網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

全宇宙速度最快波霎星現身了?

臺北天文館_96
・2012/07/15 ・1519字 ・閱讀時間約 3 分鐘 ・SR值 532 ・七年級

有了錢卓太空望遠鏡、XMM-牛頓太空觀測站和地面上的澳洲Parkes電波天文台的三管齊下,全宇宙移動速度最快的波霎可能已經現身!

「速度最快波霎」的記錄可能已經刷新,證據就在這張合成影像中,分別是錢卓太空望遠鏡的X射線(綠色),XMM-牛頓X射線觀測衛星(紫色)和已疊加了2MASS二微米巡天觀測及DSS數位巡天計畫在一起的紅外線/可見光波段的(白色)。

XMM-牛頓觀測衛星所見的大區域瀰散狀X射線,是一顆大質量恆星在發生超新星爆發時,現場所留下的大片殘骸所產生的,也就是正式名稱為SNR MSH 11-61A的超新星遺跡。超新星爆發產生衝擊波,加熱週圍附近氣體,溫度高達幾百萬K,也使得超新星殘骸在X射線波段發出明亮的光。

右上角標示”Chandra Close-up”的局部放大圖框中,看到的是一個位置在超新星殘骸範圍外,形狀像彗星的X射線源,這個X射線源由一個點狀天體拖著一條長度達3光年的尾巴共組而成。遺骸區附近的明亮恆星,包括位置正好在SNR MSH11-16A殘骸區裡的恆星,應該都是前景星,與超新星遺跡本身無關。

由於圖中這個綠色點狀X射線源是由國際γ射線天文物理實驗室(INTEGRAL, International Gamma-Ray Astrophysics Laboratory)發現的,所以命名也是以IGR起頭,稱為IGR J11014-6103 (或短名: IGR J11014)。它可能是一顆快速自旋、密度超高的恆星 (也是中子星的一種,另一別稱則叫「波霎」) ,它在爆發時被彈出,這麼一來,它便以超新星遺跡的中心為起跑點,開始用高達幾百萬公里的時速向外狂奔。

關於X射線輻射尾端的形成機制,目前有一個大家比較能接受的解釋是:波霎所生的高能粒子風,波霎星風,是高能粒子因波霎的高速所產生的弓形震波的緣故而掃向後方。(有類似的另一個例子: PSR B1957+20)

這個被拉長了的X射線源是具有方向性的,它指向了MSH 11-61A,同時那也應該是原來波霎形成的位置所在,因為這個特徵,所以錢卓望遠鏡所觀測到的這個影像應是由波霎星風和弓形震波共同組成的這個觀點獲得了支持。錢卓望遠鏡觀測到的影像還有另一個有趣的特徵,並且XMM-牛頓觀測衛星也同樣觀測到了一樣的現象:在X射線波段裡,有個微弱的X射線尾朝右上方延伸。成因不明,不過並非首次看到波霎尾巴和波霎本身運動方向不一的現象。

從較早的觀測結果估計,圖像中的這個MSH 11-61A應該有15,000歲,它的位置距離地球3萬光年遠。有了這些數值,再合併考量IGR J11014是來自MSH 11-61A的中央,其中間所經過的距離,天文學者估計而得出:IGR J11014的移動速度,時速大約等於870公里到1,040公里左右。

另一顆同樣伴隨在超新星殘骸區域附近出現的中子星,速度上又能和IGR J11014一較高下者,僅剩下G350.1-0.3而已,估計時速大約是480公里到970公里。

這兩者所擁有的速度雖高,不過都只是天文學者暫時性的預估所得,必須進一步查證才行,如果獲得確認的話,那麼,解釋中子星為什麼會以這麼高的速度移動,將會對既有的超新星爆發理論帶來新挑戰。

在做成結論並且確認「IGR J11014是所有波霎當中腳程最快的『飛毛腿』第一名」之前,還有一項特別聲明:請注意CSIRO的Parkes地面電波望遠鏡說,它尚未獲得和該中子星有週期性轉動的相關偵測結果。但是,以一個距離我們有3萬光年那麼遠的波霎而言,「偵測不到」其週期性轉動,卻並不叫人意外。

還好有其他證據確實能支持所觀測到的是一顆波霎沒錯。首先第一號證據是,相對於X射線源,光學或紅外線波段取得的影像並沒有這個物體-因為波霎這類天體在這些波段裡訊號通常相當微弱。同時,兩相比較XMM-牛頓觀測衛星於2003年的觀測以及錢卓太空望遠鏡在2011年的觀測,兩者在亮度上都沒有出現明顯的變化,這正符合一顆波霎應有的行為模式。最後還有一項證據是,分析X射線源光譜在能量中所留的訊跡,那也和天文學家認定為波霎的一些特徵相符合。

上述研究成果獲刊於2012年5月10的Astrophysical Journal Letters。

資料來源:中研院天文網[201207.06]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
477 篇文章 ・ 13 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


0

11
5

文字

分享

0
11
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》