0

0
0

文字

分享

0
0
0

嗝很大的波霎

臺北天文館_96
・2012/08/17 ・3261字 ・閱讀時間約 6 分鐘 ・SR值 563 ・九年級

宇宙中有一種高級的燈塔,叫做脈衝星(波霎)。它是質地緊密的中子星,以旋轉軸為中心每秒多次快速旋轉,朝太空幅射出電波和伽馬射線。最近,馬克斯-普朗克太空物理學研究所巧妙運用數據分析法,從費米伽瑪射線太空望遠鏡(Fermi Gamma-ray Space Telescope,以下簡稱”Fermi” 望遠鏡)的資料庫中撈出一個非常特殊的伽瑪射線脈衝星。這顆名叫J1838 – 0537的脈衝星很年輕,在電波頻段無訊號,它在受觀測期間曾發出一次很強的頻率突變(glitch),這是有史以來在「只幅射出伽瑪射線」這類罕見的脈衝星當中所觀測到的最強的一次頻率突變。

只幅射出伽瑪射線的「純」伽瑪射線脈衝星,由於在天空中的位置、自旋週期的長短、本身隨時間經過所發生的變化等各種未知情況和因素使然,讓想辨識它的天文研究人員經歷到困難重重,只能由Fermi望遠鏡的巡天觀測的原始資料來判斷脈衝星在天空中的大約位置,像在一片漆黑的汪洋大海中檢查前述特性各種組態,花掉很驚人而大量的計算時間。然而在此之前,要想推估出伽瑪射線光子是在何時抵達探測器的隱性規律,這卻是唯一的途徑。

遇上這種費時的計算需求,就連高效能的電腦也很快就山窮水盡,因此,研究員念頭一轉,動用到當初設計用來處理「重力波」資料分析的演算法,藉以協助實現Fermi資料搜尋。新的演算法經過優化(optimize)處理,有了它的協助,很多先前掉失的訊號因此就又被找了回來。2011年11月,「愛因斯坦研究所」團隊(Albert Einstein Institute,簡稱AEI)就一口氣公佈了達9個之多的伽瑪射線脈衝星,全都是因為使用經過優化的演算法才找到的「漏網之魚」。現在這種方法再次幫助該團隊取得重大發現。

新發現的脈衝星位置在靠近盾牌座方向,按天球座標命名,名叫J1838-0537。年齡5千歲,是很年輕的脈衝星。每秒約自旋7次。研究人員在發現它之後,很驚訝的又發現,這顆脈衝星是在2009年以前才看得到的,2009年之後它就突然消失了。

-----廣告,請繼續往下閱讀-----

經過很複雜的對比分析後,研究團隊得知,原來J1838-0537這顆脈衝星並未真的消失,只不過,在經過「頻率突變」(glitch)後,它的轉速比先前快了3,800萬分之一秒,這是個微小到幾乎可以忽略的變化,但是以伽瑪射線脈衝星而言,這卻已經是他們曾經量測到的最大一次頻率突變。並且這個突變還有一些後續的影響。

研究人員表示,「如果忽略不計這個突然冒出來的頻率突變,8小時後,我們的計算將完全丟失脈衝星的自旋,Fermi上所裝載的探測器將無法確知伽瑪射線光子抵達的自旋相位為何,中子星的所謂「閃爍」效應也將因而消失。」不過,要是研究人員的計算裡,將頻率突變考慮進去,並且修正自旋的變化值,這顆脈衝星就能再次從觀測數據中現出蹤影了。

頻率突變從許多年輕脈衝星身上都可觀測得到,但確切原因不明。天文學家認為發生在中子星地殼上的「星震」,或發生在恆星內部超流體與地殼間的相互作用可能可以為這個現象提供一個好的解釋。研究人員表示,這次偵測到的這個強大的脈衝星glitch(頻率突變),將有助於他們更了解這些極緻密天體的內部結構。

在從Fermi的數據資料中取得上述發現後,研究人員隨後又將一座位於美國維吉尼亞州的綠堤電波望遠鏡指向了這個伽瑪射線脈衝星所在的位置。在近2小時觀察,並進一步分析了早先一次一個小時的觀測結果之後,發現在電波頻段內並未顯示任何有規律性的脈動輻射,因此他們確認,J1838 – 0537是一顆罕見的「純」伽瑪射線脈衝星。

-----廣告,請繼續往下閱讀-----

雖然在電波波段無訊號顯示,觀測結果卻與主要觀測一些從太空深處幅射出極高能量伽瑪射線的H.E.S.S. 的觀測結果明顯重疊。(H.E.S.S. 是High Energy Stereoscopic System:高能立體系統的簡寫),在與H.E.S.S.天文學家攜手合作的一次搜查中,曾在新發現的脈衝星附近,偵測到輻射源的延伸,但仍未能澄清其性質。

這顆脈衝星的發現表示H.E.S.S.所偵測到的伽瑪射線源為一「脈衝星風星雲」。星雲是由以近光速的速度運動的粒子所產生的,它在脈衝星極強的磁場中獲得加速。由於目前脈衝星的確切位置已知,所以H.E.S.S.未來可以考慮在這個星區裡進行一些更精確的測量。

目前為止,愛因斯坦研究所的ATLAS集叢已協助發現了10顆前所未知的伽瑪射線脈衝星,目前研究團隊還動員了更多計算力加入他們的行列。自2011年8月以來,Einstein @ Home計劃已為伽瑪射線巡天搜索計畫貢獻了很大的分散式計算力,甚至比ATLAS集叢的計算能力還高10倍,該研究所的研究員Bruce Allen認為未來在Fermi資料中「找到更不尋常的伽瑪射線脈衝星」的機會為「非常樂觀」。目前他們已將搜索目標擴大,其中之一是,能發現旋轉得更快速、週期在毫秒範圍內的伽瑪射線脈衝星。(Lauren譯)


關於本篇文章中出現的幾個名詞

-----廣告,請繼續往下閱讀-----

脈衝星(Pulsar): 是一種因超新星爆發而產生的緊密中子星,強磁場使它們幅射出電波和伽瑪射線,持續快速地自旋。有宇宙中的燈塔之稱。如果掃射出的輻射方向是朝向地球,這顆中子星看起來就會像一顆脈衝星。並非所有脈衝星都會有訊號同時出現在一種以上的波段中。有時偵測到的是電波脈衝星,因為只有電波訊號。有時後只週期性地偵測到伽瑪射線光子,那它就是伽瑪射線脈衝星。為什麼脈衝星有不同種類?最有可能的原因就是,中子星極強磁場所形成的發射區是朝向不同的方向。

令脈衝星更蒙神秘者還不僅止於此而已,在脈衝星年輕時期,它的旋轉持續卻不規律,譬如突如其來的「頻率突變」會對它的規律性造成干擾。只有5%的脈衝星具有這種頻率突變的現象。當頻率突變發生時,中子星旋轉會突然變快,隨之緩慢減速、於數週後回歸到舊的自旋週期。造成這種現象的原因還不清楚,不過精確的測量到這些頻率突變,必能幫助我們更多認識這種緻密的天體。

目前為止,天文學家大多是在電波波段中發現到脈衝星,如今因為Fermi望遠鏡的緣故,發現到的伽瑪射線脈衝星數量也越來越多。Fermi衛星從2008年開始在伽瑪射線波段透過大面積伽瑪射線望遠鏡(LAT: Large Area Telescope)觀測宇宙,發現了數以百計的新伽瑪射線發射源,其中許多都是前所未知的新脈衝星。


資料分析Data analysis:

-----廣告,請繼續往下閱讀-----

對重力波探測器所取得的資料從事分析時,科學家必須倚賴非常有效率的演算法和高階運算能力,為什麼重力波的資料分析工作這麼特別?因為如果以目前的測量精確度來說的話,重力波訊號的強度幾乎和背景雜訊差不多,很微弱。

在LIGO-Virgo科學合作計畫(簡稱LVC)中,德英兩國合作的GEO600偵測儀也是合作項目的一部份,所有偵測所得的資料都會共同存檔,以供後續分析使用。單是一份資料檔案的大小就有500TB,總共有好幾份是儲存在多個不同的電腦集叢。偵測器網路一開始運轉時,每1秒鐘都會多產生出1MB的資料。

資料分析有好幾步驟,首先是在大面積的天空中巡天掃瞄、取得訊號,當某一方向出現特殊訊號時,再透過特殊運算法進一步以較窄而密的搜尋網格仔細探索該區,這意味著要花更多的運算時間。如果訊號得到證實,科學家們就會繼續分析時間特徵,例如,檢查它是否可以被分配到一個特定的脈衝星的週期。AEI研究所的科學家已修改演算法使它可用來搜尋一些重力波的持續來源,並且還成功地用它來尋找存在於Fermi數據中的伽瑪射線脈衝星。


Einstein@Home:這個計畫號召全球網民自願地將家用或辦公室電腦加入雲端計算,用雲端的威力來處理分析大量天文觀測數據。目前已經有32萬人參與。自2005年以來, Einstein @ Home一直在幫忙LVC科學合作計劃尋找重力波資料。

-----廣告,請繼續往下閱讀-----

從2009年3月開始,Einstein@Home開始參與幫忙波多黎各的阿雷西博天文台和澳大利亞的Parkes天文台在觀測資料中尋找電波脈衝星,第一顆由Einstein@Home計劃找到的電波脈衝星於2010年8月找到,之後這個全球電腦網路系統又找到了40個新的電波脈衝星,2011年8月起協助Fermi衛星搜尋伽瑪射線脈衝星,「毫秒脈衝星」這種只在伽瑪射線波段能找得到的脈衝星也名列在它的搜尋目標之中。


圖1: 伽瑪射線脈衝星是一種結構緊密的中子星,在其極強的磁場中,帶電粒子被加速到相對論性速度(註:「相對論性速度」指的是運動速度與光速相近)。圖中可看得出在此過程中產生的伽瑪射線輻射區域(紫色),遠超過了中子星表面以外很遠的地方。從磁極發射出來的電波(綠色)呈錐形。又因為自旋環掃所經過的區域正好與地球視線方向一致,所以對一名地球上的觀測者來說,看來,脈衝星就像是定期在天空中閃爍著光芒的一座宇宙燈塔。

動畫來源http://www.nasa.gov/mov/600703main_07_Pablo_Pulsar_Animation.mov, Credits: NASA/Fermi/Cruz de Wilde


資料來源:中研院天文網[2012.08.09]

-----廣告,請繼續往下閱讀-----

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
電磁波全揭秘:了解頻帶、頻寬、頻率和通信技術的基礎知識
數感實驗室_96
・2024/06/13 ・672字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

先前我們介紹了多位為通信科技發展做出貢獻的科學家。現在,我們要深入探討無線通信的技術層面。

無線通信,顧名思義不像傳統的電話或電報那樣需要一條實體的線路來傳遞信號。但這些信號並非憑空傳遞,它們依賴的正是電磁波。

電磁波在現代社會無處不在,從微波爐、手機到基地台,這些設備都會發射電磁波。但其實即使沒有這些科技裝置,電磁波依然存在於我們周圍。什麼意思呢?答案就是:當我們白天走到戶外,看到的光,它其實也是電磁波的一種。

-----廣告,請繼續往下閱讀-----

希望大家掌握了這些電磁波、頻帶、頻寬等基礎知識後,未來在閱讀相關的電信新聞時更加了解他們提到的術語,以及各種縮寫。以後無論是科技發展的動態還是市場新技術,都能更有概念地理解。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

2

2
2

文字

分享

2
2
2
諦聽宇宙深處的低吟,宇宙低頻重力波訊號代表的意義——《科學月刊》
科學月刊_96
・2023/11/01 ・3782字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳哲佑
    • 任職於日本理化學研究所,專長為黑洞物理、宇宙學、重力理論等。
    • 熱愛旅行、排球與珍珠奶茶
  • Take Home Message
    • 今(2023)年 6 月,北美奈赫茲重力波天文臺(NANOGrav)團隊觀察到宇宙中的低頻重力波。
    • NANOGrav 團隊利用數個脈衝星組成「脈衝星陣列」(PTA),測量各脈衝星訊號到達的時間,計算不同訊號的到達時間是否存在著相關性。
    • PTA 得到的重力波訊號相當持續,沒有明確的波源。科學家推測此訊號可能來自多個超大質量雙黑洞系統互繞而產生的疊加背景。

2015 年 9 月,位於美國的雷射干涉儀重力波天文臺(Laser Interferometer Gravitational-Wave Observatory, LIGO)成功偵測來自雙黑洞碰撞的重力波訊號(請見延伸閱讀 1)。

這個發現不僅再次驗證愛因斯坦(Albert Einstein)「廣義相對論」的成功,更引領人類進入嶄新的重力波天文學時代。到了現在,我們不僅能使用各種電磁波波段進行觀測,還多了重力波這個強而有力的工具能夠窺探我們身處的宇宙,甚至還有同時結合兩者的多信使天文學(multi-messenger astronomy)註1,皆能帶給人類許多單純電磁波波段觀測無法觸及的資訊(請見延伸閱讀 2)。

如同不同波段的電磁波觀測結果為我們捎來不同的訊息,重力波也有不同的頻譜,且頻譜與產生重力波的波源性質有非常密切的關係。以雙黑洞碰撞為例,系統中黑洞的質量與碰撞過程中發出的重力波頻率大致上成反比,因此當系統中黑洞的質量愈大,它產生的重力波頻率就愈低。

目前地球上的三個重力波天文臺:LIGO、處女座重力波團隊(The Virgo Collaboration, Virgo),以及神岡重力波探測器(Kamioka Gravitational wave detector, KAGRA, or Large-scale Cryogenic Gravitational wave Telescope, LCGT)都受限於干涉儀的長度,只對頻率範圍 10~1000 赫茲(Hz)的重力波有足夠的靈敏度,此範圍的重力波對應到的波源即是一般恆星質量大小的雙黑洞系統。

-----廣告,請繼續往下閱讀-----

然而,來自超大質量黑洞互繞所發出的重力波頻率幾乎是奈赫茲(Nano Hertz,即 10-9 Hz)級別,如果想要探測到此重力波,就需要一個「星系」規模的重力波探測器。雖然這聽起來彷彿天方夜譚,但就在今年 6 月,北美奈赫茲重力波天文臺(North American Nanohertz Observatory for Gravitational Waves, NANOGrav)的團隊利用「脈衝星計時陣列」(pulsar timing array, PTA)成功地觀測到這些低頻重力波存在的證據。

以不同方式觀察不同頻率的重力波

與電磁波相似,重力波也有不同的頻率。不同頻率的重力波會對應到不同性質的波源,且需要不同的方式觀測。圖/科學月刊 資料來源/Barack, et al. 2018

NANOGrav 如何觀測低頻重力波?

讀者聽過脈衝星(pulsar)嗎?它是一種高速旋轉且高度磁化的中子星(neutron star)註2,會從磁極放出電磁波。隨著脈衝星的旋轉,它的電磁波會以非常規律的時間間隔掃過地球,因而被身處於地球上的我們偵測到,就像是海邊的燈塔所發出的光,會規律地掃過地平面一般。由於脈衝星的旋轉模式相當穩定,掃過地球的脈衝就如同宇宙中天然的時鐘,因此在天文學上有相當多的應用——甚至可以用來觀測重力波。

利用脈衝星觀測重力波的第一步,首先要記錄各個脈衝星的電磁脈衝到達地球的時間(time of arrival),並且將這些訊號與脈衝星電磁脈衝的理論模型做比對。

如果訊號和理論模型相符,那麼兩者相減後所得到的訊號差(residual)只會剩下一堆雜訊;相反的,如果宇宙中存在著重力波,並且扭曲了該脈衝星和地球之間的時空,那麼兩訊號相減之後就不會只有雜訊,而會出現時空擾動的蹤跡。

-----廣告,請繼續往下閱讀-----
利用數個脈衝星組成的脈衝星計時陣列,可用來尋找宇宙中低頻的重力波訊號。圖/Tonia Klein, NANOGrav 

然而以觀測的角度來看,即便我們從來自單一脈衝星的訊號中發現訊號差出現偏離雜訊的跡象,也不能直接推論這些跡象一定是來自重力波。畢竟科學家對脈衝星的內部機制和脈衝傳遞的過程也並未完全了解,這些未知的機制都可能會使單一脈衝星的訊號差偏離雜訊。

因此為了要判斷重力波是否存在,就必須進行更進一步的觀測:利用數個脈衝星組成脈衝星陣列,測量每個脈衝星訊號到達的時間,並且計算這些不同脈衝星訊號的到達時間是否存在某種相關性。

舉例來說,如果脈衝星和地球之間沒有重力波造成的時空擾動,那麼即便每顆脈衝星的訊號差都出現偏離雜訊的跡象,彼此之間的訊號也會完全獨立且不相干;反之,如果脈衝星和地球之間有重力波經過,這些重力波便會扭曲時空,不僅會改變這些脈衝訊號的到達時間,且不同脈衝星訊號到達的時間變化也會具有某種特定的相關性。

根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。

-----廣告,請繼續往下閱讀-----

科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。

NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。

他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。

除了 NANOGrav,其他團隊例如歐洲的脈衝星計時陣列(European Pulsar Timing Array, EPTA)、澳洲的帕克斯脈衝星計時陣列(Parkes Pulsar Timing Array, PPTA)、印度的脈衝星定時陣列(Indian Pulsar Timing Array, InPTA),以及中國的脈衝星計時陣列(Chinese Pulsar Timing Array, CPTA)等,皆得到相符的結果。

-----廣告,請繼續往下閱讀-----

NANOGrav 觀測結果帶來的意義

與先前 LIGO 觀測到的瞬時重力波訊號不同,目前利用 PTA 得到的重力波訊號是相當持續的,而且並沒有較明確的單一波源,反而像是由來自四面八方數個波源組成的隨機背景訊號。

打個比方,LIGO 收到的重力波訊號像是我們站在海邊,迎面而來一波一波分明的海浪,每一波海浪分別對應到不同黑洞碰撞事件所發出的重力波;而 PTA 的訊號則是位於大海正中央,感受到隨機且不規則的海面起伏。

目前對這些奈赫茲級別的重力波訊號最合理也最自然的解釋,是來自多個超大質量雙黑洞系統互繞而產生的疊加背景。若真是如此,那這項發現將對天文學產生重大的意義。

過去科學界對於如此巨大的雙黑洞系統能否在可觀測宇宙(observable universe)的時間內互繞仍普遍存疑,如果PTA觀測到的重力波真的來自超大質量雙黑洞互繞,那代表這類系統不僅存在,它們的出現還比過去我們預期的更為頻繁,且產生的訊號也更強。

-----廣告,請繼續往下閱讀-----

NANOGrav 的觀測結果

橫軸為脈衝星陣列中,兩脈衝星位置之間的夾角;縱軸為訊號之間的相關性;藍色數據點為 NANOGrav 15 年的觀測結果;黑色虛線為 HD 曲線。可看出數據點的分布與 HD 曲線相當吻合。圖/科學月刊 資料來源/Agazie et al. 2023

不過除了雙黑洞系統,也有其他「相對新奇」的物理機制也可能產生這樣的重力波背景,包含早期宇宙的相變、暗物質,以及其他非標準模型的物理等。若要從觀測的角度去區分這些成因,最重要的關鍵在於,能否從隨機背景中找到特定的波源方向。

如果是雙黑洞系統造成的重力波,勢必會有來自某些方向的訊號比較強;反之,如果是早期宇宙產生的重力波,那麼這些重力波將會隨著宇宙的膨脹瀰漫在整個宇宙中,因此它們勢必是相當均向的。

為了找到波源方向,提升訊號的靈敏度成為了當務之急。而若要提升 PTA 的靈敏度,最主要的方式有兩種——其一是將更多的脈衝星加入陣列;其二則是延長觀測的時間。

目前,不同的 PTA 團隊已經組成國際脈衝星計時陣列(International PTA)互相分享彼此的脈衝星觀測資料。隨著觀測技術的進步,解密這些奈赫茲級別的神祕重力波將指日可待。

-----廣告,請繼續往下閱讀-----

註解

  1. 相較於過往只能以可見光觀測宇宙,多信使天文學能利用多種探測訊號,如電磁波、微中子、重力波、宇宙射線等工具探索宇宙現象,獲得更多不同資訊及宇宙更細微的面貌。
  2. 質量較重的恆星在演化到末期、發生超新星爆炸(supernova)後,就有可能成為中子星。

延伸閱讀

  1. 林俊鈺(2016)。發現重力波!,科學月刊556,248–249。
  2. 金升光(2017)。重力波獨白落幕 多角觀測閃亮登場,科學月刊576,892–893。
  3. NANOgrav. (Jun 28 2023). Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony. NANOgrav.
  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
所有討論 2
科學月刊_96
249 篇文章 ・ 3741 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。