Loading [MathJax]/extensions/tex2jax.js

2

0
0

文字

分享

2
0
0

火蟻用肉身組成救生艇躲過洪水

陸子鈞
・2011/04/26 ・896字 ・閱讀時間約 1 分鐘 ・SR值 438 ・四年級

紅火蟻這種有攻擊性、會叮人的蟲子,耐得住洪水、野火及殺蟲劑。其中一項生存的把戲:上千隻火蟻接連在一起,組成一艘防水的救難艇,有時甚至可以讓蟻后漂在水上,現在科學家找出背後的機制,也許能藉此開發「自行組裝」的救生艇,或者新的防水材料。

紅火蟻原生於南美,但它們已經入侵到美國南部許多區域。這種蟻群,強過其他昆蟲、毛蟲還有鼠類,能在幾小時內,把小動物的屍體拆得精光。假使洪水這種在紅火蟻原生地常見的現象,襲向蟻巢,火蟻會把身體接在一起,組成救生艇,讓它們安然抵達另一個區域。

喬治亞理工學院的工程師團隊,想了解火蟻救生艇是如何運作的。所以他們收集路邊的火蟻,帶回實驗室,將一把火蟻投到水裡,計算組成救生艇的火蟻數量,並測量在救生艇上自由走動的火蟻的速度。

此外,研究團隊還利用液態氮瞬間將救生艇瞬間冰凍,研究其結構,也藉由攝影,記錄救生艇組合的過程。火蟻和火蟻間的「抓力」,也利用簡單的設計來測量;研究團隊把一隻火蟻貼在玻璃板上,再把另一隻火蟻綁上橡皮圈,並讓這兩隻螞蟻牢牢抓緊,測量橡皮圈伸展的力道。

-----廣告,請繼續往下閱讀-----

結果發現,火蟻落水後,會很快的爬過夥伴,並用爪或螯抓住彼此的腳,交織成煎餅狀的救生艇。而火蟻互抓的力道也很大,相當於一個人類站在高樓上,吊著六隻成熟的象的重量。而且在水面下組成救生艇一部分的火蟻並不會被淹死,因為他們身體包覆在空氣泡裡,也使得救生艇可以漂浮。最後,研究團隊也藉由簡單的參數,建立出組合救生艇的數學模型。

不過,要設計出自我組合的船,可能還需要數十年,人類現在只能望著火蟻從容的表演而讚嘆吧。

更多相關影像:

資料來源:ScienceNow: Fire Ants Surf Floods on Rafts of Their Own Bodies [25 April 2011]

-----廣告,請繼續往下閱讀-----

相關報導:NatureNews: Ants team up to stay dry [26 April 2011]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
《世紀帝國II:決定版》之蟻群爭霸?!
胡中行_96
・2023/10/12 ・3293字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

風靡全球的電玩系列《世紀帝國》(Age of Empires),問世將近 26 年,歷經多次新作發表與改版。[1]終於,有生物學家發現它的附加價值,妥善利用於學術研究:2023 年 8 月澳洲聯邦科學暨工業研究院(CSIRO)跟西澳大學(University of Western Australia)隆重巨獻,於美國《國家科學院院刊》(PNAS)正式發表[2, 3]──《世紀帝國II:決定版》(Age of Empires II: Definitive Edition)之蟻群爭霸!

當然,微軟 Xbox 沒有業配贊助,論文標題也不長這樣,而且研究設計浪費了遊戲豐富的功能,玩法單調純樸。[1, 2]不過,成果依然獲得 YouTube 電玩頻道的專業評析,與網友的熱烈討論。[4]

CSIRO 釋出的《世紀帝國 II:決定版》戰爭畫面。圖/參考資料 3(© CSIRO;Fair Use

遊戲模擬

《世紀帝國II:決定版》的場景編輯器,允許玩家在地圖上,改變環境特徵,並配置人力與建物。遊戲裡軍民單位的行為,由32,000行的程式所控制:在「if… then…」的語法下,如果某單位滿足特定條件,便會引發對應的行為。與此研究有關的部份,規範敵軍進入反應半徑時,軍事單位必須向前移動並發動攻擊,但是對於友軍或中立者則一概忽略。其中精銳條頓騎士(Elite Teutonic Knight)的反應半徑為3個格子;而雙手劍兵(Two-Handed Swordsman)則是 4 個。[2]利用這樣的設計,便可以激發戰爭。

研究團隊選擇「標準」的遊戲難度,先讓精銳條頓騎士跟雙手劍兵單挑,直到一方陣亡,總共 10 次。如此確定前者的強悍名不虛傳,無往不利。接著每次出 1 名精銳條頓騎士,跟 2、3、4…8 名雙手劍兵對打,即至1:4 的時候,都還是精銳條頓騎士勝出。最後,研究團隊做了下列設定:[2]

-----廣告,請繼續往下閱讀-----
  • 藍軍:玩家控制;紅軍的敵人;擁有最高生命值和最強攻擊力的精銳條頓騎士,共 9 名。[2]
  • 紅軍:電腦控制;藍軍的敵人;以 20、30、40…100 名戰力薄弱的雙手劍兵,組成數個步兵團。[2]
  • 綠軍:電腦控制;藍、紅兩軍分別的友軍。[2]
  • 簡單競技場:以城牆圍出一塊不會遭藍軍或紅軍攻擊,形狀為長方形的綠軍地盤,讓藍、紅兩軍於其中捉對廝殺。[2]
  • 複雜競技場:先圈出一個簡單競技場,然後用步兵單位無法跨越的水域,在裏頭隔出3條巷道。每條都有3名藍軍的精銳條頓騎士駐守,與巷道外紅軍的雙手劍兵團對峙。[2]

在玩家完全不操作的狀況下,藍軍與不同人數的紅軍,於簡單和複雜競技場交戰。每種排列組合打 10 場,總共 180 場戰役。每場都要打到有一方被完全殲滅,才算結束。簡而言之,就是以不同的人數和場地,不斷重演一模一樣的情境。[2]「大概是遊戲最無聊的玩法」,論文的第一作者 Samuel Lymbery 博士抱怨。[5]整體來說,當紅軍人數增加到一個程度,藍軍的勝算便開始下降,而場地差異則會影響達到此變化的門檻。[2]

藍、紅兩軍在簡單競技場中對戰。影/參考資料 3(© CSIRO;Fair Use

螞蟻實戰

2021年 7 到 10 月間,研究團隊去西澳伯斯丘(Perth Hills)地區的小鎮Chidlow,找澳洲肉蟻(Australian meat ants;學名Iridomyrmex purpureus[註]),還有外來的阿根廷蟻(Argentine ants;Linepithema humile)。從兩者分別的 6 個聚落抓工蟻,數量恰為實驗所需,且不會危害蟻群續存。帶回實驗室後,將來自同個蟻窩的關在一起,用水、蜂蜜和死蟋蟀飼養。[2]

澳洲肉蟻與阿根廷蟻的工蟻,先一對一「釘孤枝」(tìng-koo-ki[6]),直到其中一方死亡為止。凡是有打起來的場次,一律由澳洲肉蟻獲勝。接下來,研究團隊以類似電玩版的模式,調整蟻群的大小與所處的環境,讓兩軍對戰。[2]

  • 澳洲肉蟻:每場戰役徵召20隻。[2]
  • 阿根廷蟻:每次發派 5、10、20、60、100、150 或 200 隻。[2]
  • 簡單競技場:10 公升裝的塑膠容器。[2]
  • 複雜競技場:在塑膠容器裡,用木板區隔出數條巷道。[2]

各種排列組合,照原計劃是要打 7 次,排除有技術性問題的幾次,最後總共進行了 93 場戰役。這裡與遊戲模擬的差別,在於限制時間長度為 24 個鐘頭,結束後統計雙方死傷,而非等到單方全軍覆沒。不意外地,澳洲肉蟻總是勝利,然而傷亡數量卻隨情況而異。[2]

-----廣告,請繼續往下閱讀-----
巨大的澳洲肉蟻;弱小的阿根廷蟻。圖/參考資料 3(© Bruce Webber CSIRO;Fair Use

人類與螞蟻

螞蟻之類的社會性昆蟲打起來,規模與人類的傳統戰爭雷同。[3, 5]澳洲肉蟻對上阿根廷蟻,就像精銳條頓騎士之於雙手劍兵。無論是實戰或電玩,少數強者跟眾多弱者戰鬥時,強者於複雜競技場的死亡率較低,而在簡單競技場則較高。所以戰爭的結果,「取決於戰場的特性」,Samuel Lymbery博士表示。[3]

侵略性的外來螞蟻,會攻擊本土動物,並破壞農作物。[5]阿根廷蟻雖然體型渺小,卻在人為環境或受人類影響的棲地大量繁殖,[2, 3]而且是最猖獗的外來種之一,每年造成全球 1 千 9 百萬美金的經濟損失[2]這是因為人類整頓地面時,移除了植物和自然碎屑,於是創造出簡單競技場般,空曠、開放的戰鬥場域。[3]對真實世界的螞蟻來說,簡單競技場就是人行道和公園;而複雜競技場為樹叢或木屑等。[5]總之,原本自然環境中,具有體型優勢、擅長單挑的澳洲肉蟻,在人為的干擾下,變得容易死於敵軍圍毆。[3]人類務必把複雜的結構加回去,才能減少外來者造成的物種失衡。[3, 5]

YouTube電玩頻道推薦

澳洲這篇論文在美國《國家科學院院刊》上線後,擁有 36.9 萬追蹤者的 YouTube 電玩頻道 Spirit of the Law,發表了一支 12 分鐘,深入淺出的影片,摘要研究重點,還提到其中運用的蘭徹斯特法則(Lanchester’s laws)。不到1個月,已有將近 30 萬人次觀賞。[4]影片下方留言區的科學家與資深玩家,不僅熱議這個描述第一次世界大戰前的戰爭型態中,戰力、人數與戰爭結果關係的數學模型,也執著於論文不影響結論的計算錯誤。[2, 4]發覺迴響熱烈的 CSIRO,感謝 Spirit of the Law 之餘,更將影片節錄到自己的頻道上推廣。[7]

CSIRO 節錄 YouTube 頻道 Spirit of the Law,對此研究的介紹。影/參考資料 7
YouTube 電玩頻道 Spirit of the Law 介紹用《世紀帝國》模擬螞蟻行為的研究。影/參考資料 4

備註

研究團隊把 Iridomyrmex purpureus,叫作澳洲肉蟻(Australian meat ant)。[2]這種螞蟻的學名,有多個中文翻譯。臺灣大學昆蟲系名譽教授吳文哲導讀,彰化師範大學生物學系教授林宗岐審訂的《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》,稱其為紫虹琉璃蟻[8]

-----廣告,請繼續往下閱讀-----

  

  1. Age of Empires. (26 OCT 2022) ‘Age of Empires – A Franchise History’. YouTube.
  2. Lymbery SJ, Webber BL, Didham RK. (2023) ‘Complex battlefields favor strong soldiers over large armies in social animal warfare’. Proceedings of the National Academy of Sciences of the United States of America, 12;120(37):e2217973120.
  3. Dewar I. (29 AUG 2023) ‘Ant wars: How native species can win the battle over invasive pests’. CSIRO, Australia.
  4. Spirit of the Law. (13 SEP 2023) ‘How AoE2 is helping scientists understand ants’. YouTube.
  5. Hughes M. (03 OCT 2023) ‘Scientists use Age of Empires computer game to simulate ant warfare’. ABC News, Australia.
  6. 釘孤枝」教育部臺灣閩南語常用詞辭典(Accessed on 06 OCT 2023)
  7. CSIRO. (24 SEP 2023) ‘Testing ant warefare models in Age of Empires II #ageofempires’. YouTube.
  8. Wilson EO, Hölldobler B.(05 SEP 2019)《螞蟻螞蟻:螞蟻大師威爾森與霍德伯勒的科學探索之旅》貓頭鷹出版社
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
0

文字

分享

0
4
0
面對螞蟻的防疫政策,蟲生真菌該如何生存下來?
one minute biology
・2023/07/03 ・2366字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

社交梳理以及令螞蟻聞風喪膽的黑殭菌

這三年來人類對抗新冠肺炎的防疫戰絕對是科學史上的重大突破,防疫的科學知識和技術出現突破性的成長。然而,不只人類通過合作對抗病原體,許多社會性的生物也會合作對抗病原。

以最著名的社會性昆蟲——螞蟻為例,牠們會幫助同伴清除身上的病原體真菌孢子,這種互相幫忙清理身體的行為在許多社會性的生物上都可以發現(例如獼猴、蜜蜂等),稱為社交梳理(Allogrooming)社交梳理是這些社會性動物對抗病原體的重要防線,可說是群居動物的獨特「防疫政策」。

正所謂道高一尺魔高一丈,致病病原體也不是吃素的,就像新冠肺炎病毒不斷有新的病毒株出現,感染螞蟻的蟲生真菌同樣也有一套對付螞蟻社交梳理的招數。今年發表在《Nature ecology and evolution》的論文就做實驗以了解:螞蟻的社交梳理行為是否會對黑殭菌(Metarhizium sp.)造成生存壓力,以及黑殭菌的應變策略進行探討。

黑殭菌屬的真菌屬於蟲生真菌的一類,如著名補品冬蟲夏草,具有感染寄生昆蟲並使其死亡的能力;因此,對於螞蟻來說,黑殭菌絕對是致命的敵人,若看到同伴身上有黑殭菌孢子一定要幫忙清除。

-----廣告,請繼續往下閱讀-----

螞蟻的「防疫政策」對黑殭菌造成生存壓力

首先,科學家想要透過研究「社交梳理行為是否會改變真菌群集組成」,來確認「社交梳理是否會對黑殭菌造成生存壓力」,因此使用六種不同菌株感染螞蟻,並將實驗分成「獨自面對真菌」以及「有兩名同伴照護」的組別,前者的螞蟻個體只能透過自身免疫力來抵抗真菌感染,後者則是有同伴幫忙清除有害真菌孢子。在感染真菌後的八天內,如果有螞蟻死亡,就會將這些孢子拿去感染新的螞蟻個體,並同樣分成兩組進行上述實驗,如此重複十個循環(圖一)。

圖一。實驗方法示意圖。圖/Stock et al., 2023

實驗結果顯示,社交梳理行為確實對真菌群集造成天擇壓力。獨自面對真菌的組別,在經過十個循環後出現較低的真菌多樣性(只剩兩株菌株),然而同伴照護組卻出現較高的真菌多樣性(還剩四株菌株),說明社交梳理行為足以影響菌株間的競爭。(圖二)。

既然螞蟻的「防疫政策」會對真菌造成影響,那麼真菌在螞蟻「防疫政策」的洗禮下,是否也會產生改變呢?答案是:會!

圖二、實驗結果顯示經社交梳理篩選出來的群集多樣性較高,代表社交梳理是足以改變真菌間競爭情形的天擇壓力。圖/Stock et al., 2023

黑殭菌利用「隱身術」騙過螞蟻的防疫政策

科學家首先針對真菌的兩項特徵進行研究:毒性(致死率)子代數量(產孢數)。研究結果顯示,經過社交免疫的篩選後,真菌的毒性有顯著的下降(圖三 a),然而產生子代的數量卻有所提升(圖三b)。

-----廣告,請繼續往下閱讀-----
圖三、經過社交免疫的選擇(同伴組)後真菌的毒性有顯著的下降,然而產生子代的數量卻有所提升。此外,相較於獨自組,同伴組的真菌孢子對社交免疫產生抵抗力,圖 a 中的兩條粉紅色長條說明經社交免疫篩選出來的孢子感染有無同伴的螞蟻致死率是一樣的。圖/Stock et al., 2023

更有趣的是,這些經過社交免疫篩選的真菌孢子竟提升對社交免疫的抵抗力!相較於獨自對抗真菌篩選出來的菌株,社交免疫篩選出的菌株再次感染單獨的螞蟻和有同伴照顧的螞蟻時,致死率竟沒有差異(圖三 a),這代表社交免疫已經失效了!

科學家猜想,這種現象源於螞蟻們不再好好清除同伴身上的致命孢子,實驗結果也確實顯示同伴螞蟻們似乎對於經社交免疫篩選出來的真菌孢子沒有敵意,因此大大降低清除這些孢子的意願(圖四 a)。與此同時,科學家還發現,經社交免疫篩選出的真菌孢子中「麥角固醇(Ergosterol)」的含量大幅減少,麥角固醇是真菌孢子中的重要組成成分,科學家懷疑螞蟻可能就是因為麥角固醇的幾少而無法辨識孢子。

最終的行為實驗結果支持了這個論點,若把麥角固醇塗在螞蟻身上可以吸引同伴前來清潔,構造相似的膽固醇則沒有類似效果(圖四c、d),因此,麥角固醇很可能就是吸引螞蟻進行社交梳理的標的!

圖四、圖 a 說明經社交免疫(同伴組)「訓練」出來的孢子能夠減少螞蟻幫忙同伴清除孢子的頻率;圖 c、d 則說明在螞蟻身上塗上麥角固醇會讓吸引同伴來社交梳理,構造與麥角固醇相似的膽固醇則無此效果。圖/Stock et al., 2023

不僅是本實驗的阿根廷蟻(Linepithema humile)被麥角固醇吸引並進行社交梳理,前人的研究發現另外一種社會性昆蟲——白蟻也具備類似的行為,科學家推測麥角固醇可能就是真菌避免被同伴螞蟻清除的關鍵。值得留意的是,麥角固醇的實驗結果可能也解釋了毒性下降以及後代數量提升,由於麥角固醇是真菌孢子重要的組成成分,因此若麥角固醇的含量改變將會導致資源的分配有所調整,毒性下降和後代數量提昇可能就是資源調整分配的結果。

-----廣告,請繼續往下閱讀-----

昆蟲的行為背後往往牽涉複雜的因素,麥角固醇是否真為引起螞蟻社交梳理行為的因素或是唯一因素仍需更進一步的證據支持才能夠確認。可以肯定的是,在螞蟻「防疫政策」的伺候下,黑殭菌正透過某種「隱身術」來躲避螞蟻的清除,這不由得令人想起 Jurassic Park (侏儸紀公園)中那句經典的台詞:

Life will find its way out.

  • Stock, M., Milutinović, B., Hoenigsberger, M., Grasse, A. V., Wiesenhofer, F., Kampleitner, N., Narasimhan, M., Schmitt, T. & Cremer, S. (2023). Pathogen evasion of social immunity. Nature Ecology & Evolution7(3), 450-460. https://doi.org/10.1038/s41559-023-01981-6
-----廣告,請繼續往下閱讀-----
one minute biology
2 篇文章 ・ 1 位粉絲
One minute biology 致力於分享新鮮有趣的生物研究和知識,希望能夠以淺顯易懂的方式讓讀者了解研究論文中的專業內容。IG專頁:oneminutebiology。