0

0
0

文字

分享

0
0
0

哈!英雄所見略同

timd_huang
・2011/04/20 ・4404字 ・閱讀時間約 9 分鐘 ・SR值 521 ・七年級

前幾年跑了雲南很多地方的恐龍點,採集了很多個恐龍點的樣本,回來後透過老妹的幫忙,利用感應耦合電漿儀(ICP)做化學元素分析,畫出這些恐龍化石內的稀土元素含量蜘蛛線(Spidergram),推論這些恐龍的相對地層,詳見:2008/4/11 〈三圖顯真相〉;這篇文章的學術版,去(2010)年終於被中華民國地質學會接受,將刊登於2009年該學會的〈地質〉期刊上【按:目前只出版到2008年度的,2009年度的還在等待中。】

在那篇文章內,我寫著:「不要說別的,就以大洼恐龍山來說,這邊的恐龍地層,到底是那個年代?當年楊鍾健說是晚三疊紀的,大約二億年;但是,後來有研究者說沒有那麼久遠,“只是”早侏羅紀,一億八、九千萬年“而已”;最近又有學者說,畢竟楊老還是沒錯,應該是晚三疊到早侏羅紀;從一個玩科普恐龍者的角度來說,我們搞不懂艱深的大學問道理,但是,我們心裡總有這麼一個簡單的問題:到底大洼的恐龍,有多少年歲了?上祿豐層下祿豐層等等名稱,我們較難以體會。」

雲南恐龍蜘蛛線圖

這個恐龍地層年代定年的問題,這麼多年以來,一直困擾著我;我論文所做的,只是透過這些恐龍骨頭化石內的鑭系稀土元素來做地層相對(relative)年代的判斷,從恐龍死骨頭裡面所含的諸稀土元素濃度比例曲線來判斷,如果某兩個恐龍點化石內的稀土元素蜘蛛線曲線形狀相同也相近,就說是相同的地層,如果相距很遠或曲線形狀不同,就說是不同的地層,我論文內推論出暫用的雲南三個主要恐龍地層:“大洼層”(相關資料說大約二億年)、“姜驛層”、和“川街層”(相關資料說大約一億六千萬年),這三個地層的名稱,是我自己照實驗結果叫出來的,不是他們古生物或地層學者所用的正式地層名稱;再者,這個方法無法也沒有用來做地層絕對(Absolute)年代的定年之用,所以這幾年來,我很不死心,一直想要找出一個可以用來定出這些恐龍地層絕對年代的方法。

在化石的年代定年,傳統上採用化石比對的方式,透過指標化石(Index Fossil)來判斷這個化石點和那個化石點,是否屬於相同的地層,如果兩者都有相同的化石,就說它們是相同的地層,如果找不到相同的指標化石,就說不是相同的地層,這裡面的學問很大,無法在此細說;不過,這種方法有個邏輯上的窘境,就如中文字書上的「老者,考也;考者,老也」,用甲來說明(證明)乙,又回頭用乙來說明甲;雖然如此,地球科學的要求,受限於各種條件的限制,如,有沒有找到某化石等等,前後相差一些時間,這個「一些時間」可能是幾十、幾百萬年、幾千萬年,甚至上億年,也都說得過去,畢竟,在地球漫長的46億年的歷史中、哈!有人說45億年,也有人說43億年,絕大部份的古生物,都是很早很早很早很早以前的事情,無法精準到那裡,人類個體的壽命膨風到一百歲好了,即便人類的信史才約一萬年,在整個地球漫長年歲的眼光中,根本說不上驚鴻一瞥,甚至連瞄到半個影子都說不上。

後來科技發展,地質學者和古生物學家們開始採用同位素定年的方法,測量石頭裡面所含某些元素(如鉀氬)同位素的含量,透過這些已知的同位素半衰期,計算出該石頭(地層)的絕對年代;當然,這種方法有其優點,可是也有些嚴重的限制,比方說,同位素定年法必須採用所謂「封閉系統(Closed System)」的樣本,才能得到準確的數據,要不然結果一定漏氣!就以化石地層的定年來說,最常用的是找出該地層上下的火山灰層,把這兩個火山灰的年代定出來,化石地層夾在中間,所以就可說該化石的年代在兩者之間,美國蒙大拿的晚白堊紀恐龍地層,就是用這種方法得到暴龍、三角龍、慈母龍等等的年代。

不過,如果某個恐龍地層附近,找不到上下的火山灰地層,這一招定年的方法就無輒啦!學者們就必須採用其它的方法來推論地層年代,如以前的古生物比對法,或者地磁反轉法等等,雲南的恐龍地層,就是碰到這種困境,產生如中國恐龍學發源地大洼恐龍山地層,一下子被認為是三疊紀晚期,一下子又返老還童到侏羅紀早期等不同惱人的說法,雲南諸恐龍地層的缺乏絕對定年資料,不只是恐龍界大家的困擾,對我來說,更是我個人的一大難題,我目前正在進行的「大洼恐龍胚胎」計畫,到底我無意間在那裡所發現的恐龍胚胎,是不是世界上「最古老」的恐龍胚胎?或是我們合作領導、加拿大賴茲博士所研究南非大椎龍那個,才是世界上最古老的恐龍胚胎化石?依據賴茲博士的資料,他所研究南非這個恐龍胚胎樣本的地層年代,大約在1.9億年前南非的下克拉仁地層(Lower Clarens fm)和上埃立哦特地層(Upper Elliot fm),相當於雲南的上祿豐組深紅色層和下祿豐組暗紫色層;這裡所說的1.9億年,可以從1.900…1到1.999…9,前後涵蓋了一千萬年長久的時間,這兩個世界最古老的早期恐龍胚胎,那一個才是最古老的?

科班的古生物學家,可能不會很在意,但是對於我這種非科班的古生物化石玩家來說,如果我所發現的那個恐龍胚胎,果真比南非的早上幾十萬年或甚至幾百萬年,我就有個人生的小得意:哈!我發現了世界最古老的恐龍胚胎,也是世界上最古老的陸相脊椎動物胚胎,我剩下來的不到半輩子,可以很ㄏㄧㄠˇㄅㄞ地對兒孫輩們叨叨唸這個「偉大」的發現,人生不亦快哉之一;因此,這些年來,我試著找出一種可用於上下沒有火山灰層恐龍化石絕對定年的方法,一直搔頭皮,頭髮都快被抓光了。

自從去(2010)年中開始和五國院士賴茲合作進行國際兩岸聯合研究計畫之後,上述的衝動,越來越強烈,畢竟台灣諺語所說的「輸人不輸陣」,在學術上,我根本無法和人家五國院士比較,連幫人家提皮包當書僮,恐怕都不夠資格,但是,如果能找到一種方法,證明大洼的恐龍胚胎,果真比南非的要早上幾許,那怕只有區區幾十萬年,或幾百萬年,至少我可以偷偷地阿Q式精神勝利一下,因此好多晚上夜半夢迴,都會爬起來上網衝浪,試圖找出一些線索。

那一天,中華民國地質學會來信通知,說我那篇稀土元素和恐龍地層的文章,已經正式被接受將會發表,於是自己再把論文看一遍,做最後文字修飾定稿,突然間,電光石火之際開竅想到,恐龍化石內的這些化學元素週期表內鑭系稀土元素(La REE),就是存在於一個封閉的系統之內,所以我才能透過它們搞出那篇雲南恐龍相對地層的啊,那麼,在這些恐龍死骨頭裡面,同時也有含量相對高的兩個放射性元素鈾(U)和釷(Th),屬於錒系稀土元素(Ac REE),也是稀土元素啊,也應該是處於同樣的封閉系統之內,因此,如果能分析出這些恐龍化石內的鈾、釷、鉛等同位素的濃度,這些恐龍化石的絕對定年,就可以計算出來了!

「鈾」立卡!(有沒有聽到我吹口哨?)真太令人興奮了,至少從理論上來說,如果感應耦合電漿儀後面能接上質譜儀(Mass Spectrometer),那麼就可得到所要對象元素的每個同位素濃度,有了這些同位素濃度之後,剩下來的就是套公式,計算出這些死骨頭的絕對年代;可惜,上次老妹幫忙做的分析,她單位的設備,只有感應耦合電漿儀,沒有接上後半段的質譜儀,那只好再到各研究機構去找,看看台灣哪個單位有,終於找到母校中興大學有一台感應耦合電漿質譜儀(ICP-MS),因此,就把這項的研究課題放入了我們的研究計畫中,等著進行。

雖然實際的工作還沒有開始,但是最令我興奮的是,至少誰也不能禁止我自己腦子裡面給自己猛灌春藥,讓自己大爽一下,搞不好,或許真的又給我找到了一種可以解決長久以來困擾古生物學者絕對定年的方法,從此之後,可以從「有死骨頭」的化石內所含的兩系列稀土元素,直接測定出該化石的絕對年代,哇啦!這會是個很棒的「偉大」發現;雖然這個方法,無法應用到所有的化石,對於那些沒有硬骨頭的古生物絕對定年,如埃迪卡拉紀和寒武紀生命大爆發軟體動物群化石和植物化石,這一招就根本無效,因為這些古代生物沒有由磷灰石所組成的硬骨頭,而諸稀土元素就是卡在硬骨頭內磷灰石晶格(Crystal Lattice)內形成封閉系統的,所以不適用於沒有骨頭的古生物;不過,如果此法行得通,至少也解決了一大半以上的問題,只要有「死骨頭」,化石定年都可用。

前日在網路上看到這篇文章 Science News, Dinosaurs Survived Mass Extinction by 700,000 Years, Fossil Find Suggests, ScienceDaily (Jan. 27, 2011),說美國和加拿大的古生物學家,推翻了白堊紀晚期六千五百萬年前那顆隕石打到地球把所有的恐龍都殺光光之說,他們透過在美國新墨西哥州和科羅拉多州在K/T界線之上的恐龍化石,測定出隕石打下來之後的七十萬年間,恐龍還活著;對於諸如此類爭議性的報導,古生物界三不五時都會有,所以我對此新聞,也只列入參考,當為諸多恐龍滅絕學說中的「一家之說」;不過,在進一步看了他們所發表的論文(published online, January 26, in the journal, Geology)之後,令我大大吃驚!竟然,天下英雄所見略同,我和他們的想法,完全相同,不過我目前還在等待批准,人家卻已經做出了實際成果發表論文了,而且,看了論文之後,不得不佩服人家,他們所用的原理,就是我上面所說的,完全一樣,而且都是利用相同的儀器透過分析恐龍骨頭化石內的兩個稀土元素系列,以放射性同位素濃度計算出絕對年代,不過,人家所用的儀器和方法,確實比我預計的更為先進,其招術更為高明,不得不衷心佩服。

依照我的想法,透過感應耦合電漿質譜儀來分析,恐龍骨頭化石樣本必須比較傳統的用濕化學方法把恐龍化石樣本溶解成為溶液,才能送進儀器分析,恐龍化石一旦被溶解,就無法還原,也就是說這是一種毀滅(破壞)性的分析方法,必須犧牲掉一小塊恐龍化石,對於研究每一根骨頭本來就很小的恐龍胚胎化石來說,雖然所需要的樣本量很小,但是對於如此珍貴又稀罕的樣本,任何用掉一小塊,有如割心;相對的,他們所用的方法後半段,也是同樣利用感應耦合電漿質譜儀來取得恐龍化石內諸稀土元素和同位素的濃度,不過,他們前面這一部份,卻是非毀滅性的方法,利用高能量的雷射,直接打到恐龍骨頭上面,把很小很小(~160 µm)面積的恐龍化石燒成蒸汽,再導入感應耦合電漿質譜儀來分析,真是高明,令人拍手稱絕!分析完畢之後,那根恐龍骨頭,如果沒人刻意指出被燒成蒸汽的那幾個測試點,肉眼還都看不出來呢!漂亮!高明!美到極點的藝術行為

曾經有長輩不瞭解我玩石頭,罵我不顧生計,玩物喪志,至今都快進棺材了,還是不務正業去吃個死頭路,大半輩子窮兮兮的,好啦!長輩教訓得是,在人生賺錢這方面,我是絕對失敗者,我不是賺錢的料子,絕對該好好罵一罵,但是,我不覺得我整個人生失敗啊!家裡的三頓飯和孩子們,從來也還沒少過一頓、缺過一件衣服啊!相對來說,我在毫無經濟民生方面的「成就」,如,發現這裡所說的世界最古(約二億年)老恐龍胚胎化石,和約六億年前的埃迪卡拉紀實體化石,加上本文所說的這種古生物絕對定年方法,難道還不能算是成功人生的小成就嗎?難道所謂的「成功人生」只是以多少銅臭為衡量的標準嗎?為何我們的社會有這麼嚴重的笑貧不笑娼心態?還好,從小我這台灣黑五類,老早就養成了「笑罵由人去,我好自為之」的厚臉皮,還是痴痴地搞我喜歡的玩石頭,而且要玩出一些名堂來給對我期望很重的長輩們看,畢竟,對於所謂人生成功的定義,我聽到的是不同的鼓聲,邁著不同調的步伐,請饒了我,也給我這個空間。

哈!天下英雄所見略同!世界上的聰明人(和傻瓜),不只我一個人,嘿!嘿!嘿!

本文原發表於「催眠恐龍」[2011-03-14]

文章難易度
timd_huang
24 篇文章 ・ 0 位粉絲
跟我玩恐龍去!


0

0
0

文字

分享

0
0
0

牠如何長出一雙「隱形的翅膀」?——玻璃翼蝶的成長日誌

Curious曉白_96
・2021/10/28 ・3597字 ・閱讀時間約 7 分鐘

蝴蝶的美,源於牠們擁有的千變萬色的翅膀,這些色彩是門面,也是保護傘,鮮豔顯目派警戒掠食者別靠近!小心牠們有毒(即便有些蝶其實没毒 XD);擬態派能巧妙地偽裝成自然環境中的枯葉、樹木等騙過掠食者的眼睛,或是如猛禽眼睛樣貌的翅膀,嚇唬掠食者。多數蝴蝶們視顏色為性命,但對玻璃翼蝶來說……就是不給顏色瞧瞧,幾近透明如玻璃的翅膀,即使飛行也如穿上一層隱形罩袍,讓大家都難以察覺牠的存在。究竟,這個蝶界的「小透明」是如何成長?又何以成為科學家們研發新型抗反射材料的重要靈感?Let’s check it out !

玻璃翼蝶的成長日誌

玻璃翼蝶,又名寬紋黑脈綃蝶(學名:Greta oto,俗稱透翅蝶),屬於鳳蝶總科的蛺蝶科(Nymphalidae),主要分布在中南美洲的雨林及山區。牠們的卵殼型態非常多變,有些如珍珠般光滑透亮,有些點綴上小撮鱗毛,有些具有雕刻般的紋路。

玻璃翼蝶, 又名寬紋黑脈綃蝶 ,俗稱透翅蝶,為蛺蝶科寬紋黑脈綃蝶屬。圖/EOL

幼蟲時,牠們主要吃的是夜香樹屬的植物,這類植物含有具毒性的生物鹼,且能夠存儲於幼蟲體內,當有些鳥兒吃了他們,輕則拉肚子,重則中毒身亡。玻璃翼蝶向來與眾不同,即便同屬鱗翅目(Lepidoptera),他們卻不與其他蝶一般擁有鱗翅目的招牌特徵 —— 成蟲全身布滿鱗毛,取而代之的是光滑剔透如玻璃般的翅膀,而成蟲的牠們一樣喜愛吃「毒」口味的食物,例如菊科(含生物鹼 (pyrrolizidine alkaloids))、馬纓丹屬植物,讓掠食者們敬而遠之。

鱗翅目招牌特徵 —— 成蟲全身布滿鱗毛。圖/EOL
可從罌粟分離出生物鹼-嗎啡。圖/維基百科

隱形翅膀的誕生

玻璃翼蝶是如何生成如此獨特的翅膀呢?帕特爾(Nipam H. Patel)和他的同事們首度將玻璃翼蝶詳細的成長時間序公開於《實驗生物學期刊》(Journal of Experimental Biology),他們分別在其成蛹不同時間點(16, 30, 48, 60 hr)進行解剖,並觀察其生成翅膀型態的變化(如圖一)。

  • 成蛹 16 小時

起初牠們與其他鱗翅目物種一樣,蛹翅由一層輕薄、勻稱的上皮組織組成,接著許多表皮細胞已分化為平行排列的感覺器官前細胞(Sensory Organ Precursor cells , 以下簡稱 SOP 細胞)。在翅膀生成前期,帕特爾等人發現翅膀透明區域與非透明區域相比,具有較低密度的 SOP 細胞,因此他們猜測,玻璃翼蝶翅膀上形成透明區域及非透明區域的關鍵點就在於 SOP 細胞密度的差異,導致兩個區域的 SOP 細胞日後受到不同的調節,進而影響成體翅膀上兩區域的鱗片密度和表面翼膜分布具有極端的差異。

  • 成蛹 30 小時

此時玻璃翼蝶身上的 SOP 細胞開始分化成為鱗狀細胞(scale cells)及似人類的神經膠質細胞的界面上皮細胞(socket cells),鱗狀細胞主要位於翅膀內部,而界面上皮細胞肌動主要負責連接每個鱗狀細胞,並位於翅膀較為表層的位置。此外,他們透過染色技術發現翅膀上開始出現由肌動蛋白組成的小圓柱狀增生鱗片,而這群增生鱗片甚至長到超出翅膀表面。這個階段的透明翼區域鱗片細胞型態跟不透明區域的未分化鱗片細胞一樣,像極了一個個被吹成橢圓狀的氣球。

  • 成蛹 48 小時

鱗狀細胞開始延展並擴散生長,這時候透明翼區和非透明翼區要開始分道揚鑣了!非透明翼區(尤其是翅膀周圍有顏色的分界線)有很粗的肌動蛋白束,鱗片細胞呈圓扁狀;而透明翼區的鱗狀細胞開始向上延伸,並產生兩種型態(短小倒三角狀及狹長鬃毛狀)的細胞交替分布於其中。

  • 成蛹 60 小時

透明翼區的短小倒三角鱗狀細胞們的兩個角角開始伸出「觸鬚」,形成兩個似觸角型的細胞並開始延伸生長,而長鬃毛鱗狀細胞的長度早已生長至一定長度,甚至還長到彎曲。非透明翼區的鱗狀細胞則會再長得更長、更寬、更平坦(葉狀),並在尖端處形成鋸齒狀。

隨成蛹時間翅膀發育變化。 圖中洋紅色螢光為 SOP 細胞,綠螢光為肌動蛋白,粉紅色螢光為鱗狀細胞膜,成蛹 30 小時,透明翼區(Clear)與非透明翼區(Opaque)細胞分布密度差異大,成蛹 48 小時後兩區域細胞開始發展成截然不同的型態。 圖(一)/參考資料3

我們之所以能看到非透明物體具有色彩,是由於物體會吸收部分光線,並將其他光線反射入我們的眼睛。反射程度主要取決於生物組織和環境介質之間的折射率差異,差異越大,表面反射越高。以會呈現透明的水生生物為反例,因為其組織與周遭環境(水)的折射率相近,因此他們就能施展「隱身術」。但是呢!在陸地上,要隱身可難囉~因為陸地生物組織的折射率(n=~1.3-1.5)和空氣(n=1)的折射率差異很大,所以易產生極大的表面反射。

有色翅膀的蝴蝶擁有於一排排扁平、重疊的鱗片,每個鱗片都可以通過色素沉澱產生顏色,並與光於奈米結構層級上進行交互作用,產生所謂的「結構色(structural coloration)」,選擇性吸收特定波長的光,且使光發生散射、漫反射、衍射或干涉而產生各式炫麗色彩。相反地,像透明翼蝶與部分蛾類的翅膀之所以會呈現透明,讓光線穿透,並能夠從透明翅膀區域看見他們身後的物體,關鍵在於他們只含有一層幾丁質膜(chitin membrane,也稱甲殼質),這層膜並不會明顯地吸收或反射光線,因此光線能輕易透射這層膜。

仿生靈感:抗反射材料的誕生

然而,幾丁質膜的加持還不夠,因為幾丁質本身具高折射率(n=1.56),因此即便透明,還是會有反射光。為此,透明翼蝶的翅膀發展出一款新型態的「抗反射構造」,造就此構造的三大功臣:微小且垂直稀疏的鱗片、幾丁質組成的奈米柱、蠟質層。垂直的鱗片能順著光線移動,使光線更容易致穿透翅膀;奈米柱使翅膀顯得凹凸不平,不但能減少因相同角度反射所產生的眩光,還能使光線呈現漫反射的效果;可是,透過電子顯微鏡的觀察,科學家們發現透明翼蝶的透明翼區的漫反射率僅約 2 % (空氣與翅膀介面的比率),後來他們查出這是翅膀表面覆蓋蠟質層的功勞,蠟質層似緩衝膠,因為比空氣密度大,能緩衝光線穿透翅膀的速度,還能大幅減緩光線照射鱗片所產生的眩光,若去除透明翼區的奈米柱及蠟質層,則會使反射率提升 2.5 倍,使翅膀受光照而閃亮。

這項驚人的發現不只有帕特爾等人注意到,卡爾斯魯厄理工學院(Karlsruhe Institute of Technology)的研究團隊也曾於 2015 年在《自然通訊》(Nature Communications)期刊發表,玻璃翼蝶翅膀表面不規則的奈米結構能降低反射,並透過蝕刻沈積技術(etching techniques)製造了仿透明蝶翅的塗層,厚度僅 500 奈米,且具有防水及自潔功能。

雖然目前研究處於測試階段,但在未來可望將這類新型塗層應用於防眩光的眼鏡鏡片、相機鏡頭、3C 產品的螢幕上,還能用於太陽能板以提升太陽能轉換效率,甚至軍事領域能發展出「隱形效果」的武器或裝備,這就是透明翼蝶帶來的重大效應。

卡爾斯魯厄理工學院研究團隊於 2015 年在《自然通訊》期刊中發表玻璃翼蝶翅膀表面不規則的奈米結構能降低反射。圖/參考資料4

結語

來自杜克大學的生物學家桑克‧強森(Sonke Johnsen)曾指出儘管許多具透明性質的物種都在身體結構上演化出奈米柱,但蠟質層倒是個令人費解的新發現,蝴蝶的幾丁質覆蓋層是個牢固的結構,為何還要加上蠟質層削弱其堅固度呢?因此他認為這個問題的解答或許會發掘出更多酷東西!不過一想到能在大太陽底下使用仿透明翼蝶的仿生手機,不再受惱人的反光所擾,這個對重度使用 3C 產品的捧由們已經是件很酷的事了!

仿生透明翼蝶產品,對人類來說,是一個保護眼睛、免於反光摧殘的一項發明。 圖/GIPHY

參考資料

  1. See through the Glasswing Butterfly’s Fascinating Wings
  2. New images clarify how glasswing butterflies make their wings transparent
  3. Developmental, cellular and biochemical basis of transparency in clearwing butterflies
  4. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly
  5. How glasswing butterflies grow their invisible wings
  6. 抗反射塗層 仿透明蝶翼
  7. 科技大觀園:抗反射表面塗層仿生透明蝶翅
  8. 求真百科:玻璃翼蝶
  9. 寬紋黑脈綃蝶:形態特徵,棲息環境,生活習性,分布範圍,繁殖方式,種群現狀,保護級別
  10. MPlus | 隱形的翅膀:玻璃蝴蝶的透明演化之謎

Curious曉白_96
952 篇文章 ・ 247 位粉絲
對於科學新知充滿好奇心,對於一切新知都想通曉明白,期許自己有一天能成為有所貢獻於社會的曉曉科學家!
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策