0

0
0

文字

分享

0
0
0

藻類生質燃料(一):前景與瓶頸

生質能源趨勢 BioEnergy Today_96
・2012/07/30 ・2161字 ・閱讀時間約 4 分鐘 ・SR值 595 ・九年級

美國歐巴馬政府表態堅決投入藻類生質能源研究(圖片來源:http://0rz.tw/fgIbi)

在今年二月中旬,美國總統歐巴馬在佛羅里達大學的演講中,公開表態支持發展天然氣與藻類生質能源,並宣稱藻類燃料能取代美國 17% 的石油進口。同一天稍晚,白宮宣佈投入 1400 萬美金(約台幣四億兩千萬元)協助研發藻類生質能。這樣的政策似乎顯示了歐巴馬政府發展潔淨能源的決心,然而也引來了許多質疑。當時為共和黨總統參選候選人之一的 Gingrich 就大力抨擊發展藻類能源政策,他認為藻類能源技術仍須 30 至 50 年的時間才會成熟,對美國的能源安全緩不濟急。兩方人馬各持己見,究~竟~誰才是正確的呢?

我們生質能源趨勢在立場上當然是支持歐巴馬政府發展藻類生質能源的政策,但是在現階段也不能否認藻類生質能源仍有成本過高的問題,要到什麼時候才能看到藻類生質燃料進入我們的生活中仍須端看研究人員何時能在技術上有所突破或是國際油價上漲至藻類燃料可以競爭的時刻。

目前最大的藻類生質燃油公司 Solazyme 很有信心能夠突破技術上的瓶頸。Solazyme 在 2011 年製造了約 8000 公秉藻類燃油供應給美國海軍與空軍作為測試,化學藥品公司 Dow 也與 Solazyme 簽訂合約將在 2013 年購買 76,000 公秉藻油、2015 年購買 760,000 公秉以上藻類燃油作為航空燃油之用。也許在五年左右的時間之內,我們乘坐飛機所使用的燃料就會有部分含有藻類燃油。

在接下來這個系列文章裡,我們希望能為讀者更進一步的介紹什麼是藻類、藻類生質能源相關的研究以及目前產業發展與瓶頸。讓讀者對藻類生質能源有更清晰的概念與瞭解。

-----廣告,請繼續往下閱讀-----
圖片來源:http://0rz.tw/1dVAg

什麼是藻類?

究竟藻類是什麼呢?簡單地說,藻類就是可以行光合作用的微生物。它的種類繁多、分佈廣泛,可以在海洋、河川甚至陸地都可以發現藻類的身影。依照生長環境可將藻類分為海水藻(海藻)或是淡水藻。而依照大小又可分為巨藻以及微藻(單胞藻)。例如生活中常見的紫菜、海帶其實都是巨藻的一種。值得一提的是,雖然藻類體型與陸生植物相比之下顯得相當微小,然而藻類卻供應了世界上超過 80% 的氧氣,要是少了這些藻類,大氣層中的二氧化碳將會提高三倍以上。

為什麼要用藻類生質燃料?

我們常說的藻類生質燃料,主要使用的藻種為單細胞微藻,因為它的構造簡單,不需發展根、莖、葉等器官,因此生長速度較快,具有高產量的優點。並且不同微藻所含有的營養成份各有不同, 可應用於多方面不同產業,例如生質燃料、食品、飼料或是萃取高價值化合物。除此之外,因光合微藻生長時需要吸收二氧化碳以及氮、磷……等化合物,近年來也開始將藻類培養視為環境控制的方式之一,例如以微藻吸收工廠或發電廠排放的二氧化碳,或是像之前提過 Algaewheel 以微藻養殖池取代傳統廢水處理廠中的除氮步驟。這些例子都一再強調了微藻養殖的潛力。大體而言,藻類生質燃料與其他生質燃料相比有以下三點優點:

-----廣告,請繼續往下閱讀-----

1. 產量高:藻類生長速度快,產量高於其他植物
2. 不與食物競爭:不需與民爭糧、與糧爭地
3. 具經濟潛力:富含高經濟價值副產品如 DHA、EPA 等脂肪酸可作為食品添加物或化學藥品

藻類生質燃料的研究

事實上,微藻養殖並非新興產業,早在 1960 年代,歐洲就已經有科學家提出藻類養殖的方式,1980 年代美國能源部(DOE)開始了藻類大型計畫(Aquatic Specie Program),計畫目的著重於篩選高含油量藻種、發展開放式養殖技術以及評估花費。 1988 年在美國科羅拉多州的太陽能研究室就嘗試以直徑 20 公尺的池子培養微藻,一年生產了 4 公噸的藻體並製成 300 多公升的燃油。然而此方法所產生的燃油成本遠高於當時油價(當時原油價格約為每桶 20 美元),1996 年時當局判斷藻類燃油無法與石油競爭因此中止了計畫。然而直到近年能源危機、油價飆漲 ,於是又開始尋找合適的替代能源,藻類培養又重獲大眾重視。

目前藻類培養方法可大致分為兩類:開放式培養與密閉式光反應器 。開放式培養系統通常是利用室外水池或水道作為養殖場地,部份養殖場地在水面上會覆蓋透明帆布以隔離外來微生物污染。開放式培養池的建造費用遠比密閉式光反應器低,然而因為較難控制溫度及二氧化碳濃度等環境因子,藻體產量不及密閉式反應器。除此之外,縱使覆蓋了透明帆布,外來微生物如輪蟲仍有可能侵入養殖池,造成藻體大量減少 。與之相對,密閉式光反應器可以妥善控制環境因子,提供最佳藻類生長環境,然而昂貴的造價與操作費用,使其培養出的藻類成本居高不下,難以應用於生質燃料。而藻類生質燃料至今仍未商業化的另一困難之處為不易收穫。縱使是高濃度藻液,其固體成份僅約 1% ,這意味著仍有 99% 的水分需去除。若利用傳統加熱烘乾或是離心法除水,投入的能源消耗恐怕大於能源產出。因此開發新的養殖或收集技術是推動生質燃料產業化勢在必行之舉。

-----廣告,請繼續往下閱讀-----

在接下來藻類生質能源介紹系列文章裡,我們將分別介紹目前產業裡不同的海藻養殖方法、各種收穫方式以及各種燃油轉化技術,分析當下遭遇的瓶頸與可能的解決方式,期待 PanSci 臥虎藏龍的讀者們能從各自的專業角度切入,提供解決方法。生質能源趨勢也有介紹部分台灣藻類研究的文章,有興趣的讀者歡迎點閱以下連結。

台灣生質能源研究組織介紹 – 前言
水產試驗所東港生技研究中心 – 蘇惠美博士
國立台灣海洋大學食品科學系 潘崇良教授
台灣電力公司的微藻碳捕捉計劃

-----廣告,請繼續往下閱讀-----
文章難易度
生質能源趨勢 BioEnergy Today_96
20 篇文章 ・ 3 位粉絲
三個大學同學在畢業後各自步上不同的旅程,卻對於生質能源有著相同的興趣與期待,因此希望藉由寫作整理所知所學,並與全世界分享與討論。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
每年有一千萬公頃的森林消失!把樹種回去,就可以解決問題了嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/19 ・1997字 ・閱讀時間約 4 分鐘

碳捕捉:把電廠排出來的二氧化碳再抓回去!

一九九〇年代,尚未開發出風能和太陽能,當時對氣候變遷的擔憂日益增加,因此有人建議捕捉和儲存那些從化石燃料發電廠排放出來的二氧化碳,如此就可將其轉變成一種低碳電力。

碳捕捉主要是透過化學反應將煙道氣(flue gas)中的二氧化碳分離出來,然後再將其壓縮液化,泵入地下洞穴,例如含水層或是廢棄的油氣田。

同時要針對傳統的發電機開收排放二氧化碳的費用。這將鼓勵電廠採用碳捕捉技術,不過前提是碳價要夠高,超過捕捉和封存二氧化碳的成本。

然而,即使在龐大的歐盟市場,碳的價格也從未高到足以讓碳捕捉在電力生產中具有競爭力,而且真正在運作的碳捕捉工廠很少。

碳捕捉將煙道氣(flue gas)中的二氧化碳分離出來,然後再加工處理。圖/Envato

即使如此,捕捉二氧化碳排放依舊可望成為一種脫碳方法,在未來某些產能製程中合乎成本效益。一個例子是將天然氣轉化為氫氣,這還能用於加熱和製造燃料電池,或用於生產水泥以及甲醇和氨等重要工業化學品。

-----廣告,請繼續往下閱讀-----

碳捕捉的各種可行性:直接從空氣抓?多種一點樹?

也有人認真思考過直接從空氣中捕捉二氧化碳的可行性,因為目前我們所面對的現實非常危險,即二氧化碳排放量下降的速度恐怕來不及讓上升溫度控制在攝氏 1.5 度內。

種植更多的樹木可能是最簡單也最便宜的方法,但首先必須遏止每年大量的伐林問題。

每年約有一千萬公頃的森林遭到砍伐,用於種植大豆、棕櫚油和其他作物,以及放牧牲畜。這樣的伐林導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。

目前二氧化碳排放量下降的速度沒辦法使上升的溫度控制在 1.5°C 內,再加上樹木被大量的砍伐,導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。圖/Envato

此外,封存大量二氧化碳所需的樹林面積也相當大──約要美國國土面積的四分之一,需要超過六年,甚至幾十年的時間才能讓樹木長到成熟,每年只能吸收平均全球燃燒化石燃料的 10% 排放量。

而在成長期過後,還需要更換樹木,因為在建築中也會使用到木材。有人建議,可以燃燒林業的廢棄物來產生能量(熱或電),並捕捉和封存排放出來的二氧化碳。

-----廣告,請繼續往下閱讀-----

這種生質能源的碳捕捉尚有爭議,必須要確保改變土地利用的這項變動最後的結果是產生淨負排放,而不是增加碳的排放量。此外,這種方法尚在開發中,可能會與其他對可耕地和淡水的需求產生競爭關係。

多種樹,真的可以救地球嗎?事情可沒有我們想的那麼簡單!圖/Pixabay

不過,可以使用化學吸收器直接從空氣中捕捉二氧化碳,這種方法比生質能源更緻密、更可靠, 只是目前的價格較為昂貴。

奧利金能源公司(Origen Power)正在開發將碳捕捉與具有商業價值的石灰生產相結合,這樣的製程可望降低成本。

吸碳新創公司「Carbon Engineering」也在開發另一種方法,是使用與二氧化碳接觸會形成碳酸鈣的氫氧化鉀。整個過程以石灰來合成氫氧化鉀,形成碳酸鈣,然後將其加熱,釋放出二氧化碳,進行壓縮和封存──這時便會再度合成石灰。他們預估,以這種方式捕捉二氧化碳的成本可望降低至每噸 100 美元。

-----廣告,請繼續往下閱讀-----

碳捕捉的展望與未來

為了增加產值,可以將捕捉來的二氧化碳與氫結合(比方說以再生電力來電解水,製造出氫氣),這可用來合成低碳燃料,取代汽油、柴油或航空燃料,這樣一來,其總排放量會遠低於某些生質燃料。

若是要捕捉和封存燃煤發電廠排放的二氧化碳,電力成本會增加約 60%,而使用再生能源來發電,成本則低得多。

然而,隨著空氣碳捕捉的研發和大量投資,再加上在某些工業製程中捕捉二氧化碳,以及重新造林,預估到二〇五〇年時,碳捕捉可能會吸收掉全球年排放量的 10%。

到二〇五〇年,再生能源和核能的總發電量可能接近當前全球需求量的 90%,透過碳捕捉,全世界可能會達到二氧化碳淨零排放。但要處理大量再生電力,電網在輸送和分配上需要適應風場和太陽光電場輸出量的種種變數,因此發展儲能設備非常重要。

-----廣告,請繼續往下閱讀-----

——本文摘自《牛津通識課|再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

1

8
0

文字

分享

1
8
0
發電量增加 25 倍卻還是不夠用!再生能源是人類未來的救星嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/18 ・1730字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

我們的能源從哪裡來、往哪裡去?

全球每年對能源的需求量相當巨大,若用「瓩時」──即一度電這樣的度量單位──來表示會出現天文數字,因此改用「太瓦時」(TWh)來表示,太瓦時等於 10 億瓩時。

在一八〇〇年,全球約有 10 億人口,當時對能源的需求約為 6000 太瓦時;而且幾乎全部來自傳統的生質能源。到了二〇一七年,全球人口達到 76 億,發電量增加了 25 倍(156000 太瓦時)。

在 2017 年的全球能源使用比例中,煤炭、石油和天然氣等化石燃料占了大約 80 %左右。圖/ Pixabay

下圖顯示在二〇一七年全球主要能源消耗總量的百分比,其中近 8 成為化石燃料。其他再生能源包括風能、太陽能和地熱能,其中成長最快的是風場和太陽光電場。生質能源則主要來自傳統生質能源。

2017 年的能源消耗總量,顯示出不同能源的百分占比。圖/BP Statistical Review of World Energy, 2018; World Energy Council, Bioenergy, 2016

大約有 1/3 的全球能源消耗在將化石燃料轉化為電力精煉燃料上。

-----廣告,請繼續往下閱讀-----

剩下的稱為最終能源需求(final energy demand),是指用戶消耗掉的能源:每年約 10 萬太瓦時。

大約有 10% 是來自開發中國家傳統生質能的熱,22% 來自電力,38% 用於供熱(主要來自化石燃料) 30% 在交通運輸。熱能和電能主要都是用於工業和建築。汽油和柴油幾乎提供了所有用於運輸的燃料。

怎麼做比較不浪費?能量轉換效率大比拚!

我們看到供熱與供電一樣重要。兩者都可以用瓩時為單位,也就是一度電來測量,雖然電可以完全轉化為熱量,例如電烤箱,但只有一小部分以熱能形式存在的能量可以轉化為電能,其他的必然會散失到周圍環境裡

在火力發電廠中,存在於化石燃料中的化學能會在燃燒後轉化為熱能。這會將水加熱,產生蒸汽,蒸汽膨脹推動渦輪的葉片,轉動發電機。只有一部分熱量被轉化成電力;其餘的熱量在蒸汽冷凝,完成循環時,就轉移到環境中,成了殘熱。

這份熱電轉化的比例可透過提升高壓蒸汽的溫度來增加,但受限於高溫下鍋爐管線的耐受度。

-----廣告,請繼續往下閱讀-----

在一座現代化的火力發電廠中,一般熱能轉化為電能的效率約為 40%。若是在較高溫的複循環燃氣發電機組(combined cycle gas turbine,CCGT)裝置中,這個比例可提高到 60%。

同樣地,在內燃機中也只有一小部分的熱量可以轉化為車子的運動能量(動能);汽油車的一般平均效率為 25%,柴油車則是 30%,而柴油卡車和公車的效率約為 40%。

另一方面,電動馬達的效率約為 90%,因此電氣化運輸將顯著減少能源消耗。這是提高效率和再生能源之間協同作用的一個範例,這將有助於提供世界所需的能源。

火力發電沒辦法 100% 轉換熱能變成電能,約有 60% 的損失。圖/envato

再生能源的過去跟未來

在十九世紀末,水力發電的再生資源幫助啟動了電網的發展,在二〇一八年時約占全世界發電量的 16%。而在再生能源──風能、太陽能、地熱能和生質能源──的投資上,相對要晚得多,是在二十世紀的最後幾十年才開始。

-----廣告,請繼續往下閱讀-----

起初的成長緩慢,因為這些再生能源沒有成本競爭力還需要補貼。但隨著產量增加,成本下降,它們的貢獻開始增加。這些其他再生能源發電的占比已從二〇一〇年的 3.5% 上升到二〇一八年的 9.7%,包括水力發電在內,再生能源的總貢獻量為 26%。

不過,就全球能源的占比,而不是僅只是考慮用戶消耗的電力來看,再生能源僅占約 18%,而傳統生質能則提供約 10% 的能量。隨著太陽能和風能的成本在許多國家變得比化石燃料更便宜,它們在總發電量中的占比有望在未來幾十年顯著增加。

這世界花了很長的時間才意識到這一事實,從現在開始,再生能源勢必將成為主要的能源來源。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
日出出版
13 篇文章 ・ 7 位粉絲