1

10
4

文字

分享

1
10
4

同一句話男女情緒大不同!AI 幫你分析無法脫魯的原因——清大資工陳宜欣專訪

科技大觀園_96
・2021/03/10 ・3825字 ・閱讀時間約 7 分鐘 ・SR值 515 ・六年級

A:「我以為你會早點回來一起出門吃大餐。」
B:「沒辦法,事情很多忙不完」
A:「可是今天是很重要的日子耶,我以為你記得」
B:「老闆就臨時交代事情走不開,不然到底要我怎麼樣?!」

看到以上這段對話,你能感受到這兩人的情緒嗎?是期待、緊張、悲傷還是憤怒的呢?

應該可以感覺得到A帶著有些失望、悲傷的情緒,然而他並沒有說出「難過」、「傷心」等表示悲傷的字眼,那我們是怎麼得知的?

清華大學資訊工程學系副教授陳宜欣說:「社會文化讓我們收到特定用字時,會在潛意識進入同一個情境裡。」人類就像裝有好幾個 sensors,在經驗的累積之下,人們能夠在情境中,透過字句接收到情緒,於是她開始思考,如果人可以學習,那機器可以嗎?

人類可以學習從言語中判別情緒,那機器人是否也能經由訓練學習如何判別情緒。圖/Pexels

從數據分析看出發言者的情緒

情緒反映著心理狀態,而語言又是情緒的載具之一。陳宜欣副教授和團隊想出了一種用機器學習來分析情緒的新方法,利用社群網路的大數據找出蛛絲馬跡,與過去不同的是,他們拿掉了情緒用字,從常見字裡的「特徵」找出情緒型態。

許多我們認為是中性的字眼,其實和情緒有關。」陳老師說,例如,他們曾在標資料的過程中,發現「學校」這個字竟然有 80% 是帶著悲傷的。也有些令人出乎意料的發現,譬如我們通常認為「希望」是很正向的,然而分析結果卻是「悲傷」,這有可能是因為我們在說「希望如何如何」時,往往是在一個不太開心的狀態中才會這麼說。

以往語言及情緒相關的研究,大多是由心理學家訪談,再進行人為標註,然而容易受到主觀判定、字彙有限等影響。而陳宜欣老師的團隊,起初從臉書粉絲頁抓取資料,將留言或貼文底下表情符號作為情緒特徵。由於社群媒體常作為人們抒發的管道,他們也發現,情緒用字是會隨著時代、潮流改變的,例如有一陣子社會案件頻傳,在網路上「恐龍法官」這個詞經常伴隨著憤怒。然而,同一個詞只會有一種情緒嗎?這可不一定,來看看下面這兩句吧!

「謝謝團隊裡的每一個人,我們才能完成這個研究。」
「真是謝謝你,毀了我美好的一天。」

發現了嗎?一樣都是使用「謝謝」,第一句是開心的,但第二句卻是無奈的。

「語言有趣的地方是,人類在溝通時,會用所謂的諷刺文」陳老師笑著說。因此,除了詞本身,上下文也須納入考慮。也就是說,不同文字各有其表達的概念,組合起來後才會形成語意。在與人互動的過程中,語言是傳遞訊息的媒介,乘載著我們的情緒與想法。但並非每次的傳遞都是順遂的,有時我們會用中性的字眼包裝強烈的情緒,對方不見得能理解背後的含義;有時「說者無意,聽者有心」,明明你認為這句話沒什麼,但某些用詞卻造成他人的誤解。

例如文初 A 說的「我以為你會早點回來一起出門吃大餐。」便是用期待的情緒來隱藏悲傷、失望。而 B 最後回答的「不然到底要我怎麼樣?!」,或許他自己認為沒有什麼用意,但在 A 聽起來可能會以為 B 是帶著憤怒在說這句話的。

「人在溝通時,有時候講的話跟別人收到的不一樣。」陳老師這麼說。不僅聽者可能會誤解,有時甚至連自己都能夠騙過自己。陳老師表示,隨著研究,她也逐漸了解到,我們平常認為平和的說話方式,原來暗藏著許多「眉眉角角」。

從數據分析發現人在溝通時暗藏許多「眉眉角角」。圖/pexels

訓練 AI 分辨情緒用詞,發現男女不同情緒表達方式

提到語言裡的「眉眉角角」,那男生和女生表達情緒的方式會不一樣嗎?

陳老師在收集資料時發現,把性別納入考量,得到的結果會更準確。比如說同樣是憤怒的情緒,女生比較常用「期待」的語氣來表示,例如「我以為⋯⋯」、「我想說⋯⋯」,而男生可能會用一些強烈的字眼,例如 f**k,或是等事情過去才表達。

後來他們分別訓練出男生和女生的情緒分析器,輸入只標註情緒但不區分性別的詞,果真得到不一樣的結果。像是原本帶著「期待」情緒的詞,女生的情緒分析出來是驚訝,但男生的卻是憎恨;帶「悲傷」的字,女生的結果卻是期待,男生的出來則是憤怒。

陳老師表示,可能是在社會文化薰陶下,不論男女在表達情緒時總習慣以「不直接」的方式包裝,尤其是負面情緒。

男女在表達情緒時總習慣以「不直接」的方式包裝,尤其是負面情緒。圖/Pexels

運用 AI 分辨情緒,找出躁鬱症徵兆

於是他們開始思考,這樣的發現是否能應用在男女表現差異較大的心理疾病上。後來,他們嘗試開發方法,能從社群平台發文動態中,偵測發文者的精神狀況,希望能協助受躁鬱症困擾的人。

躁鬱症又稱為雙極性情感疾患 (bipolar disorder),發作時會導致情緒失調,情緒會在狂躁(異常興奮)以及抑鬱之間擺盪。但有時女性躁鬱症患者會被誤診成憂鬱症,原因是當她狂躁時表現得比較像精神變好,與醫生認知的不同。

陳宜欣老師的團隊搜集了上萬則的動態發文,除了用字之外,也從生活型態,例如發文時間、頻率等等,從行為中找出一些規律,最後訓練機器學習演算法,綜合各項特徵來區分初期徵兆。希望可以透過早期發現,給予患者需要的幫助及治療。

希望可以透過 AI 分辨情緒,早期找出患者躁鬱症徵兆。圖/Pexles

洞見不鼓勵負面情緒的網路社群

從作情緒分析,到後來應用在心理疾病的偵測上,陳老師提及開始研究情緒語言的契機,當時,第一個博士班學生來找她時,抱怨怎麼都搞不懂女朋友到底在想什麼,有沒有辦法可以利用機器學習知道一句話背後的情緒。加上她是三個孩子的媽媽,小朋友表達情緒的方式更是非典型,陳老師笑著說,她會想像小孩內建一個 model,與他們相處的過程中,不斷 trial and error,就會發現有趣的事情。也因為去上媽媽教室及身心靈課程的關係,讓她時常用兩種觀點思考、相互結合。

在研究情緒的過程中,發現人在某些時候會害怕自己的脆弱被看見,究竟是為什麼呢?

陳老師分享,她在中央大學副教授陳永儀的 TED 演講中找到原因,其中有句話說「這個社會常常只獎勵正面情緒」,好像表現出樂觀、正向才是好的,但如同他們在研究中發現的,當我們用另外一種情緒包裝負面時,其實對方不見得接收得到,溝通上的誤會便發生了。於是陳老師想,如果我們都能直接說出心裡的感受,或許許多衝突或傷害便能夠被避免。

回到文章開頭 A 和 B 的對話,若 A 明確地向 B 說:「今天是我們很重要的日子,你沒有早點回來一起吃飯,讓我覺得有點難過。」B 在接收到 A 的情緒後,或許更能夠同理並說出自己的苦衷,使兩人的頻率一致,達成溝通。

我認為人際連結最好的方式是——適度表達悲傷」陳老師說,她在撰寫部落格時,觸及率最高的竟然是分享自己升等失敗的文章,就像電影《腦筋急轉彎》裡的角色憂憂 (Sadness) 。把悲傷說出來,除了讓他人了解你的需求外,也能使其他有過相同遭遇的人,知道自己不是孤單的。

電影《腦筋急轉彎》裡的角色憂憂 (右下藍色的動畫角色)。圖/Wikipedia

以 AI 為鏡,可以看見自己

在人人都說 AI 可以改變世界的今日,AI 真的能解決人類面臨的種種問題嗎?

陳老師表示,不要期待 AI 能夠解決問題,真正能解決問題的是人,機器只是輔助的工具,但只要是工具都像一把雙面刃,然而,她相信 Nokia 的那個廣告標語「科技始終來自於人性」,在決定要做什麼之前,先想最壞、最極端的情況,若還可以接受才會繼續做,不論未來如何發展,最根本的初衷是要考慮人性。

而在作研究的歷程中,陳老師發現人的確會在某些情況下,提供一些本身也不知道的資訊,也就是說,我們可能連自己都不太了解自己。小時候常被叮嚀的「吾日三省吾身」,但若原本認為的就是錯的,再怎麼想可能都還是得到一樣的結果。因此,她希望 AI 能夠像一面鏡子,幫助人們看到不願看見的自己,能夠更了解自己。

參考資料

  1. 社群大數據的情緒分析
  2. 一名女科技人的反思
  3. 「狂躁抑鬱症」是什麼?
  4. Yi-Shin Chen IDEA lab
  5. 台灣資料科學年會——大數據下的情緒分析
文章難易度
所有討論 1
科技大觀園_96
82 篇文章 ・ 1112 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

3
0

文字

分享

0
3
0
人造腦挑戰 AI!培養皿中的腦組織+腦機介面能打敗電腦嗎?
PanSci_96
・2023/05/27 ・3178字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

2023 年 2 月底, 約翰霍普金斯大學教授 Thomas Hartung 帶領研究團隊,發表了「類器官智慧」(Organoid intelligence , OI)的研究成果,希望利用腦類器官加上腦機介面,打造全新的生物計算技術。

我們終於要製造人工大腦了嗎?OI 和 AI,誰會成為未來主宰?

類器官智慧 OI 是什麼?目標為何?

2023 年的現在,AI 就已展現了不少驚人的實際成果;相較之下, OI 仍只是一個剛起步的計畫,甚至連名稱都與 2018 年美國《自然—物理學》期刊專欄作家、物理學家布坎南以 Organoids of intelligence 作為標題的文章幾乎一樣。

類器官智慧、Organoid intelligence、OI 是個很新的跨領域名詞,同時結合了「腦類器官」和「腦機介面」兩個領域的技術。

簡單來說,腦類器官就是指透過培養或誘導多能幹細胞(iPSCs),在模擬體內環境的旋轉生物反應器中,產生的腦組織。這項聽起來好像只會出現在科幻電影裡的技術,確實已經存在。

最早的腦類器官是在 2007 年,日本 RIKEN 腦研究所的笹井芳樹和渡辺毅一的研究團隊,成功從人類胚胎幹細胞培養出前腦組織。第一個具有不同腦區的 3D 腦類器官則是發表在 2013 年的《Nature》期刊,由奧地利分子技術研究所的尤爾根.科布利希和瑪德琳.蘭開斯特研究團隊成功建立。

腦類器官的出現,在生物與醫學研究中有重大意義,這代表未來科學家們若需要進行大腦相關的研究,再也不用犧牲實驗動物或解剖大體老師來取得人類大腦,只需要在培養皿就製造出我們要的大腦即可。

儘管培養皿上的組織確實是大腦組織,但不論是在大小、功能,以及解剖構造上,至今的結果仍遠遠不及我們自然發育形成的大腦。因此要達到 OI 所需要的「智慧水準」,我們必須擴大現有的腦類器官,讓他成為一個更複雜、更耐久的 3D 結構。

要達到 OI 所需的「智慧水準」,必須擴大現有的腦類器官,成為一個更複雜的 3D 結構。圖/GIPHY

而這個大腦也必須含有與學習有關的細胞和基因,並讓這些細胞和 AI 以及機器學習系統相連接。透過新的模型、演算法以及腦機介面技術,最終我們將能了解腦類器官是如何學習、計算、處理,以及儲存。

OI 是 AI 的一種嗎?

OI 能不能算是 AI 的一種呢?可說是,也不是。

AI 的 A 指的是 Artificial,原則上只要是人為製造的智慧,都可以稱為 AI。OI 是透過人為培養的生物神經細胞所產生的智慧,所以可以說 OI 算是 AI 的一種。

但有一派的人不這麼認為。由於目前 AI 的開發都是透過數位電腦,因此普遍將 AI 看做數位電腦產生的智慧—— AI 和 OI 就好比數位對上生物,電腦對上人腦。

OI 有機會取代 AI ?它的優勢是什麼?

至於為何電腦運算的準確度和運算速度遠遠高於人腦,最主要原因是電腦的設計具有目的性,就是要做快速且準確的線性運算。反之,大腦神經迴路是網狀、活的連結。

人類本身的基因組成以及每天接收的環境刺激,不斷地改變著大腦,每一分每一秒,我們的神經迴路都和之前的狀態不一樣,所以即使就單一的運算速度比不上電腦,但人腦卻有著更高學習的效率、可延展性和能源使用效率。在學習一個相同的新任務時,電腦甚至需要消耗比人類多 100 億倍的能量才能完成。

神經網路接受著不同刺激。圖/GIPHY

這樣看來,至少 OI 在硬體的效率與耗能上有著更高優勢,若能結合 AI 與 OI 優點,把 AI 的軟體搭載到 OI 的硬體上,打造完美的運算系統似乎不是夢想。

但是 OI 的發展已經到達哪裡,我們還離這目標多遠呢?

OI 可能面臨的阻礙及目前的發展

去年底,澳洲腦科學公司 Cortical Labs 的布雷特.卡根(Brett Kagan)帶領研究團隊,做出了會玩古早電子遊戲《乓》(Pong)的培養皿大腦—— DishBrain。這個由 80 萬個細胞組成,與熊蜂腦神經元數量相近的 DishBrain,對比於傳統的 AI 需要花超過 90 分鐘才能學會,它在短短 5 分鐘內就能掌握玩法,能量的消耗也較少。

現階段約翰霍普金斯動物替代中心等機構,其實只能生產出直徑大小約 500 微米,也就是大約一粒鹽巴大小的尺寸的腦類器官。當然,這樣的大小就含有約 10 萬個細胞數目,已經非常驚人。雖然有其他研究團隊已能透過超過 1 年的培養時間做出直徑 3~5 毫米的腦類器官,但離目標細胞數目 1000 萬的腦類器官還有一段距離。

為了實現 OI 的目標,培養更大的 3D 腦類器官是首要任務。

OI 的改良及多方整合

腦類器官畢竟還是個生物組織,卻不像生物大腦有著血管系統,能進行氧氣、養分、生長因子的灌流並移除代謝的廢物,因此還需要有更完善的微流體灌流系統來支持腦類器官樣本的擴展性和長期穩定狀態。

在培養完成腦類器官以及確定能使其長期存活後,最重要的就是進行腦器官訊息輸入以及反應輸出的數據分析,如此我們才能得知腦類器官如何進行生物計算。

受到腦波圖(EEG)紀錄的啟發,研究團隊將研發專屬腦類器官的 3D 微電極陣列(MEA),如此能以類似頭戴腦波電極帽的方式,把整個腦類器官用具彈性且柔軟的外殼包覆,並用高解析度和高信噪比的方式進行大規模表面刺激與紀錄。

研究團隊受腦波圖(EEG)紀錄的啟發。圖/Envato Elements

若想要進一步更透徹地分析腦類器官的訊號,表面紀錄是遠遠不夠的。因此,傷害最小化的的侵入式紀錄來獲取更高解析度的電生理訊號是非常重要的。研究團隊將使用專門為活體實驗動物使用的矽探針Neuropixels,進一步改良成類腦器官專用且能靈活使用的裝置。

正所謂取長補短,欲成就 OI,AI 的使用和貢獻一點也不可少。

下一步,團隊會將進行腦機介面,在這邊植入的腦則不再是人類大腦,而是腦類器官。透過 AI 以及機器學習來找到腦類器官是如何形成學習記憶,產生智慧。過程中由於數據資料將會非常的龐大,大數據的分析也是無可避免。

隨著 AI 快速發展的趨勢,OI 的網路聲量提升不少,或許將有機會獲得更多的關注與研究補助經費,加速研究進度。更有趣的是,不僅有一批人希望讓 AI 更像人腦,也有另一批人想要讓 OI 更像電腦。

生物、機械與 AI 的界線似乎會變得越來越模糊。

OI=創造「生命」?

生物、機械與 AI 的界線越來越模糊。圖/Envato Elements

講到這裡,不免讓人擔心,若有一天 OI 真的產生智慧,我們是否就等於憑空創造出了某種「生命」?這勢必將引發複雜的道德倫理問題。

雖然研究團隊也強調, OI 的目標並不是重新創造人類的意識,而是研究與學習、認知和計算相關的功能,但「意識究竟是什麼」,這個哲學思辨至今都還未有結論。

到底懂得「學習」、「計算」的有機體能算是有意識嗎?如果將視覺腦機介面裝在 OI 上,它是否會發現自己是受困於培養皿上,被科學家們宰割的生物計算機?

不過這些問題不僅僅是 OI 該擔心的問題,隨著人工智慧的發展,GPT、Bing 和其他由矽構成的金屬智慧,隨著通過一個又一個智力、能力測試,也終將面臨相應的哲學與倫理問題。

最後,Neuralink 的執行長馬斯克說過(對,又是他 XD),人類要不被 AI 拋下,或許就得靠生物晶片、生物技術來強化自己。面對現在人工智慧、機械改造、生物晶片各種選擇擺在眼前,未來你想以什麼樣的型態生活呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1166 篇文章 ・ 1513 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
我不期待每天快樂,我只是想要好好生活——《與你相鬱的日子》
商鼎數位出版
・2023/05/19 ・1368字 ・閱讀時間約 2 分鐘

憂鬱症是什麼?

憂鬱症不是一個人不知足、懶惰,或是悲觀。它是個確確實實存在的疾病。雖然光從一個人外表無法看到,但是觀察腦部的話,可以發現腦結構、區域活動力、腦部神經傳導素的平衡都與沒有罹患憂鬱症的腦部不一樣。憂鬱症會造成各種不一樣的症狀,深深地影響日常生活品質。

它屬於一種情感性疾患,亦可以稱為情緒障礙。患者會感到心情持續低落,對原本感興趣的事情失去興趣,即使有好事情發生,心情也可能好不起來,也會被各種負面的想法侵襲,像是自責、貶低自己,讓一個人感受到罪惡、羞恥、沒有價值、沒有希望,甚至會萌生想死的念頭。

它會讓一個人記憶力變差,注意力變得比較不集中,感覺沒有精神,總是很累。憂鬱症也會害一個人睡眠與飲食失調,可能睡太多或太少或難以入眠,白天嗜睡,或是吃太多或太少,都有可能。除此之外,也可能會感到昏沉、頭痛等身體不適。

憂鬱症是真正的疾病。圖/與你相鬱的日子

但是每個人都會有情緒起伏啊!

「憂鬱症」與「悲傷」的差別

如前面所提,憂鬱症屬於一種情緒障礙。每個人都會有情緒起伏,但情緒病的情緒極端超越正常範圍,使它們難以控制。情緒病常常被汙名化,其中一個原因可能是因為情緒管理是衡量一個人有沒有成熟的一個標準,但是考慮到每個人的情緒起伏趨勢都不一樣,面臨到的調適難度也不一樣,應當要更加同理而不是斥責那些因為受情緒病而受苦的人。

憂鬱症的情緒狀態。圖/與你相鬱的日子
憂鬱症和悲傷傷的不同。圖/與你相鬱的日子
如果你開始瞭解優鬱症。圖/與你相鬱的日子
憂鬱症的「低落」。圖/與你相鬱的日子
憂鬱症的心理狀態 (1) 。圖/與你相鬱的日子
憂鬱症的心理狀態 (2) 。圖/與你相鬱的日子
憂鬱症的心理狀態 (3) 。圖/與你相鬱的日子

憂鬱症可能長這樣。圖/與你相鬱的日子
憂鬱症的不同樣貌。圖/與你相鬱的日子

——本文摘自《與你相鬱的日子:給患者與陪伴者的憂鬱症基礎指南》,2023 年 3 月,商鼎出版,未經同意請勿轉載。

商鼎數位出版
3 篇文章 ・ 0 位粉絲

0

3
2

文字

分享

0
3
2
透過 AI 繪圖原理,你就知道怎麼訓練做圖生成!
PanSci_96
・2023/04/29 ・2014字 ・閱讀時間約 4 分鐘

AI 生圖是透過訓練模型學習自行生成圖像,而電腦繪圖則是由使用者透過軟體或工具手動繪製圖像。

儘管可能較缺乏人工繪圖的細節與創意,但是都是由 AI 自己生成,每張絕無僅有,這樣應該也算是有些創意吧?

究竟這個「安能辨我是 AI」的新時代,到底是怎麼突然降臨的呢?

現代魔法師的誕生

現在夯、猶如魔法的 Midjourney,使用者針對想要創作的內容和風格,給出關鍵字如 Hyper realistic、Xerox Art、masterpiece、underwater,以及畫面比例等參數,甚至是特定藝術家的名字,大約 30 秒到 1 分鐘,就能完成作品,對一般民眾來極容易上手。

如果生成出不對勁的怪圖,只要請它參照範例、補充關鍵字,或是你本身就有一點修圖能力,就可以產出高品質的美圖。因此,我們也可以說這是一種能和 AI 繪師對話的語言介面,新的職業「AI 溝通師」也隨之出現。

AI 生圖其實也不是什麼新技術,早就有人採用一種名為 GAN 的對抗式生成網路的演算法來生成圖片。在 2018 年也有人用來生成某種藝術作品,並拍賣出高價,當然在當時與其說是美麗的藝術,其實更多是個噱頭。

從模仿到創造

為了達成「創新」,AI 研究者放棄了 GAN 中讓 AI 互相競爭找出「最佳解」的對抗式思維,提出一種名為「Diffusion model」擴散模型的新概念。

如果觀察 Stable diffusion 或 Midjourney 生圖過程,可以發現到,圖片會從一團什麼都沒有的雜訊開始,逐漸出現五官、輪廓等特徵,最後才變成有著豐富細節的精緻畫作。

擴散模型的去噪過程。圖/維基百科

Diffusion model 在訓練時則是會先看到一張完整照片,接著依照馬可夫鏈的過程,以高斯分布的方式往圖片上加入隨機噪點。待整張圖變成一團雜訊,等它學會從一張圖到混亂雜訊的過程後,再習得如何從混亂雜訊中生成圖的能力;於每一步加噪的過程中學會降噪,使用時間鉗形攻勢,完成雙向學習。

Diffusion model 在接下來的訓練中,會不斷調整自己的參數,學習自己生成圖片。這個訓練好的 Diffusion model 其實就像個大型藍色窗簾機器人,從雜訊中抓出特定特徵,例如看到兩點一線,就說是人類的眼睛與嘴巴,接著漸漸畫出人類的面貌。

過程中還會加上一個名為「變方自編碼器」(Variational Auto-encoder ,VAE)的加持,使它輸出的不只是原本的訓練或輸入的圖片,而是真正能夠「無中生有」的連續性畫素,而這就是擴散模型被稱為生成模型的原因。另外,隨著步驟越多,解析度或細節可以更高,每一次相同的關鍵字或輸入圖檔,經過模型輸出的結果都有著不確定性。

從二維到三維

當你以為畫奇幻插畫和二次元美少女就是極限了,最新進展絕對更令人大開眼界!

前陣子開發出來的模型,能讓使用者自己上傳作品或相同風格的畫風,來產出更多樣化的素材。例如不久前在日本被下架的 mimic;而 DALL-E 則推出 Outpainting 功能,例如輸入知名畫作,它會替其擴張圖片,算出可能的背景樣式。

DALL-E 算出知名畫作《戴珍珠耳環的少女》的可能背景樣式。圖/OpenAI

若再將繪圖 AI 訓練到不只能輸出圖片,甚至能輸出擬真的照片呢?已經有人這麼做了。

最近最紅的生成模型,可以把疫情期間我們一張張戴口罩的照片全自動 PS 出嘴巴鼻子、輕易更換穿搭風格等。新出的 AI 繪圖軟體 ControlNET,甚至只要提供骨架甚至幾個線條,就能繪出相同姿勢的人物圖像。

如果我們能夠生成無法辨別的真人外觀,再搭配已經有的 3D 骨架建模生成模型,豈不是可以達成科幻電影「虛擬偶像(Simone,2002)」的劇情,生成一個假演員來演戲拍廣告!

這些 AI 生成模型其實都只是為我們所用的工具,這波 AI 繪圖師的加入,肯定會大量取代中階以下的商用和插畫家的需求,並解決業主和設計師之間的溝通成本,各家美術或遊戲公司紛紛開出 AI 溝通師的職缺。追隨主流審美的人類繪師受創最深,而對已有強烈藝術風格的大師或非主流藝術家來說,目前相對不受影響。

使用 AI 完成的藝術作品。圖/GIPHY

AI 繪圖工具的出現,掀起了一股巨浪。如今不僅有人能利用 AI 生成作品得獎,也開始能看到有人使用 AI 創作進行營利、販售。

然而創作領域中模仿、挪用、抄襲、致敬等等的問題在 AI 出現以前就是個難解之題,來到大生成時代,這類問題只會越來越多,我們又該如何面對它呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1166 篇文章 ・ 1513 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。