0

0
0

文字

分享

0
0
0

你家的寵物夠永續嗎?

鄭國威 Portnoy_96
・2011/05/31 ・1468字 ・閱讀時間約 3 分鐘 ・SR值 503 ・六年級

-----廣告,請繼續往下閱讀-----

寵物雞Eli的照片,來自Flickr用戶Sadie Elise

世界人口超過逼近七十億,糧食危機搭上氣候變遷,「永續」成為重要話題,SFS的共筆作者Andrew提供了了我們一份「永續寵物判準」。

養什麼寵物怎麼會跟環境永續扯上關係呢?其實養寵物耗費的糧食、水、能源非常多,世界自然基金會(World Wild Fund)的Jason Clay說一隻歐洲的家貓耗費的資源比非洲一名生活在貧窮線下(2美元/天)的人高16倍;而根據目前可得之數據,歐洲有4千7百萬隻家貓,而美國有7千6百萬隻,單單就算這兩地的寵物貓所耗費的,就足以替幫生活在貧窮線下的人們加一倍的生活費,更別提其他寵物的全球總和了。

當然,這樣的算法對飼主、對寵物都不公道,先不管Clay先生提出的數據是否高估,就算沒有高估好了,也不代表不養寵物省下來的資源就會落到窮人身上。不過我們可以用更宏觀的角度來看:那麼多糧食跟能源拿來養寵物,製造的溫室氣體排放量絕對不少,而受到氣候變遷影響最劇的,照目前的情況來看,還是貧窮國家的人民。

再者,寵物跟著人全球到處跑,也為許多地方的野生動物族群帶來無法抵抗的疾病,例如家貓就把FeLV傳給了美洲獅跟山貓,把FIDS帶給獅子、獵豹、花豹,更把FPV傳給了瀕危的佛羅里達山豹。而家貓也是小型哺乳類跟鳥類的殺手,更是導致野鳥絕種的第二大危險因素。綜合上述,Andrew認為對於思考永續的我們,寵物的定位跟對社會與自然的影響,不該被忽視。

-----廣告,請繼續往下閱讀-----

所以何謂「永續寵物」呢?

在討論哪種寵物比較好之前,最該問的反而是「我真的需要養寵物嗎?」畢竟最不會造成環境衝擊的選擇是「一開始就不養」,不如把養寵物的錢捐給地方上的組織,去做減少流浪動物的推廣工作。但如果真的要養,那Andrew提出以下的方針供你參考:

永續寵物消耗資源最小化

包括食物、水、能源。許多人拒絕把廚餘拿來餵寵物,但其實狗、雞、豬、羊都已經跟人類共同生活幾千年了,能夠吃我們吃的食物,這樣就不必特別為了他們製作糧食。得養在水族箱裡頭的寵物就更耗水跟耗能了。所以理想的永續寵物應沒有特殊食物需求,可以吃在地食物,不需要大量的水跟電力才能生存。

永續寵物傷害環境最小化

這指得是那些在「生產」的過程中不會對環境造成負面衝擊的寵物,以及即使離開飼主跟家居環境,也不會產生環境問題的寵物。例如有的熱帶魚是從珊瑚礁抓來的,而在過程中會傷害到珊瑚礁,魚存活的機率也不高。外來入侵種的獅子魚、蟒蛇、鮕鮐,或是一般的狗、貓、鼠,要是逃脫或是被遺棄,都會對環境生態造成破壞。有些寵物的糧食得從很遠的地方運送過來,或是得用破壞環境的方式才能取得跟製作的,都該避免飼養。

-----廣告,請繼續往下閱讀-----

永續寵物提供服務或產品價值最大化

簡單來說,寵物要稱得上永續,除了最小化消耗資源跟環境傷害以外,還要能提供某種益處,讓你不用另外取得。例如可以提供肉、奶、蛋的動物,能夠為你的菜園施肥的動物,或能夠提供你某種服務或有益於生態環境的動物。當然,「陪伴」可以算是一種服務,一種益處。

所以呢,Andrew先生自己就養了雞:雞可以吃廚餘、吃得很省,不太用水,不會衝擊當地環境;自己養雞可以避免消費工業化養雞業,能提供肉、蛋,吃昆蟲幼蟲(包括侵入種的日本甲蟲),雞屎還可以堆肥。唯一的缺點是雞有可能傳遞疾病給野生鳥類。

我自己養貓(貓還生了小貓),老家還有狗,巴西龜跟文鳥,額外三不五時會餵流浪狗跟貓…這樣看來倒是挺不永續的。

資料來源:Is it time for a sustainable pet movement? (底下迴響討論很熱烈!)

-----廣告,請繼續往下閱讀-----
文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1246 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

1
0

文字

分享

2
1
0
經濟重要還是環境重要?明朝末年發生了什麼事?氣候如何影響國家?——《價崩》導讀
衛城出版_96
・2024/05/07 ・4105字 ・閱讀時間約 8 分鐘

眼皮底下的事實:環境史研究者看《價崩》

洪廣冀(臺灣大學地理環境資源學系副教授)

著名的漢學家卜正民以如下段落為《價崩:氣候危機與大明王朝的終結》一書定調:

生活在這個時代,我們彷彿逃不出莫測變幻的手掌心。變化讓人這麼痛苦、氣餒,為了安慰自我,我們便告訴自己:當代的生活特徵就是接連不斷的變化,正是這種不穩定,讓世界變得比以往更複雜。

他告訴我們,作為一個「長壽之人」,「過去十年來,氣候變遷、物價通膨,以及政治豪奪的速度與規模」,他認為也是前所未見。只是,作為一個歷史學者,他還是想問,若我們放大時空的尺度,當代人在過去十年來經歷的變化,真的是前所未見嗎?他的答案是否定的。在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。

在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。
圖/unsplash

藏在眼皮下的事實是什麼?小冰期如何發生?

一六四○年代初期的中國發生什麼事?這便是卜正民試圖回答的問題。他反對傳統史學的兩大見解:一者是訴諸人禍,即訴諸當時宮廷內的派系鬥爭,統治階層道德淪喪,導致民不聊生;二者是訴諸十六至十七全球的白銀貿易,即當時從美洲與日本湧入中國的白銀,造成物價波動與社會不安。卜正民認為,訴諸人禍與貿易會讓我們看不見「藏在眼皮底下的事實」:小冰河時期(簡稱小冰期)。

-----廣告,請繼續往下閱讀-----

廣義地說,小冰期是從十四世紀至十九世紀初期的地球寒化現象,氣溫平均掉了攝氏兩度。乍看之下,攝氏兩度的溫差或許微小,但對作物而言,這樣的溫差已經足夠讓作物減少一次收成,或根本無法收成。再者,必須注意,兩度的溫差是「平均」,即可能是極熱與極寒的氣溫交錯變化造就此兩度溫差。這確實也是在小冰期中發生的事。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。影響所及,所謂「聖嬰-南方震盪現象」(El Niño-Southern Oscillation, ENSO,即傳統上所說的「聖嬰現象」加「反聖嬰現象」)變得格外激烈,乾旱、水災等極端氣候頻傳。不僅如此,地球科學家也指出,小冰河期也是火山活動格外頻繁的時期。火山噴出的煙塵,遮蔽了太陽輻射,更加速了地球的寒化。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。
圖/unsplash

小冰期的起因為何?目前普遍接受的見解是太陽活動改變。此外,也有研究者指出,這與所謂歐洲人「發現」新大陸有關。受到所謂「哥倫布大交換」的衝擊,美洲原住民大量消失,森林擴張,吸收大量二氧化碳。眾所周知,二氧化碳是溫室氣體;二氧化碳濃度的減低,讓大氣保溫的能力下降,與前述太陽活動與火山噴發的效果耦合,讓寒化成為不可逆的過程。總之,我們現在已經知道,地球是個混沌系統,牽一髮不只動全身,甚至整個身體都會分崩離析。

回到《價崩》這本書。卜正民指出,明朝的存續時間(一三六八至一六四四年)即落在小冰期,並成為明朝覆亡的主因。他將小冰期之於明朝的影響分為六個泥沼期:一、永樂泥淖期(一四○三年至一四○六年)。二、景泰泥淖期(一四五○年至一四五六年)。三、嘉靖泥淖期(一五四四年至一五四五年)。四、萬曆一號泥淖期(一五八六年至一五八九年)。五、萬曆二號泥淖期(一六一五年至一六二○年)。六、崇禎泥淖期(一六三八年至一六四四年)。

-----廣告,請繼續往下閱讀-----

永樂泥淖期欠缺災荒記載,景泰泥淖期以饑荒收尾,嘉靖泥淖期氣候異常乾冷,萬曆一號泥淖期爆發饑荒、洪水、蝗災與大疫,「人民相食,枕籍死亡」;萬曆二號泥淖期的乾旱與水災頻繁,饑荒再度爆發,「朝廷賑濟的請願如潮水湧來」。崇禎泥淖期是明代乃至於「整個千年期間最慘痛的七年」,「米粟踊貴,餓殍載道」。一六四四年四月末,闖王李自成兵臨北京,致書要求崇禎帝歸順。崇禎不從,在命皇后、貴妃與女兒自盡後,他爬上皇居後的煤山,自縊身亡。李自成稱帝後,滿人入關,將中國納入大清國版圖。

不可忽視的幽靈?拔除合理征服者的解釋,明朝滅亡原因還有哪些?

如此的歷史解釋是否會流於環境決定論?卜正民的回答是:「如果環境決定論的幽靈就在門外徘徊,我也不會在分析時將其拒於門外。」那麼,是什麼讓寫出《縱樂的困惑》、《維梅爾的帽子》等名著的歷史學者相信環境的決定作用?答案就是糧價。

卜正民先生像。
圖/wikipedia

以他的話來說,「太陽能與人類需求的關係,是透過糧價調節的。從景泰年間到崇禎年間,糧價在五次環境泥淖其中激增,每一次都把價格多往上推一截,這樣的事實也說服我必須採用氣候史的大框架。」卜正民表示,「一旦經濟體仰賴太陽輻射為能源來源,那麼無論大自然是幽而不顯還是顯而易見,都必然是社會或國家生命力的決定因素。」

在結語「氣候與歷史」中,卜正民再次反駁那些把明朝覆滅推給「失德」的見解。他認為,這種論調是「合理化明清兩朝遞嬗的過程」,且「編出這種敘事並為之背書的,就是征服者」。他強調,「明朝的滅亡固然不能推給災荒糧價,但講述崇禎末年重大危機時不把氣候因素納入考慮,那簡直就像莎士比亞所言,宛如癡人說夢,充滿著喧譁與騷動,卻沒有任何意義。」

-----廣告,請繼續往下閱讀-----

然而,不至於將環境決定論「拒於門外」是一回事,認為社會變遷就此被環境「決定」,又是另一回事。卜正民並不認為,面對氣候因素帶來的種種挑戰,明朝各級官員只能雙手一攤,感嘆天要亡我,不做任何努力。就如其他生活在小冰期的人們一般,卜正民認為,明朝人建設基礎設施、育種、建立制度、開發新科技與控制生育力等;但問題是,一六三○年代晚期的種種災害,並未催出社會的適應力,反倒是摧毀其適應力。

拜此時勃發的火山活動與激烈的聖嬰-南方震盪現象「之賜」,不論是政府還是市場,都變不出糧食。卜正民認為,至少在前五個泥淖期,明朝人還是表現出相當的韌性,努力予以調適。然而,進入崇禎泥淖期後,春夏乾冷,田地龜裂,運河無水。當每公斤的米得需要兩千五百公升的水,而老天爺就是不願意降下一滴雨時,糧食供應體系就此崩潰,連帶把物價與政治體系拖下去陪葬。

是誰忽略了眼皮底下的事實?這段歷史帶給我們什麼警訊?

回到卜正民所稱的「眼皮底下的事實」。我們要問,是誰忽略了這項事實?誰是這對眼皮的擁有者?卜正民的答案有二。一則是以研究社會、政治與環境變遷的人文社會科學研究者。以小冰期的相關研究為例,他表示,當他開始研究明代中國糧價變異與氣候變化之關係時,驚訝地發現,「其他地方的環境史對糧價幾乎不提」。與之對照,精通糧價的歷史研究者,如不是太快地把糧價理解為「公平交易」的指標,便是視之為社會關係的一環,忽略了糧食必得是在特定的環境條件下孕育出來的。

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。
圖/unsplash

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。然而,卜正民的分析告訴我們,即便明代中國離現在相當遙遠,所謂的小冰期至少也是一百五十年以上的事,但物價恐怕還是可作為某種氣候指標。換言之,若人們以關心物價的熱誠來關心環境,面對當代的環境危機,說不定人們多少可找出個解方。

-----廣告,請繼續往下閱讀-----

此外,讓人心生警惕的是,卜正民告訴我們,小冰期多少是個漫長的地球系統變化。小冰期本身並未造成明朝衰亡,是相伴的極端氣候摧毀了明代社會的韌性與調適。他也認為,面對小冰期、火山噴發與聖嬰-南方震盪現象誘發的極端氣候,從後見之明來看,明朝人也做了他們可以做的,但也只多苟延殘喘了七年,且還是生存條件都被剝奪、生活尊嚴都被否定的七年。

那麼,當人類誘發的氣候變遷可能已加劇了聖嬰-南方震盪現象,讓去年(二○二三年)夏天成為有紀錄以來地球最熱的夏天,而極端氣候彷彿成為日常,人類還有多少時間可以調適?如果說明朝多少是被地球系統的正常運作摧毀,當今地球系統的異常,是人類自己造成的,數百年後的歷史學家,在回顧這段歷史時,恐怕無法如卜正民對待明朝人一樣地寬厚,只能說這是咎由自取。諸如此類的思考,都讓《價崩》有了跨越時代的現實意義。

畢竟,明朝人不是外星人,他們跟我們都生活在同一個地球上。

——本文摘自《價崩:氣候危機與大明王朝的終結》,2024 年 05 月,城出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2
衛城出版_96
4 篇文章 ・ 4 位粉絲
"每個人心中都有一座城。每個人在心裡攜帶著文明的種子。 守衛讀者心中之城,與文明的生命力。"

0

3
1

文字

分享

0
3
1
從成長的極限到永續系統發展——《成長的極限》導讀
臉譜出版_96
・2024/04/22 ・3899字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/顏敏仁
    • 國立政治大學教育學院教授暨數位賦能與永續發展研究中心主任
    • 國際系統動態學臺灣分會主席

何飛鵬社長邀請我寫這篇導讀時,《成長的極限》(The Limits to Growth)系列書籍已被翻譯成近 40 種語言,全球銷售一千多萬本,被譽為 20 世紀最具影響力書籍之一。1972 年出版的本書源自傑伊.佛烈斯特(Jay W. Forrester)教授創立的 MIT System Dynamics Group 系統科學研究,由羅馬俱樂部(Club of Rome)支持其研究及出版。17 位科學家運用佛烈斯特的世界模型原型為基礎提出 World3 電腦模型,分析描述地球環境與經濟社會從 1972 年到 2100 年的可能未來景象並提出警示建議,由唐妮菈.米道斯(Donella Meadows)、丹尼斯.米道斯(Dennis Meadows)、喬詹.蘭德斯(Jorgen Randers)及威廉.貝倫斯(William Behrens)代表撰文出版成為世界第一本以電腦科學分析環境風險的報告。同年聯合國提出《人類環境宣言》。

想像 50 年多前這本書帶給世人什麼震憾?世界頂尖科研團隊提出,在有限的地球資源條件下,若依人類追求經濟成長的慣性發展趨勢,以及環境社會解方的行動時間延遲,將可能不自覺導致超過地球限度的開發(overshooting)而讓資源失衡崩潰。本書運用科學數據分析描繪的 12 種未來發展可能景象,不只是成長趨緩或停滯而已,還有全面毀滅式的環境經濟社會崩潰。這樣的論述在追求經濟成長的 1970 年代堪稱非常反直覺的驚天論述,有其支持者,也有大量的批評接踵而來。包含諾貝爾經濟學獎得主在內的許多批評者無法理解其分析的依據,也不相信其推論,甚至認為是不負責任的危言聳聽。

出版 20 年後的 1992 年,作者群更新內容以《超過限度》(Beyond The Limits)之名重新出版,同年聯合國召開首次全球環境及發展高峰會,宣布《聯合國氣候變化綱要公約》(UN Framework Convention on Climate Change, UNFCCC)與《生物多樣性公約》(Convention on Biological Diversity);30 年後的 2002 年,作者群再更新實際發生數據研究出版《成長的極限》三十週年增訂版,再與聯合國世界永續發展高峰會議同步,跨入 21 世紀倡議永續社會;40 年後的 2012 年,聯合國通過「永續發展目標」(Sustainable Development Goals, SDGs),乃至於 2015 年 193 個會員國全數簽署《巴黎協定》(Paris Agreement)執行 1992 年的相關環境公約。本書出版 50 週年時,世界頂尖科學期刊《自然》(Nature)發表專文呼籲科學家們應該停止對成長極限的爭論而共同全力為經濟環境永續發展努力。

有「東方諾貝爾獎」之稱的唐獎永續發展獎得主、歷任三屆聯合國祕書長特別顧問的國際知名經濟學家傑佛瑞.薩克斯(Jeffery Sachs)是聯合國千禧年發展目標(MDGs)、永續發展目標(SDGs)及《巴黎協定》重要推手。曾公開表示《成長的極限》是 50 年前他就讀哈佛大學經濟系時的指定必讀名著,對其影響啟發深遠。

-----廣告,請繼續往下閱讀-----
圖/envato

時至今日,國際經濟社會已廣為倡議 SDGs 及 ESG 等等永續發展行動與政策實踐,甚至是產官學各界領導人必修知識與國民素養教育。再讀這本引領思潮,橫跨兩世紀的經典之作,我們可以用什麼視角來品析及反思學習呢?

以對話取代對立:研究方法學

本書所引發的跨世紀跨領域對話,可以從研究方法學的特性來理解。古有云:事實勝於雄辯。對於已經發生的事件及資料加以科學分析歸納,是為研究方法中的歸納法(inductive reasoning)。這種方法的好處是依據取得資料幫助吾人從經驗中學習,以及傳遞知識。然而,對於還沒有發生的未來可能,歸納法則可能受到限制或僅能以過去相關資料有限度的推測未來趨勢。演繹法(deductive reasoning)則是一種運用行為邏輯與科學分析推論未來可能發展的研究方法,可依據邏輯幫助吾人規畫未來情境並分析可能性。若是從科學研究角度,要隨著時代持續進步,最好是同時有從經驗學習的能力以及展望未來的能力,亦即歸納法加上演繹法的持續運用。反之,若將歸納法 vs 演繹法直接二選一,便容易產生對立觀點。

若要能夠開放式對話,其實我們需要理解的是歸納法強調「資料」(data),演繹法重視「規則」(rule)。這兩種研究方法並沒有直接衝突,而是關注點不同。持各種不同研究方法及論述立場的人們之間沒有不合,而是需要對話及互相理解彼此想法。分析已發生的事件及資料需重視精準度及解釋力;而對於未來看法的對話,我們既然拿不到「未來」的資料,便需要更重視行為邏輯結構的分析(structural analysis)而避免不知其所以然而為之的黑箱(black box)預測。如此大家才有機會一起探討各種未來可能的行為模式及發展趨勢。因此,作者持續的對外聲明,他們沒有要直接對未來做預測(prediction),而是希望勾勒規畫各種行為模式下的可能未來情境(scenario planning),以做為政策及個人選擇參考。

以平常應對無常:系統動態學

許多人看到本書描繪 21 世紀可能成長超過限度並導致崩毀的反直覺景象,非常難以相信亦或是恐懼無常。然而本書卻有條有理的說明,不論是呈現持續成長、成長趨緩、超過限度並出現振盪、超過限度並導致崩毀等等看似反直覺的各種未來情境,都有 World3 模型中可以解釋各種行為模式的結構性原因。這樣的分析方式正是典型的系統動態學(System Dynamics, SD)。相較於傳統的線性思考方式,SD 重視系統思考(Systems Thinking)及因果回饋環路關係,考慮作用時間延遲,並運用電腦模型分析系統運作結構模式來推論未來發展趨勢。經歷各種複雜系統研究分析與歸納學習各種非線性動態趨勢變化後,系統科學家習以為常的運用 SD 分析方法將一般人認為動態趨勢變化的「無常」理解為可以探究其結構性原因及對策的「平常」。因此,作者在書中強調的「調整系統結構」(change the structure of the system)等等論述。雖然文字上並不親民,卻也是典型的系統科學家用語及系統思維。

-----廣告,請繼續往下閱讀-----

SD 重視脈絡分析,從心智模式(Mental Model)、系統思考、電腦模擬與未來情境分析,到對行為模式的反思學習,其持續追根究柢的科學專業,以及對未來保持開放思考的態度正是精髓所在。因此,當系統科學家在情境分析的過程中發現有非常不利的未來可能時,會防範未然提出早期警訊,呼籲要調整系統結構並儘早採取對策,便不難理解。系統動態學的應用也能有效協助規畫建立有利於未來發展的各種系統。

主動選擇勝過被動無奈

這不是無奈,這是我們的選擇。本書提到世界面臨的不是一個預先注定的未來,而是一個選擇,亦即在不同的心智思考模式之間所做的選擇。

面對成長的極限與可能的崩潰,作者仍然採取積極的思考方式,建議人類從面臨成長極限的經濟模式反思典範轉移到永續系統(Transitions to a Sustainable System),為長存發展之道。因此作者提出了許多可能協助人類邁向永續系統的作法。惟面對未來發展,值得我們重視的並不僅於作者所建議的作法,亦或是再次爭論作者所提方法的精準度,而是我們是否能夠用非常審慎的態度、以科學方法為基礎來關注分析真實環境威脅與經濟及社會需求,進而可能找到兼容並進的永續發展路徑。作者也表示其研究是在試圖找出各種可能的未來,而不是要單一預測未來。他們鼓勵讀者多學習、多思考、並做出個人的選擇。

圖/envato

思索面對未來發展,心智模式非常重要。永續發展需奠基於人類自我覺察的視界與能力。挪威前首相、唐獎永續發展獎第一屆得主布倫特蘭(Gro Harlem Brundtland)所領導的聯合國環境與發展委員會(United National Commission on Environment and Development)在 1987 年發布著名報告:〈我們共同的未來〉(Our Common Future),為「永續發展」提供經典定義:「永續發展係指能滿足當今需求,卻不犧牲未來世代滿足其需求」。在諸多學者、倡議人士的持續努力下,永續發展成為一種理性看待世界的系統性思考,有了結合物理環境、工程系統、社會經濟文化背景的分析框架。永續發展試圖理解世界經濟、全球社會和地球的實體環境等三個複雜系統的互動。而為了實現永續的經濟、社會及環境目標,也必須達成政府和企業的良善治理。

-----廣告,請繼續往下閱讀-----

邁向永續系統的未來展望

教育與自覺非常重要,我們主動選擇的行為改變與經濟社會轉型,是邁向永續系統的未來展望。聯合國倡議推動的永續發展教育(Education for Sustainable Development, ESD)已將系統思考、自我覺察、未來情境策略規畫等能力列入未來人才核心能力培育綱領。2023 年《聯合國氣候變化綱要公約》(UNFCCC)第 28 屆締約方大會(COP28),更是首度盤點全球近200國氣候行動,正視具體實踐。

羅馬俱樂部沒有停止其主動選擇權和科學精神,在《成長的極限》出版 50 年後,發布了核心主張聲明,希望協助大眾正確瞭解該書所欲傳遞的訊息。並邀請原作者丹尼斯.米道斯和喬詹.蘭德斯再撰寫出版《極限與超越》(Limits and Beyond)一書,回應他們 50 年期間對相關重大議題的持續考證與反思學習報告。羅馬俱樂部仍持續出版其他以科學探索永續發展未來路徑的書籍報告。

MIT System Dynamics Group 持續推廣系統科學研究並成立永續發展倡議單位。國際系統動態學會(System Dynamics Society)在全球五大洲許多國家及區域設立分會,以推廣相關教育及產業社會服務。在臺灣,系統思考能力的培養已列入教育部頒布的十二年國民教育課綱(108 課綱),系統動態學的核心管理科學技術已經國科會核定成立全國第一個 ESG 產學技術聯盟。SDGs 與 ESG 等永續發展行動與相關政策已經在具體實踐過程中,如本書所建議的方針「In transition to a sustainable system」,以科學基礎和建設性的對話,大家一起集思廣益地球與人類發展典範轉移邁向永續系統。最後呼應本書以及聯合國的倡議及努力,「Towards sustainable system development from the limits to growth」,從成長的極限到永續系統發展的積極作為,是我們共同的未來。

——本文摘自《成長的極限》,2024 年 03 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。