第二個關卡是腫瘤微環境,腫瘤內部這個狹窄空間是一個大魔境,免疫細胞攻進來以後,面對的是一個會壓抑免疫活性的嚴苛環境。打個比方,就像是特種部隊好不容易攻進恐怖分子大本營,結果發現房間裡布滿催眠瓦斯和詭雷。病毒雖然能滲透進腫瘤內部進行破壞,但是接到消息趕來增援的免疫細胞很快變得疲軟無力,因此能獲得的戰果就少了。

結合不同免疫療法,多拳出擊!

現在科學家認為,結合溶瘤病毒和免疫檢查點抑制劑(immune checkpoint inhibitor),是一種有希望的做法。我們先前詳細介紹過免疫檢查點抑制劑,這一群新藥能活化免疫系統,用病毒先打頭陣,摧毀一部分癌細胞,吸引免疫細胞參戰,接著藥物強化免疫細胞戰力,好像補師給戰士上 BUFF,一擁而上擊垮癌細胞。有興趣可以點這支影片來看。

像是 2023 年 5 月,一款使用腺病毒搭配免疫檢查點抑制劑 Pembrolizumab 的新療法,用來治療腦部膠質母細胞瘤,初步臨床試驗結果刊登在《Nature Medicine》,成功延長部分患者的存活時間。

另一方面,先前在 2022 年 8 月《Cancer Cell》的一項研究也顯示,溶瘤病毒加上 CAR-T 或 TCR-T 這類免疫 T 細胞療法,有機會產生加乘效果,甚至可能突破以往 CAR-T 只用於治療血液和淋巴癌症的侷限,讓 CAR-T 也能破壞實體腫瘤。

還沒大顯身手就衰弱了?溶瘤病毒護送計劃!

第三個關卡是病毒在長途行軍到病灶的過程中減弱。這是什麼意思呢?前面有說到,如果在注射前,患者血液裡已經有自然環境中同類病毒誘發產生的抗體,病毒部隊在還沒趕到目的地之前就潰敗了。再加上血管和器官的內皮細胞會擋住病毒,還有體內的其他多種免疫反應也會快速清除病毒,因此遞送病毒的效率低落,是現階段溶瘤療法的一個關鍵瓶頸。

雖然可以嘗試把病毒直接打進腫瘤病灶,但是如果腫瘤長在內臟,會需要特別的注射技術。要是患者已經到了晚期,癌細胞轉移到遠處器官,就還是必須把病毒輸注到靜脈血管,讓血液循環把病毒送到全身。

或是假如腫瘤分布在腦室、肋膜腔、膀胱或脊髓腔等腔室,也可以用特殊技術注射進這些位置。尤其是針對腦部惡性腫瘤和腦轉移的癌細胞,因為大多數病毒通不過血腦障壁,經常需要採用這種方式。

不過這些方法還是相對屬於高侵入性,對病人傷害可能比較大,因此科學家研發了另一種聰明的方法,那就是用活細胞當做載體,等於讓病毒搭便車兼提供一層保護殼,運送病毒抵達腫瘤。

2021 年《Molecular Therapy Oncolytics》的一項動物研究使用自然殺手細胞(natural killer cell)來搭載病毒,自然殺手細胞是免疫系統的一員,可以繞過身體的阻擋機制,好像一架漆著友軍識別標誌的運輸機穿過我方領土,把空降部隊載到敵人陣地上方。同年 12 月底《Pharmaceutics》一篇回顧報告列出研發中的載體細胞,還包括了 T 細胞、巨噬細胞和樹突細胞等。

整體看來,溶瘤病毒正方興未艾,讓人類又多了一種剋制癌細胞的手段,不過擋在前面的困難也不少,確切會在何時變成一種真正普及的療法還很難說,但可能就在接下來幾年。也想問問你,如果用病毒煉成的神奇藥水、藥丸或針劑真的上市了,你會怎麼做呢?

  1.  什麼也不做,因為相信自己肯定用不著。
  2.  聯絡一下保險公司,看有沒有給付。
  3.  這都不重要,重要的是泛科學到底是不是保護傘公司的行銷部門。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

0

13
3

文字

分享

0
13
3
太空種電?不受天氣影響的發電廠登場,人類將迎來能源自由?
PanSci_96
・2023/08/12 ・4585字 ・閱讀時間約 9 分鐘

要核能、綠能、還是天然氣?大家不用吵了,因為讓我隆重介紹,宇宙太陽能準備登場,地球將進入能源自由,人類文明將邁入下一個時代!

雖然只是邁入第一步,但我沒有在開玩笑,美國、日本、歐盟、英國都陸續展開宇宙太陽能計畫,預計在太空中布下大量太陽能板,將取之不盡的能量,不分晝夜、不分天氣地將能量源源不絕的傳回地球。而且第一階段的測試,已經在宇宙中測試成功了!

宇宙太陽能真的可行嗎?我們離能源自由,還有多遠?

為什麼要去太空中進行太陽能發電?地面太陽能的困境

台灣要選擇哪種能源配比,各方論點各有道理。而同樣的問題,不只是台灣,對世界各國來說都是爭論不休的議題。面對這樣的困境,竟然有人提議往太空探索,去太空中進行大規模太陽能發電,並將能量傳回地球,成為宇宙太陽能電廠,一舉解決所有能源問題。可是就算不去太空,在地面上的太陽能近年來成長迅速,安裝量和產量都持續增加,為什麼非得跑到太空中去做一樣的事呢?

雖然太陽能板的設置成本近年來降低很多,能不能穩定發電卻要看老天臉色,而且需要的佔地面積廣大。世界上只有少數幅員廣大,日照充足的國家可以打造 GW 等級的太陽能發電廠,像是印度,中國,以及中東地區。許多地方例如台灣,多以民間業者小規模發展為主,很難建設大規模的太陽能發電廠,如果要大規模使用農地、魚塭、屋頂種電,也有許多問題等待解決。

不過只要把太陽能搬到外太空,就可以大喊:「解開束縛、重生吧!太陽能,我還你原型!」

首先,太空中可以接收到更多的陽光。由於太空中沒有夜晚,所以軌道上的衛星幾乎可以 24 小時暴露在陽光之下。此外,太空中的陽光不會像地面上的冬天或傍晚,有傾斜入射的問題。太陽能板可以隨時指向太陽的方向,和太陽光的方向保持垂直,接受百分之百的陽光照射。根據計算,同一塊太陽能板放在太空中可以接受到的陽光量至少是地表的三倍以上。

地球上陽光傾斜入射的問題示意圖。圖/PanSci YouTube

另外,地球的大氣其實幫我們阻隔了許多陽光,保護地表上的我們不會被瞬間曬傷。就算是晴朗無雲的日子,大氣層還是會散射掉許多的陽光。太空中的太陽輻射比地表強上不少,大約多了 40% 左右。

綜合前面所說的,只要把現有的光電材料放到衛星軌道上,就可以輕鬆獲得約四倍的發電量。此外還不需要任何占地,不會對環境生態帶來負面影響。

太空種出的電要怎麼運回地球?

你可能會好奇,在太空中收穫這麼多太陽能,要怎麼運回地球給大家使用呢?難道要存在電池裡再回收嗎?科幻大師艾西莫夫早在 1941 年就想過這個問題了。在他的短篇小說《理性》中,各個太空站會再收集太陽能之後,用微波光束將能量傳送至不同行星,也就是遠距無線傳輸能量。

雖然這種技術在當時屬於科幻情節,但現在的我們知道這樣的技術在原理上可能辦到的。在我們介紹無線獵能手環那集,我們有提到電磁波傳遞能量的問題,就是能量會以波源為中心向外發散,並且能量隨著距離快速衰減。想要高效率傳輸能量,如果不想接條線,就必須使用指向性的波源,將能源都集中到一點。

現在,我們使用多個天線組成陣列,並調整他們的相位,讓各個天線發出的微波產生干涉,形成筆直前進的單方向微波束,將能量精準發射到遠處的一個點。除此之外,因為選擇的電磁波頻段是微波,就像手機訊號可以穿過牆壁到你的手機一樣,特定頻率的微波也能穿透大氣層或雲層的阻擋。即使地球上的我們是下雨天,宇宙太陽能仍能透過微波將能量傳至地表,大幅降低天氣造成的影響。

所以,只要把所有太陽能板發射到地球同步軌道上,讓它們在軌道中展開,組裝成大還要更大,邊長長達數公里的超大太陽能板。這樣空中太陽能發電廠就會一直維持在天空中的某一點,地面的我們,只要蓋個微波接收站就可以了。當然要將所有設備發射到地球同步軌道上所費不貲,較可行的做法是先用火箭將衛星射入高度較低的低地球軌道中,再利用衛星本身的離子噴射等方式把自己慢慢推到地球同步軌道。

太空太陽能發電廠概念圖。圖/Space.com

這個主意,在 1968 年工程師 Peter Glaser 就在 Science 期刊上提出,還向美國政府申請了專利。當時,美國能源局和 NASA 也覺得這個概念挺「有趣」的,針對宇宙太陽能做了一系列的調查並提出了正式的可行性報告。不過當時各方面的技術未成熟,無法進行測試。最重要的是,要把一整個太陽能發電廠射到太空,實在要花太多錢,產出的電根本就不敷成本。

好消息是,太空運輸成本近年來已經降低很多。SpaceX 的獵鷹九號火箭將每公斤物質運到低地球軌道的成本,只需要約三千美元,是過去使用太空梭運載的二十分之一。這讓宇宙太陽能的可能性,從僅只於科幻,搖身一變成為潛力無窮的未來能源。

宇宙太陽能離我們有多遠?

從美國、英國、歐盟到日本,都已經放話要加入這場全新的太空能源競賽。領跑者之一是日本的太空機構,宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組,是有生之年就能看到的成果!

從宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組。圖/PanSci YouTube

這個時程也不是信口開河,日本在 1980 年代左右便開啟了宇宙太陽能計畫。經過數十年的規劃與研發, JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。這個實驗相當重要,因為在發射成本的問題解決之後,宇宙太陽能要面對的下一個難題,就是如何有效地從外太空軌道遠距送電。雖然我們已經知道可以透過干涉的方法,讓微波束直線前進,但實際運作時,還是會有一個很小的發散角,不會完全平行。

JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。圖/PanSci YouTube

失之毫釐。差之千里。地球同步軌道離地表可是有三萬六千公里,小小的發散角到地面就會嚴重發散,地面的接收天線尺寸也不可能無限擴張。這任務的難度差不多等於要從操場的一端用雷射筆打到另一端的蚊子,非常困難。JAXA 的天線雖然目前還未達到需要的準度,但是發散角已經能控制在 0.15 度左右,足以從較低的低地球軌道傳輸能量回地球,做初步的測試。

從還處在規劃階段的日本,瞬間移動到地球的另一端,美國的研究團隊,在這個月已經宣布取得重大突破。加州理工學院的宇宙太陽能計畫在今年初,成功讓一個小型測試模組,乘著 SpaceX 的獵鷹 9 號前進低地球軌道,進行太空中的實際測試。這個小型模組包含三個小實驗。第一個實驗是測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。第二個實驗則是要在 32 種不同的光電材料中,找出哪種在太空中效果最好。第三則是要測試微波傳輸能量在太空中的可行性。

測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。圖/caltech.edu

就在今年的 6 月 1 號,團隊宣布他們設計的可彎曲天線陣列,在太空中成功傳送能量到三十公分外的接收天線,點亮了 LED 燈。雖然距離只有短短的 30 公分,但是整個實驗暴露在外太空的環境中進行,證明他們的設計可以承受最嚴苛的環境條件。做為測試,他們也嘗試讓天線發射能量到遠在地球表面,大學實驗室的屋頂上。並且,還真的被他們量測到了數值。儘管規模不大,但這是宇宙太陽能第一次的軌道測試,結果相當振奮人心。

可彎曲天線陣列。圖/PanSci YouTube
右方為可彎曲天線陣列(發射端),左邊為接收端的 LED 燈泡。圖/caltech.edu

如此看來,技術的發展似乎相當樂觀。可是要用於民生發電,成本是很大的重點。宇宙太陽能真的符合經濟效益嗎?或是我們該把資源留給其他選項呢?

宇宙發電廠符合經濟效益嗎?

根據美國能源情報署 EIA 的資料,1GW 發電容量的發電廠,傳統燃煤發電廠的初期建設成本,大約是一千億台幣,核電廠大約是兩千億台幣。那宇宙太陽能呢?每 1kW 的發電需要二十公斤的材料,1GW 就需要兩萬公噸。目前 SpaceX 獵鷹重型火箭運送每公斤材料進入軌道,需要三萬台幣。也就是說,光是將設備全部送上太空的運輸成本,就需要六千億的驚人花費。再加上太陽能板與相關設備的建置成本,以地面型太陽能發電廠為參考的話,大概還要多花500億台幣。而 JAXA 方面的預估,打造第一座 1GW 宇宙太陽能至少需要一兆兩千億日圓,雖然比我們用獵鷹重型火箭預估的還要低,但仍是一筆龐大費用。

各種發電方式的成本與性能表現。圖/美國能源情報署 EIA

那宇宙太陽能真的只是將鈔票往太空撒,空有理想的計畫嗎?當然不是,有兩個讓科學家不放棄的理由——首先是未來建造成本一定會下修。太空的發射成本相比 50 年前,已經少了兩個零,在 SpaceX 的發展下,還在持續地快速減少。另一方面,太陽能材料的輕量化工程也持續在進行,每 kW 發電重量只有十公斤或以下的太陽能材料已經不是虛構。新式的太陽能材料,我們未來也會陸續介紹。這兩個因素加乘在一起,一兆兩千億日圓的成本,很有機會在幾年內就減少為十分之一或更少。

發射火箭的成本逐年降低。圖/futuretimeline.net

更重要的是,宇宙太陽能一但建置完成,就會成為可做為基載能源的再生能源,減少對石化燃料的依賴。甚至因為主要設備都在太空,地面只需要建設接收站,可能將解決許多偏遠地區的能源問題,一舉改變全世界的能源型態。而且與許多八字還沒一撇的發電方式相比,宇宙太陽能已經算是距離現實很接近的選項,也難怪各個國家紛紛搶著要發展這塊領域。不過雖說是永續能源,還是有許多方面值得深入研究。例如要把幾萬公噸的材料射到軌道中,需要排放多少的火箭廢氣?一但規模化,這些巨大的宇宙太陽能板是否會成為小行星的標靶,或在一次的太陽風暴過後,讓軌道中堆滿太空垃圾?

宇宙太陽能究竟能不能成為可靠的新興未來能源,從想都不敢想,到開始精算成本,相信我們很快就會知道答案。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1190 篇文章 ・ 1751 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
要利用光能還是熱能?小孩子才做選擇,我全都要!——全光譜太陽綠能永續系統
研之有物│中央研究院_96
・2023/04/22 ・6471字 ・閱讀時間約 13 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/林承勳
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

有效利用太陽的光能和熱能

能源減碳已是國際趨勢,近年政府積極開發再生能源,逐年增加發電比例,而太陽能深具開發潛力。新興的鈣鈦礦太陽能電池是目前的研究熱點,不僅製造成本較低,單片發電效率已可達到 25%,逐漸趕上主流單晶矽太陽能電池的 26%。中央研究院「研之有物」採訪院內應用科學研究中心研究員朱治偉,他與研究團隊試圖開發一個小型的全光譜太陽能系統,讓光電轉換效率最好的波段被鈣鈦礦太陽能電池吸收,其他波段的光會穿過半透明的材料面板,抵達下層的集熱管,讓多餘太陽熱能可以回收再利用。

臺灣發展再生能源的關鍵:太陽能

太陽能是目前最為普遍的再生能源之一。近年來,臺灣的太陽能建設有逐步增加,且經濟部已訂下在西元 2025 年,國內再生能源發電量要佔總發電量 20% 的目標,其中太陽能發電量還要達到 20GW(1GW = 10 億瓦)的規模。

除了政府與業者的大型太陽能專案,太陽能發電對於公司行號或是一般社區大樓也有其誘因。樓頂架設太陽能裝置不但可以隔熱、防漏水,每年產生的電力也能由政府以較高的價格收購,創造額外利潤。然而太陽能發電在現階段還有許多缺點等待解決,像是發電裝置在購買設備時就必須先投入大量的建造成本,之後才逐年發電回收。

太陽能發電裝置體積龐大、極占空間,以目前市佔率最高的單晶矽太陽能電池來說,裝置架設完成後就沒有辦法再任意移動,如果遭逢颱風或地震等臺灣常見的天災,無法搬至安全處的太陽能板很有可能受到嚴重損傷。此外,機器也要定期保養維修,否則當灰塵逐漸堆積、器材日漸老舊,發電效率也會一點一點地下降。

矽晶太陽能電池裝置昂貴、笨重且無法移動,需要定期清洗,否則當灰塵逐漸堆積,發電效率也會一點一點地下降。圖/iStock

好消息是,單晶矽太陽能電池笨重、易碎而無法隨意重組的缺點,在未來很有機會用新型「鈣鈦礦材料」來克服。鈣鈦礦材料可以做成薄膜,附著在可撓曲的軟性基材上。如此一來,鈣鈦礦太陽能電池可以收捲攜帶,便利性遠勝過單晶矽太陽能電池。

朱治偉舉高雄愛河上現有的電動船為例,船上架設的是單晶矽太陽能板,而光是一個面板就重達三十到四十公斤,二十片總共八百公斤。「船雖然能夠自主發電,但發電量還不夠驅動機台本身的重量。」朱治偉笑著說,如果用鈣鈦礦太陽能電池替代,不但能大幅減輕重量,在天氣不好時還能將發電裝置取下,騰出空間做其他用途。

朱治偉手持鈣鈦礦太陽能電池,單片面板就包含許多個元件,其中一小塊就是一個發電單元,端看目標電流與電壓來決定諸多電池要串聯或並聯。圖/研之有物

發電效率大比拼:鈣鈦礦電池 vs. 單晶矽電池

除了裝置的便利性之外,太陽能光電轉換效率也是使用時需考量的一大要素。朱治偉指出,單晶矽太陽能電池單片面板在實驗室的發電效率可達 26%,但進到後段模組後,由於需要多片、大面積組裝,並經由導線串聯和並聯,過程中都會產生電阻導致電量損失。實際運作起來,效率只剩下 22%~23%。

鈣鈦礦材料的出現,讓單晶矽受到極大挑戰。以發電效率來說,鈣鈦礦太陽能電池在實驗室的效率可達 25.8%,幾乎跟單晶矽不相上下。雖然鈣鈦礦技術還在研發階段,尚未真正投入市場應用,但以小面積材料測試的實驗數據來說,學界與業界都對其發展潛力寄予厚望。

鈣鈦礦材料的另一項優勢在於,原料非常容易取得,且生產過程耗能與成本都相對低廉。「相較之下,目前發電效率稍微占優勢的單晶矽,是個高耗能、高污染的產業。」朱治偉指出,光是要提煉出矽元素,就得先用高溫把原料的砂熔化,接著在昂貴設備的高溫環境中緩慢結晶。

「而且單晶矽材料對於缺陷的容忍度很低。」朱治偉補充說道。所謂缺陷容忍度,就是材料在結晶時,有缺陷出現對於功能、效率的影響程度。

單晶矽在結晶過程中,原子排列越整齊、純度越高,缺陷就會越少,如此一來,電子在整齊的晶格裡可以很順暢地流動;一旦晶體排列不整齊、有缺陷產生,電子流動就會受到阻礙,讓材料發電效率變差。單晶矽對於缺陷的容忍度很低,缺陷會嚴重影響到單晶矽電池發電效率,因此結晶純度要求 99.9999% 以上。

當矽結晶完後接著要切成薄片,切片時會損耗材料並產生大量粉塵,切完還得進入複雜的半導體製程,不但需要高溫且耗水,還需使用到有毒溶劑。雖然科技廠會將高汙染的排放物先處理到合乎排放標準,但這些製程都需要投入大量的能源跟水。

單晶矽的製程需要耗費大量的能源和水,而且單晶矽對於缺陷的容忍度很低,為了不影響太陽能電池發電效率,結晶純度要求到 99.9999% 以上。圖/Wikimedia Commons

鈣鈦礦材料:高缺陷容忍度、高發電效率、溶液式製程

鈣鈦礦材料的缺陷容忍度很高,即使結晶缺陷是單晶矽的幾百、幾萬倍,都還能有很高的發電效率。「而且鈣鈦礦電池在天氣不好、低照度或是室內時依然能夠持續發電。」朱治偉提到,單晶矽電池在陰天幾乎完全不發電,而鈣鈦礦電池受影響程度較低,仍可繼續發電。

另外,單晶矽電池基本上沒辦法在室內使用,因室內照明環境為低照度、光的波段很狹窄,整體能量會偏低。但是鈣鈦礦電池不但可以使用,其轉換效率可達 30% 以上,可以驅動電力需求低的元件,例如物聯網裝置等。

「更方便的是,鈣鈦礦材料可以溶解在有機溶劑裡。如果使用溶液製程,就能快速、大面積的製作。」朱治偉提到,等到未來技術成熟,就像是在印刷報紙一般,將含有鈣鈦礦材料的溶劑當作墨水,用印刷方式就能快速生產太陽能電池。

設備建造簡易、材料取得方式環保,如果還能大面積快速印刷來降低製作成本,鈣鈦礦太陽能電池可以說是集各種優點於一身。

不過,鈣鈦礦電池還是有些缺點亟待改善,像是本身材料的穩定性,導致電性上會出現遲滯現象,造成發電量有不穩定、時高時低的問題。此外,由於鈣鈦礦材料是離子材料,一碰到水就會解離,解離後會縮短使用壽命。

鈣鈦礦材料是一種離子材料,結構通式為 ABX3,A 和 X 的位置會分別放入陽離子和陰離子,B 的位置通常會放鉛離子。離子材料在有水氣的環境中容易降解。圖/研之有物

朱治偉指出,想要避免水分接觸到鈣鈦礦材料,能用封裝技術來解決。而穩定性問題則要在一開始長晶時著手。像是藉由添加其他離子促進長晶品質,讓結晶更加緊密結合。只要長晶時越整齊、缺陷越少,電子就能輕易地被導出,電流高、效率穩定,遲滯現象就能減少。「鈣鈦礦太陽能電池還有一個問題,就是裡面含有微量的鉛元素。」朱治偉說,雖然使用量非常少,但鉛終究是有毒的物質,若外洩還是有可能對接觸者造成傷害。目前同樣可以用封裝技術來避免鉛元素外漏,但期待未來有機會能找到其他安全的元素來替代鉛的角色。

小孩子才做選擇,我全都要!

太陽光的波長​分佈從 300 到 2700 奈米都有。一般單晶矽太陽能電池只能吸收 300 到 1100 奈米的光,1200 奈米以上的波段皆無法利用,有些被反射到環境當中,有些則是轉換成熱能。

熱能累積在矽晶板裡面,會影響發電效率。「矽晶板溫度每上升 1°C,效率就下降 0.3%。」朱治偉指出,大太陽底下矽晶板的溫度會達到約 80°C,比室溫高約 50°C 左右,這將導致發電效率降低 15%。

相較於不透光的矽晶板,鈣鈦礦太陽能電池能做成半透明的薄膜,將透過的陽光做其他運用。因此,中研院全光譜太陽綠能永續計畫採用的組合是:半透明鈣鈦礦太陽能電池搭配集熱管,以便充分利用太陽能。

「我們用新開發的分光鏡,從 800 奈米波長的地方將太陽光一分為二,800 奈米以下的光直接給鈣鈦礦太陽能電池發電,800 奈米以上的光讓集熱管吸收,產製出熱水。熱水經過吸附式致冷系統(absorption chiller system),透過巧妙的蒸發原理設計,將外部冷水致冷,產製出冰水供大樓使用,剩下的溫熱水則供日常盥洗使用。」朱治偉說道。

用 800 奈米劃分,因為鈣鈦礦太陽能電池在 300 到 800 奈米這段波長時,約有 90% 的光電轉換效率。而 800 奈米以上的波段經集熱管轉成熱能,效率可達到 97%~99%;反之,800 奈米以下的光熱轉換效率則不佳。

全光譜太陽綠能永續系統示意圖。圖/研之有物(資料來源/朱治偉)

將不同波長的光,導向適合的元件

上面提到的「分光鏡」,全名為平面光譜分光模組,這是中研院開發的實驗模組,使用具有光波長選擇的導光板,將不同波長的光導向適合的元件。

這種導光板的作用原理,是經由奈米結構設計來決定要將哪些波段的光引導到哪個方向。在全光譜太陽綠能永續計畫中,是以 800 奈米的波段來區分。

把導光板鋪在太陽能集熱管上,800 奈米以上的光就穿透導光板照到集熱管,800 奈米以下的光就回收,引導到側邊,照在鈣鈦礦光電轉換元件上。

「將鈣鈦礦太陽能電池做在可撓曲的面板上,搭配時就能增加很多使用彈性。」朱治偉提到,脆弱的單晶矽電池受到重壓或劇烈震動就會碎裂,但是鈣鈦礦電池的機械性質很好,結構不易被破壞。

即使大樓樓頂有障礙物,或是要根據導光板的設計在不同方位擺放太陽能電池,鈣鈦礦電池都可以彈性搭配,使用時攤開、不用時就收捲起來。而且鈣鈦礦電池還可以依物體的弧度來配合製造,很適合用在 3C 產品、汽車、電動車的充電上,未來發展具備各種可能性。

目前中研院已經於院內活動中心樓頂架設了集熱管跟致冷系統,而半透明的鈣鈦礦太陽能電池與導光板在實驗室環境中,也證明小面積發電確實可行。

不過,想要量產出大面積的鈣鈦礦太陽能電池,單靠學界的製造能量來說有些困難。國內雖然有廠商在研發鈣鈦礦電池,大多沒有真正投入量產。「歐洲跟美國的公司願意投入大量經費研發產製;臺灣普遍的氛圍是傾向等待有明確的研究成果出現,再加入量產行列。」朱治偉說。

圖中機器為吸附式致冷系統。目前中研院已經於院內活動中心樓頂架設了集熱管跟致冷系統,而半透明的鈣鈦礦太陽能電池與導光板在實驗室環境中,也證明小面積發電確實可行。圖/研之有物

科技帶來改變,前景令人期待

與世界各國相比,臺灣電價相對便宜,且用電量相當龐大。根據經濟部能源局的統計資料, 2021 年臺灣總用電量超過 2800 億度,而目前臺灣發電有將近八成是使用化石燃料的火力發電。低電價導致缺乏節電誘因,高用電需求又使火力發電持續高碳排。根據 Our World in Data 資料,2021 年臺灣平均每人排放的二氧化碳為 11.85 噸,為全世界人均排放量的 2.52 倍,名列第 22 名,人均排放量高於日本、德國、新加坡與法國。

2021 年臺灣平均每人排放的二氧化碳為 11.85 噸,為全世界人均排放量(4.69 噸)的 2.52 倍,名列第 22 名,人均排放量高於日本(8.56 噸)、德國(8.08 噸)、新加坡(5.47 噸)與法國(4.74 噸)。圖/Our World in Data

以臺灣的國土面積與經濟規模來說,如此高碳排量代表臺灣的減碳之路還有很大的努力空間。朱治偉指出,目前國內能源有 97% 倚賴進口,若是不努力研發再生能源,對於經濟發展或是國防安全都不會是好現象。

以地熱來說,菲律賓地熱技術的起步比臺灣晚,發展卻非常成功。「臺灣跟菲律賓的地形很相似,發展地熱應該也非難事。」朱治偉表示,即使有學者認為臺灣難以發展再生能源,但在科技發展之下,很多事情都有可能發生。

朱治偉舉例,2014 年得到諾貝爾物理學獎的發光二極體(LED)技術,就是一個科技改變世界的範例,人類得以用新的方式產生高亮度白光。LED 的耗電量僅有白熾燈泡的十分之一,大大改變光照能源的運用。

朱治偉樂觀地指出,就算當前被評估不可行的地熱、風能或海洋能,只要科技持續進步都有機會逐漸實現,新興的鈣鈦礦太陽能電池也是科技進步的一個見證。

鈣鈦礦電池在 2009 年被日本科學家發現時,發電效率其實只有 3%;十年過後,鈣鈦礦電池卻即將追上單晶矽電池發展近百年才達到的效率規模。而且鈣鈦礦材料還可以添加其他離子元素,產生結構變化來影響電性或光性,這個特點讓鈣鈦礦電池未來的發展潛力無窮,也是單晶矽電池完全無法比擬的。

「雖然有些學者不看好,但我相信日新月異的科技在未來能夠改變現狀,讓環境問題慢慢得到改善。」朱治偉說。

聽說高溫會影響太陽能電池的效率?

太陽能電池效率會隨著溫度的上升而下降,下降程度與選用的材料有關。因此太陽能電池效率的標定均在攝氏 25°C。

一般來說,太陽能電池每升高 1°C,會降低整體效率的 0.4% 至 0.5%。溫度過高不僅會降低太陽能電池的效率,也會減低其使用壽命。為了降低溫度過高的影響,建議安裝太陽能板時盡量在底下預留足夠的通風空間,來提高散熱效率。

近期科學家開發出新穎的水凝膠材料,將其貼附於太陽能板背面,利用晚間從大氣吸收和儲存水分。當白天太陽能電池溫度升高時,儲存在水凝膠中的水分便會蒸發,從而降低太陽能板的溫度,如此就可以維持太陽能電池的發電量與延長其使用壽命。

目前的鈣鈦礦電池並不穩定,未來可以如何改善?

鈣鈦礦薄膜材料在形成的過程中,不可避免地會形成大量的淺層能階缺陷(如元素空缺、間隙缺陷和反位替代)與深層能階缺陷(如元素錯位、晶界和沉澱物)。鈣鈦礦薄膜材料雖然可以容忍比較多的缺陷,但是這些缺陷就是造成鈣鈦礦太陽能電池不穩定的最主要因素。

目前在改善鈣鈦礦材料穩定性的研究方向,大致分為兩類:第一類是改變薄膜製程方式來降低缺陷的形成,如兩步驟成膜方式(two-step method)和反溶劑(anti-solvent)製程。第二類是開發多功能分子,鈍化鈣鈦礦材料中不同類型的缺陷,例如以路易斯酸與路易斯鹼、烷基胺鹵鹽、兩性離子、無機鹽類和離子液體來鈍化缺陷。

延伸閱讀

研之有物│中央研究院_96
286 篇文章 ・ 2912 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook