0

0
0

文字

分享

0
0
0

看喜愛的電視重播可幫助精力恢復

蔡宇哲
・2012/11/04 ・920字 ・閱讀時間約 1 分鐘 ・SR值 495 ・六年級

人除了體力有限外,精力同樣是有限的,這就像電玩中的角色放個大絕招就會消耗MP/mana一樣。除了隨著時間會漸漸恢復,電玩角色也可以透過喝藥水或吃仙豆來快速恢復精力,但真實世界可沒這玩意兒,不過還是有方法的。紐約Buffalo大學Jaye Derrick博士的研究發現:觀看喜愛的電視節目重播將可加快精力的恢復。

Derrick博士認為:人們寶貴的心智資源是有限的,當完成了一件複雜的工作後就會耗掉一大部分的資源,此時意志力與自我控制就會下降。當給予充足的時間時就可以將資源重新補滿,不過現在有比較快的方式來回復精力。

研究者進行了兩個實驗來支持他的論點:在第一個實驗中,一半的受試者需要專注地完成一個較花腦力的作業,另一半則是進行較容易的作業。完成後讓各一半的人自由描寫他們最喜歡的電視節目內容,另一半的人則是列出他們自己房間的物品清單,接著再進行另一項極花腦力的作業來了解精力是否有恢復。結果發現那些描寫喜愛電視節目者,若是之前是做困難作業者就會寫得比較多、做簡單作業者就描寫得比較少,這表示當他們耗費心力完成一件工作時,會希望花比較多時間去回想節目內容。而之後作業中,困難作業組在描寫電視內容後表現會明顯較好,負向情緒也會比較低。這意味著回想喜愛的電視節目回復了他們精力與情緒

第二個實驗則請受試者記錄自己每天生活情形,主要記錄工作難易度與觀看電視、電影與閱讀的情形。結果發現:若白天有進行較耗費心神的工作時,就會花比較多時間去看重播的電視、電影或是閱讀已看過的書,而此舉也能幫助他們隔天的負向情緒較低。

-----廣告,請繼續往下閱讀-----

但有趣的是:若是看喜愛的節目但是新單元而非重播時,就沒有這種效果。研究者認為當看重播節目時,由於已經知道喜愛的角色會有何進展,因此並不需要耗費資源去思索與關注,可以盡情地投入與劇中角色的情境與互動,如此一來將有助於恢復精力。但這並不代表你攤在電視前看一整晚就會有好處,台灣多數人看有線電視都是拿著遙控器在電視衝浪,那樣可是不行的。

別再抱怨第四台一再重播周星馳的電影了,換個角度想:或許他們是用心良苦要幫助觀眾們盡快恢復精力啊

文章出處:Favorite TV Reruns May Have Restorative Powers, says UB Researcher. link.
原始文獻:Energized by Television: Familiar Fictional Worlds Restore Self-Control. link.

文章難易度
蔡宇哲
67 篇文章 ・ 5 位粉絲
中正大學心理學博士,台灣應用心理學會理事長、「哇賽!心理學」創辦者兼總編輯。泛科學、幼獅少年、國語日報科學版……等專欄作者,著有《神奇的心理學》、《哇賽!心理學》、《用心理學發現微幸福》。 喜歡分享心理學,希望人人都可以由心理學當中認識真實的自己,也因此能夠更溫柔的對待他人。

0

2
2

文字

分享

0
2
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

52
3

文字

分享

0
52
3
耳背腦就鈍?解密聽力受損與失智的關係
雅文兒童聽語文教基金會_96
・2024/02/17 ・4232字 ・閱讀時間約 8 分鐘

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

阿明是位 65 歲的退休長者,總是積極參與各種社區活動,是熱心的志工。然而,近來他開始意識到自己在大型聚會中,必須使勁聆聽他人的話語,有時還是會錯過一些關鍵的內容,這使得他逐漸對大型活動感到焦慮,害怕因聽不清楚別人的對話而與人生分。隨著聽力問題逐漸浮現,他開始注意到自己的思緒也跟著變得混亂。比如說,他常常忘記事情發生的順序,甚至有時候不記得已經說過的話,這種記憶的衰退讓阿明感到十分困擾。最終,阿明去看了醫生並接受相關的測試,被診斷出患有中度聽損與早發性失智症。

在日常生活中,聽覺扮演了重要的角色,是我們與外界交流的管道之一。然而聽力受損不僅僅是一種單純的生理障礙,更可能與失智症之間存在著密切的關係。

關於失智症的二三事

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。有些失智症患者甚至無法控制情緒,個性也可能發生轉變。失智的症狀隨程度不同而有所改變,從最輕微的階段開始影響一個人的基本能力(如記憶),到最嚴重的階段,患者完全需要仰賴他人進行日常活動 [1]。失智症不僅對患者本身造成巨大的影響,也帶給家人和照顧者極大的負擔。

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。圖/Pixabay

2023 年世界衛生組織(WHO)的統計數據顯示,世界上目前約有 5,500 多萬的人口患有失智症,而每年全球正以 1,000 萬人的速度增加 [2],預計到 2050 年,全球失智症患者數量將達到 1.53 億人口 [3]。Livingston 等學者於 2020 年在國際著名的醫學期刊《刺胳針》(The Lancet)發表了一篇關於失智症的預防、介入與照護的研究 [4],列舉了 12 項風險因子,包括教育程度較低、聽力損失、創傷性腦傷、高血壓、酗酒、肥胖症、吸煙、憂鬱症、社交隔離、缺乏運動、空氣污染與糖尿病,將近 40% 的失智症都與這些因素有關(另 60% 為風險因子不明),其中,聽力損失佔最大宗,約有 8% 的比例。另一項研究更進一步指出,罹患失智症的風險會隨著聽損程度越重而增加,例如輕度、中度與重度聽損者罹患失智症的風險分別是聽常者的 1.27、3.00 與 4.94 倍 [5]。由此可見,聽損與失智症的關係不容小覷。

-----廣告,請繼續往下閱讀-----
失智症的風險因子,聽力損失約佔 8%。圖/引自HearingLife

聽力出包時,失智症有可能找上門!

聽損與失智症關聯的機轉究竟是什麼呢?綜合現有的研究文獻,大致可歸納出三大觀點:

一、聽損會耗費大腦的認知資源

聽損常使一個人在吵雜的環境下聽不清楚聲音,此時,大腦便會進行代償作用,將負責思維和記憶區塊所需的資源移轉用來處理這些模糊的音訊,而導致前述二項高階的認知功能受到影響,進而增加失智的風險 [6]。以上的論述主要來自 Mishra 等人的研究 [7],該研究比較輕度聽損年長者與聽常年輕人在「認知備用容量測驗(Cognitive Spare Capacity Test)」的表現:受試者聽完(無視覺提示)一串由男女穿插錄製之二位數的數字列表(如下表所示)後,要說出這串列表中由男生所錄製的奇位數數字(如 13 與 59,以圓圈標示)。要順利完成此項作業,受試者必須排除女生所錄製奇位數數字的干擾(如 77、89 與 61,以底線標示)。

數字5036774496895240612066
男/女
「認知備用容量測驗」實例(來源:Mishra 等人 [8]

結果顯示,在安靜的環境下,兩組受試者的表現無顯著差異,但在噪音環境下,聽損年長者的表現則顯著落後於聽常年輕人,研究者認為聽損年長者為了排除噪音的干擾以獲取正確的答案,其大腦會將高層次的認知資源挹注於彌補聽損所帶來的負面影響,而致使認知功能下降。長此以往,漸漸便埋下了失智症的導火線。

另一個較為直觀的證據則是透過腦造影技術觀察聽損者大腦活動的狀況。Glick 與 Sharma [9] 讓聽常與聽損老年人觀看電視螢幕的光影變化,並透過高密度的腦波圖(high-density electroencephalography;EEG)記錄其對視覺刺激反應的皮質視覺誘發電位(cortical visual evoked potentials;CVEPs),再透過電流密度源重建技術(current density source reconstruction)定位大腦皮質活動的區塊;此外,研究也評估了受試者的認知功能。結果顯示,相較於聽常者,聽損者觀看視覺刺激物時,腦部發生了視覺跨模重組(visual cross-modal reorganization)的現象:除了主司視覺的枕葉區被活化外,主司聽覺的顳葉與主司認知功能的前額葉也被活化用以輔助處理視覺訊息,這會為大腦帶來極大的負擔而增加認知負荷,並耗盡用以記憶的認知資源,最終可能引發失智症。

-----廣告,請繼續往下閱讀-----

二、聽損會使大腦組織萎縮

此外,聽損與否也可能會影響一個人大腦的結構與功能。美國約翰霍普金斯大學的研究人員 [10],利用「巴的摩爾老化長期研究(Baltimore Longitudinal Study of Aging)」的資料,針對聽損與腦容量的關係進行了一項有趣的研究,他們分析了一群受試者在逐漸老化時,其腦容量的變化。受試者在研究之初,做了聽力評估,接著接受為期長達十年、每年一次的核磁共振檢查。結果顯示,研究開始時就患有聽損的受試者,相較於聽常者,其大腦有較大幅度的萎縮,平均以每年一立方釐米以上的速度流失大腦組織,而這些大腦組織恰好與輕度認知功能退化和早期失智症所表現出的記憶衰退的行為有關 [11]

三、聽損會引發社交隔離

社交隔離(social isolation;意旨與他人很少有社交互動或是社交圈窄小的現象 [12])也可解釋為何聽損與失智症有關。一項由英國所進行的研究 [13] 追蹤了一群 50 歲以上成年人的聽損、社交隔離的程度與認知的狀況,並分析這三個因素間的關係,結果發現雖然聽損與認知功能下降有直接且顯著的關聯,但當加入了社交隔離程度的影響後,聽損與認知關聯的強度降低了近三分之一,此結果說明聽損可能會導致社交隔離,間接造成認知功能下降而引發失智症。這也顯示大腦須要透過適當的社交刺激,才能維持其活力,進而保持正常的認知功能。值得注意的是,當聽力閾值達到 25 分貝或以上(即輕度以上的聽損,亦為影響社交溝通的起始閾值)時,聽損所帶來的失智風險就會明顯地增加 [14]

如何預防聽損所帶來的失智風險

一般而言,聽力是與他人溝通互動不可或缺的元素之一;然而,聽力問題不僅僅是關乎聽覺本身,如前所述,它也可能與失智症存在直接或間接的關係,若能適時地做好聽力保健,或許就可避免老年時,讓失智找上你。那麼要如何維持良好的聽力呢?以下幾點可供參考:

  1. 定期聽力檢查是維護耳朵健康的重要關鍵。許多人並不瞭解即便是輕微的聽損也可能對認知功能造成負面的影響。在一般的情況下,聽力下降是漸進且微小的,而人類的大腦有極強的適應能力,這使得聽力衰退不易被察覺 [15]。透過定期的聽力檢查,有助於追蹤聽力狀況,即使是微小的變化也能及時掌握,並處理潛在的聽力問題,進而降低聽損所帶來的失智風險。
  2. 減少長期暴露在噪音環境中。噪音環境除了會加速聽損的惡化外,同時也會誘發海馬迴受損的記憶功能障礙,這也是失智典型的症狀 [16]。因此,避免長時間處在高分貝的環境下,或者適時地佩帶耳塞或耳罩,便是保護聽力健康進而降低失智風險的良方之一。

然而,就聽損人士而言,難道就只能坐視自身認知功能逐漸退化而毫無作為嗎?其實不然。還記得 Glick 與 Sharma 的研究 [9] 提到聽損者大腦的視覺跨模重組與其認知功能衰退息息相關嗎?但令人振奮的是,這些聽損者在穩定配戴助聽器六個月後,逆轉了視覺跨模重組的現象,其認知功能也隨之改善,這表示聽損者配戴助聽器後,失智風險也可能跟著降低。 

-----廣告,請繼續往下閱讀-----
聽損人士配戴助聽器後,失智風險可能會跟著降低。圖/iStock

雖然失智症並不全然與聽力問題相關,但就聽力而言,我們可做的就是聽力保健,如定期做聽力檢查、遠離噪音環境、適度保護耳朵,以及必要時配戴助聽輔具是維持良好聽力的重要關鍵,若能確實執行上述建議,或許就可降低那 8% 的失智風險。請記住,保護耳朵就是保護大腦,讓我們一起努力維護聽力,為未來的大腦健康奠定穩固的基礎吧!

參考資料

  1. National Institute on Aging (n.d.). What is dementia? Symptoms, types, and diagnosis. https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis
  2. Dementia (2023, March 15). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
  3. The Institute for Health Metrics and Evaluation (2022, January 6). The Lancet Public Health: Global dementia cases set to triple by 2050 unless countries address risk factors. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-public-health-global-dementia-cases-set-triple-2050
  4. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet396(10248), 413-446.
  5. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  6. Fulton, S. E., Lister, J. J., Bush, A. L. H., Edwards, J. D., & Andel, R. (2015, August). Mechanisms of the hearing–cognition relationship. In Seminars in Hearing (Vol. 36, No. 03, pp. 140-149). Thieme Medical Publishers.
  7. Mishra, S., Stenfelt, S., Lunner, T., Rönnberg, J., & Rudner, M. (2014). Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience6, 96.
  8. Mishra, S., Lunner, T., Stenfelt, S., Rönnberg, J., & Rudnera, M. (2013). Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research56, 1120-1132.
  9. Glick, H. A., & Sharma, A. (2020). Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Frontiers in Neuroscience, 93.
  10. Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., … & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage90, 84-92.
  11. Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., … & Liu, Y. (2016). Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease49(4), 1051-1064.
  12. Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences110(15), 5797-5801.
  13. Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing. The American Journal of Geriatric Psychiatry27(12), 1348-1356.
  14. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  15. Audiology Associations of DFW. (August 31, 2023). Regular hearing tests could decrease your risk of getting dementia. Hearing Test Info. https://www.audiologyassociates.com/hearing-test-info/hearing-test-reduce-risk-dementia/
  16. Paciello, F., Pisani, A., Rinaudo, M., Cocco, S., Paludetti, G., Fetoni, A. R., & Grassi, C. (2023). Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiology of Disease178, 106024.

討論功能關閉中。

雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

1
1

文字

分享

0
1
1
已經不能沒有「它」?悄悄改變我們生活的「家庭科技」
賴昭正_96
・2024/01/12 ・4027字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我們生活在一個高度依賴科學與技術的社會,但幾乎所有的人對科學與技術都一無所知。

——Carl Sagan(1934-1966)美國天文學家、科普作家

在「日常生活範式的轉變:從紙筆到 AI」一文裡,筆者談到 50 年來的科技發展完全改變了我們自己日常生活的方式,如筆者已經不再用紙筆寫文章、不在圖書館裡找資料、旅行不需要攜帶地圖、在家逛街購物、買股票不需要透過券商下單、與親友及科學月刊通訊都是瞬間達成、⋯⋯等等。最近人工智能的正式登場更可能讓人人成為寫文章高手,讓讀者懷疑這篇文章是不是筆者自己寫的。

除了這些有形的日常生活方式的改變外,事實上還有一些無形、沒有改變我們生活方式的科技正在我們家中發生的。其中最明顯的就是電視, 我們看電視的方法還是一樣, 但年輕的讀者可能不知道不管從軟體或硬體來看, 電視機已經完全不再是 1970 年代的電視機了。我們在這裡就來談談這些偷偷摸摸進入我們家庭生活的三大無形改變吧,免得被名科幻小說及科普作家薩根(Carl Sagan)嘲笑:我們生活在一個高度依賴科學與技術的社會,但幾乎所有的人對科學與技術都一無所知。

電視機

早期的電視機是由真空管及陰極射線管(CRT)組成的,體積膨大。1940 年代,半導體器件的發明使得生產固態電子器件成為可能,它比熱真空管更小、更高效、更可靠、更耐用、更安全、更涼爽、更經濟。從 1960 年代中期開始,熱電子管可以說完全被晶體管取代。然而直到 21 世紀初,陰極射線管(也是一種真空管)仍然是電視監視器和示波器的基礎。

圖/作者提供

1982 年,愛普生(Seiko Epson)發布了第一台用液晶(liquid crystal)當平面顯示器(display)的液晶電視(LCD TV);1984 年,愛普生又發布了第一台全彩袖珍液晶電視。夏普(Sharp)於 1988 年推出第一台商用液晶電視;第一台電漿(plasma)電視於 1997 年出現。電漿電視畫面是透過顯示器上面畫素(Pixel)點發光,不是像液晶電視機在畫面後面照光,因此在畫質方面比液晶顯示器強多了,但因在價格上沒辦法競爭,早已被淘汰掉了,最近被類似的有機發光二極體(organic light emitting diode, LED)電視機取代。

-----廣告,請繼續往下閱讀-----

除了硬體外,電視影像訊息的傳播編碼(coding)也大異於前:早期使用類比訊號(analog signal)編碼,現在則使用數字(digital)。後者在其開發時就立即被認為是自 1950 年代彩色電視出現以來,電視技術上之一項創新進步的重大變革。類比廣播到數字廣播的轉變始於 2000 年左右;經過多次及多年的拖延,美國終於於 2009 年 6 月 12 日正式取消無線類比電視廣播,台灣也已於 2012 年 7 月全面廢除無線類比電視廣播,改用數位電視。詳情請參見高畫質數位電視

電燈泡

我們一般都將發明燈泡的功勞歸於愛迪生(Thomas Edison),事實上早在他 1879 年申請專利之前,英國發明家就已經知道用弧光燈當燈泡。但愛迪生不但將白熾燈泡商業化,並發明了將電力帶入住家所需的整個系統——發電機、電線、保險絲、燈的開關。1904 年出現了取代碳絲燈泡之更亮的新型鎢絲燈泡,1913 年發現在燈泡內放入氮氣等惰性氣體可以提高壽命,沿用至今。 

電燈照明的原理是因為任何溫度不為絕對零度的物體,總是不停地對外放出各種頻率的輻射能(見「科學家如何找到黑體輻射光譜,引發 20 世紀初的量子革命?」)。不幸的是:這些不同頻率的輻射能中只有非常少的一部分是可見光,因此利用鎢絲加熱來照明的電燈效率非常低(見「電燈的效率」)。

筆者在「太陽能與光電效應」裡探討了「二極體」(diode)的物理,其用途甚廣(如整流器及控制器等)。它可以透過光來發電製造太陽面板;它也可以透過電來發光——「發光二極體」(light emitting diode, LED)——製造上面提到之有機發光二極體電視機及二極體燈泡。因我們可以用不同材料來控制發出來之輻射在可見光範圍,所以二極體燈泡效率比傳統鎢絲燈泡高得非常多:例如前者只需 18 瓦特就可達到後者 100 瓦特(W)的亮度。加上它不使用高溫,壽命也因之比較長;但因其製造成本高,所以直到最近美國才宣布禁售傳統鎢絲燈泡,強迫使用二極體燈泡1

-----廣告,請繼續往下閱讀-----
圖/作者提供

發光二極體需要在直流電下運作,一般家用二極體燈泡設計在低電壓 1.2-3.6V 之間。然而,為了變壓方便及減少輸送過程中的能量浪費(見「高壓危險」),全世界電力公司都用高電壓的交流電輸送電力,到住宅區附近的變電所後再減壓到 120-240V,因此二極體燈泡的設計非常不同於傳統燈泡:它的首要任務是將高電壓交流電降壓整流為低壓的直流電。除此之外,因固態線路特性,它也必須考慮電壓及電流的穩定、散熱等問題,因此在設計上比鎢絲燈泡複雜多了,成本也貴得多。

家庭電話

與電視機及燈泡相比,家庭電話可以說是改變最少的;事實上自從行動電話普及後,許多家庭已不再使用固定的家用電話,改變了我們日常生活的方式。但仍有不少像筆者一樣頑固的長者保留家用電話的,他們將發現:雖然現在的電話機比以前的加了很多功能,如來電顯示、留言、無線分機等,但其基本結構還是保留在 1962 年世界博覽會上首次以商品名「按鍵音(Touch-Tone)」推出的按鈕撥號(也就是說 1970 年代的電話現在還是可以用的,也還可以在市面上買到)。

圖/giphy

傳統電話系統通話依賴於兩個節點間的直接物理連接,在通話中這條線是不能斷的。為了覆蓋廣泛的地區,任何兩點間都直接連線當然是不可能的,因此出現了稱為「電路交換」(circuit switching)的呼叫切換技術。早期的呼叫切換是由電話接線員來完成的,但隨著電話覆蓋範圍的擴大,美國電話及電報公司(AT&T)開始推出機械交換系統,人們可以從家裡手動撥打其它號碼,不再需要人工操作員接通。到 1978 年左右,完全自動化終於消滅了電話接線員這一職業。

圖/作者提供

自從互聯網(Internet)及一種可用寬頻連線進行語音通話的互聯網協定語音(voice over internet protocol, VoIP)出現後,網路語音(VoIP)電話開始慢慢侵食傳統的家庭電話。不像電視機及燈泡,事實上傳統的家庭固定電話是有其優點,如不受斷電及不穩定網路的影響等,但因網路語音電話成本較低及較高彈性,美國聯邦通訊委員早在 2022 年 8 月就宣布不再要求美國電信公司提供銅線固定電話服務,因此相信傳統的電話系統不久將在美國消失了2

-----廣告,請繼續往下閱讀-----

電路交換技術的一大缺點是:兩點一旦連接在一起,別人便不能再使用那整條電路3,浪費了有限的資源。現在網路語音電話的交換網絡依賴於「分組交換」(packet switching)技術。分組交換概念是波蘭裔美國工程師巴蘭(Paul Baran)於 1960 年代初提出,首先使用於美國國防部的阿帕網(ARPANET)。使用者透過網路傳送檔案時,先將檔案分割為較小的數位「資料包」(packet)形式來進行傳輸。每個資料包都有一個包括來源位址、目標位址、資料包數量和序號等的資料包頭,因此它們可以各走其獨立路線(網路節點負責指揮交通),發送者和接收者之間沒有必要(也從未)直接連接在一起,可以充分且更有效率地利用傳輸媒體。數位資料包到達目的地後,經組合再透過數據機(modem)將數位數據轉回電話線的類比訊號,傳到傳統的電話上。

以前傳統電話因為要用實體電線接到區域交換總機,所以可以從區域號碼知道這支電話的所在地;網路語音電話只要連接到任何一個網路節點就可以,所以家用電話號碼可以隨搬家移動到別的區域(例如台北的 02 區域電話號碼可以在阿里山出現),因此區域號碼已經失去其區域的意義。

結論

這些悄悄來的家庭科技中,改變最多的是電視:在軟體(數位訊號傳輸)及硬體方面(平面顯示器)都完全擺脫了舊科技,以全新的面貌在家庭中出現;接觸過舊電視的讀者,應該不難發現影像的改進不可同日而語。燈泡則只改變硬體(二極體燈泡),網路語音電話只改變軟體(分組交換訊號傳輸)。

筆者雖然喜歡新科技,但因一則較貴,再則可能不穩定,而不願做新技術的天竺鼠(實驗對象),對新技術的接受總是很遲的;即使如此,筆者的家庭也已經全面「現代化」了。但是內人除了發現電視機不同及燈泡比以前更接近太陽光4外,根本不知道老公花了多少心血將狗窩現代化。

-----廣告,請繼續往下閱讀-----

註解

  1. 事實上美國早在 2007 年就頒布白熾燈泡禁令,但被川普政府撤銷,該規則於今年(2023 年)8 月 1 日才又生效。台灣經濟部宣佈 2011 年底全面禁售白熾燈,五年內全面更換成二極體燈泡。
  2. 但在台灣還不流行。根據名市場研究公司 Future Market Insights 分析:全球住宅網路語音服務市場規模預計將從 2023 年的 221 億美元增至 2033 年的 678 億美元;在預測期內(2023 年至 2033 年),全球住宅網路語音服務需求預計將以 11.9% 的複合年增長率增長。
  3. 只要電話不掛斷(如找資料暫停通話),電路就不會、也不能斷;因此原則上如果夠多人在同時用電話,將會將所有的電路線都佔罄了。
  4. 太陽表面的溫度約在 6000°C,鎢絲燈泡大都在 3000°C 左右操作以增加壽命。

延伸閱讀

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。