0

5
1

文字

分享

0
5
1

當前最快最準的AI偵測技術!辨識車輛只要一眼瞬間——YOLOv4

研之有物│中央研究院_96
・2020/11/10 ・4055字 ・閱讀時間約 8 分鐘 ・SR值 554 ・八年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪編輯|郭雅欣、黃曉君;美術編輯|林洵安

「只要讓我看一眼,我就知道這是什麼!(You Only Look Once,YOLO)」YOLO,是目前當紅的 AI 物件偵測演算法。中研院資訊科學研究所所長廖弘源及博士後研究員王建堯,與俄羅斯學者博科夫斯基(Alexey Bochkovskiy)共同研發最新的 YOLO 第四版(簡稱為 YOLO v4),一舉成為當前全世界最快、最高精準度的物件偵測系統,引爆全球 AI 技術社群,已然改寫物件偵測演算法的發展。究竟,他們在演算法裡動了哪些手腳?又是什麼樣的契機,開啟了這項研究?

產業出難題,學界來解題

故事,是從一項產學合作開始。前幾年,科技部提出了「產學共創」機制:產業出題、學界解題,中研院合作對象義隆電子,出了一個考題給資訊所:如何增進十字路口的交通分析?也就是即時偵測車流量、車速等等。當時義隆電子已經在十字路口架設了監視器,包括全景攝影機及單一方向的槍型攝影機,接下來最需要的,就是辨識車輛的物件偵測技術。

「但我們需要的不只是辨識車輛而已。」王建堯說。在馬路上運行中的車速度很快,物件辨識必須非常即時,在短時間內就能辨識出車輛,並能持續追蹤,計算車速。換句話說,這個技術對物件的偵測必須「快、狠、準」。此外,因為影像資料不斷產生,如果把資料都上傳雲端運算,不但比較耗時,也會給雲端電腦帶來太大的負擔,因此這個偵測技術還得做到一件事──計算量必須夠小,小到可裝在十字路口監視器上的小型計算器, 即可完成物件偵測的任務。

要做到交通路況的即時分析,必須有一種速度快、仍能精準辨識,但又可應用在生活中小型計算器的物件偵測技術。

YOLOv4 演算法達到這個不可能的任務!它是目前世界最快、最精準的物件偵測演算法,卻又能小到放在十字路口的監視器內,已實際應用於如「智慧城市交通車流解決方案計畫」,即時偵測車輛、停等車列、車速等等 。

物件辨識的阿基里斯腱:梯度消失問題

怎麼辦到的?首先,王建堯著手研究著名物件偵測系統 YOLOv3 ,「我們想找出在建立一個物件偵測系統時,哪一個步驟是最關鍵的?如果改善了,效率和精確度會提升最多?」廖弘源強調:「雖然是工程問題,但我們要把科學思考帶進來。」

先來認識物件偵測技術!它是個卷積神經網路(Convolutional Neural Network,簡稱 CNN),具有許多網路層,每一層負責抽取某些圖像特徵。一個輸入的影像通過層層層層層層……分析,最後找出最可能的答案。理論上,層數越多、判斷結果應該越精確。

先教電腦定義每個影像的值,再透過神經網路的層層非線性函數運算,判斷這個影像最可能為哪個數字,信心水準比值最高者為答案。圖│研之有物(資料來源│李宏毅)

訓練這個卷積神經網路的方法是:先倒入大量已標記正確答案的學習材料(如標記好各種車輛的圖片),讓機器學習如何判斷。每次機器判斷結果與正確答案不符,就將這個資訊反饋到前面的網路層,調整每一層的參數,以期下次達到更準確的判斷。

那麼,哪一步改善後可以大幅提升表現呢?王建堯找到的關鍵是:學習的反饋過程。當卷積神經網路的網路層數愈多,在訓練階段,因為反饋計算方式,每回傳一層就會損失一些資訊,越前面的網路層學習到的東西越少,稱為「梯度消失問題」(vanishing gradient problem)。

為了解決梯度消失問題,前人曾經提出 ResNet、DenseNet 等等卷積神經網路,簡單來說,即是將後面資料備份後往前「跳級」傳遞!以 ResNet 為例,我們可以想像成「含水傳話」,從最後一個人往前傳,愈前面的人資訊愈缺失。但如果最後一層開始,每一層都備份錄音,再把錄音跳過一層直接往前傳,那麼前面的所有層都可接收到資訊,前面網路層就不會學不到東西。

上圖為原始的卷積神經網路(CNN),假設只有三層,在資料回傳的過程中會逐層遞減,稱為梯度消失問題。下圖為改良版 ResNet ,從最後一層開始,每一層都備份,再把備份越過一層「跳級」傳遞,前面網路層就能接收到後面的資訊。圖│研之有物(資料來源│王建堯)

然而,ResNet 具有太多重複的拷貝,不但浪費計算量,而且不同層的參數用來學習重複、但多餘的資訊,換句話說,每一層能學到的東西都差不多。「是否有一種更好的方式,在不改參數量,讓機器運算變快,省下來的資源(參數)還能讓機器多學一點,提高精確度?」廖弘源說。

不只最快,還要最精準!

2019 年年初,廖弘源與王建堯團隊首先研發出局部殘差網路 PRNet(partial residual networks, PRNet),將資訊「分流」,減少無謂的計算量,使運算速度增加兩倍。「一開始做出 PRNet,我還是覺得效果不夠好。雖然減少計算量,大幅加快了計算的速度,但是正確率和原本相比並沒有什麼提升。」廖弘源自信的說:「我覺得這樣沒什麼意思,因為我們的目標,是做出全世界最好的物件偵測技術!」

2019 年 11 月,他們在 PRNet 的基礎上,緊接著研發出跨階段局部網路 CSPNet(cross stage partial network, CSPNet),利用分割—分流—合併的路徑,成功達到了大幅減少計算量、卻能增加學習多元性的目標。

從 PRNet 與 CSPNet,我們一步步把物件偵測的計算量減低,但是學習卻能更多元,因此也得到更好的精確度。

以上為 CSPNet 簡化結構的一部分,三色箭頭代表機器學習過程中,後面的資料如何反饋往前傳。這個設計的重點在於資訊的分流與多了過渡層(Transtion),讓反饋的學習資訊在分流後產生差異,提高每一網路層參數的利用率,目標是讓機器學到更多樣的東西,提高判斷的精確度。另一方面,因為資料分流的關係,有部分直接往後傳,不經過分析計算,使整個計算量變少,運算速度也因此加快。圖│研之有物(資料來源│王建堯)

「我們發表 CSPNet 之後,吸引 YOLO 技術的維護者博科夫斯基(Alexey Bochkovskiy)的注意。」廖弘源說。他們很快與博科夫斯基(Alexey Bochkovskiy)展開合作,將 CSPNet 用於開發新一代的 YOLO,並於今年 4 月發表了 YOLOv4,成為當前全世界最快、最準的物件偵測技術,引爆全球的 AI 社群。廖弘源笑說:「我們 4 月發表的論文,短短不到三個月,閱讀次數就超過了 1400 次,比我以往發表的任何論文都還多。」其中的關鍵技術正是 CSPNet。

此外,由於 YOLOv4 的技術是開放的,各式各樣的應用也如雨後春筍般快速出現。舉例來說,YOLOv4 可即時偵測人們的社交距離,或是快速判斷路上的行人有沒有戴口罩。

YOLOv4 甚至能辨識並捕捉滑雪運動中的人,廖弘源進一步解釋:「滑雪的人姿勢以及運動軌跡都不斷變換,甚至可能拋物線飛起,偵測難度相當高,但 YOLOv4 都能追蹤得非常精準。」

帶學生的第一要求:把科學帶進來!

中研院資訊所所長廖弘源長期研究多媒體視訊處理,從雞尾酒浮水印到人臉資料庫、數位化影片修補等,再到這次的 YOLOv4 物件偵測技術,研究成果卓越。而每一項成果的後面,都是廖弘源帶領資訊所前後屆學生一起努力的成果。

想在廖弘源的實驗室工作,可不是件輕鬆的事。他說:「做研究,不該只想著工程問題,應該本著科學家的精神,從中找出最具科學價值的關鍵下手。」許多學生一到廖弘源的實驗室,必須將過去狹隘、僵化的工程解題模式打掉重練,重新以科學看待問題。例如:本次 YOLOv4 的成功關鍵,即在於一開始問了個好問題,找到最值得改善的環節。

不論面對的是何種問題,我的第一個要求,就是把科學帶進來。

儘管治學甚嚴,個性海派的廖弘源和學生也有著亦師亦友的關係。他喜歡和學生一起找出好的研究議題後,一起埋首投入研究工作的熱血感,也喜歡在研究遭遇瓶頸時,與學生一起「大吃一頓解憂愁」。如今,他的學生遍布國際級知名公司與研究單位,持續發揮「廖式思考」的深刻影響力,開發更多如 YOLOv4 般頂尖的科研成果。

雖然團隊屢屢創造具商機的研究成果,但廖弘源對於獎項或是申請專利等,卻是看得很淡。「我的目的本來就不是賺錢,」廖弘源說:「我只希望我們對世界的好奇與探索,能真正轉化為對人類的貢獻。」

中研院記者會合影。由左到右,義隆電子葉儀皓董事長、中研院周美吟副院長、中研院資訊所廖弘源特聘研究員、中研院資訊所王建堯博士後研究員、科技部前瞻司楊琇雅司長、台大人工智慧研究中心陳信希主任、杜維洲執行長。圖│研之有物(中研院秘書處)

延伸閱讀

本文轉載自中央研究院研之有物,原文為《一眼揪出你有沒有超速!世界第一物件偵測技術: YOLOv4》,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
255 篇文章 ・ 2335 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

2

2
1

文字

分享

2
2
1
2022 年《Science》年度十大科學突破(上):持續進化的 AI 與韋伯太空望遠鏡
PanSci_96
・2022/12/30 ・3733字 ・閱讀時間約 7 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

回顧 2022 年,有沒有讓你印象特別深刻的科學新聞呢?約莫兩星期前,《Science》雜誌公布了今年的十大科學突破,從農業到藝術、從細菌到宇宙、從百萬年前的生態到人類的未來,每一項突破都和我們的日常生活息息相關。

好啦,廢話不多說,現在就來揭曉答案吧!

十大突破之首——遙望宇宙的韋伯太空望遠鏡

今年,韋伯太空望遠鏡(JWST)帶來的震撼,相信你我都印象深刻。

韋伯發布的第一批照片拍到了 SMACS 0723 星系團。圖/Science

早在 1990 年,哈伯太空望遠鏡發射升空後,科學家就開始規劃下一步。他們不只想看見更遙遠的宇宙,也想透過不同的波長,分析地外生命存在的可能性。

哈伯望遠鏡的觀測波段以可見光為主。確實,紫外線和可見光波長最有利於觀測誕生不久的新星,但隨著數十億年過去,這些新星發出的光,穿過不斷膨脹的宇宙,來到地球,被拉伸到更長的紅外線波長後,哈伯就沒輒了⋯⋯

韋伯望遠鏡可以清楚看見狼蛛星雲的塵埃、氣體雲和碳氫化合物。圖/Science

那麼,要怎麼看見更遙遠的宇宙呢?去年底,歷時 20 年建造、造價 100 億美元的「韋伯太空望遠鏡」順利升空,開啟 150 萬公里的長征。韋伯搭載的科學儀器可以觀測紅外線波段,包括來自宇宙第一批恆星和星系發出的光。

韋伯利用四種不同的紅外線波段觀測系外行星 HIP 65426 b。圖/Science

今年 6 月底,韋伯開始收集數據,三星期後就傳回了第一批深空照片,讓科學家看見了更遙遠、更古老的新星系,徹底改寫我們對宇宙的認識。對於天文學界來說,這是一個充滿奇蹟的時代,韋伯望遠鏡也因此榮登 2022 年最重要的科學突破。

2022 年十大科學突破之首:韋伯太空望遠鏡。影/Science

研發多年生水稻 PR23,減輕農民耕作負擔

盤點世界上最主要的糧食作物,水稻肯定有一席之地!現今,大部分水稻都是一年二至三穫,每年收穫後都得重新種植,對農民來說是非常耗時、費力的工作。

今年 11 月,中國雲南大學農學院的研究團隊在《Nature Sustainability》發表他們十餘年來嘔心瀝血的研究成果——多年生水稻「PR23」。這是長雄野生稻和 RD23 栽培稻的雜交種,不但可以達到和傳統水稻相仿的產量,還可以省下農民的大把時間、精力與成本。

PR23 第一年的稻作成本與傳統水稻差不多,但從第二年開始,農民就可以跳過育秧、犁田、移栽幼苗的步驟,降低約 50% 的人力成本,到了第五年才需要重新種植。

在中國,PR23 的種植面積超過了 15,000 公頃,平均產量則是每公頃 6.8 噸,略高於傳統水稻。根據非洲和東南亞的試驗數據,PR23 還可以改善土壤結構、增加有機質含量、減少梯田和高地的水土流失。

與此同時,科學家也正在觀察兩個潛在問題:一、雜草和病原體是否會積累在田地中,導致 PR23 需要更多除草劑,二、是否會排放更多的一氧化二氮,加劇溫室效應。但目前不可否認的是,多年生水稻有助於降低成本、提高收益,確實是一項重要的突破。

有了多年生水稻,農民每年都能省下好幾週的工作量。圖/Science

誰說 AI 沒創意?AI 的創造力可是超乎想像呢!

說到 AI,有沒有讓你想起去年的十大科學突破呢?沒錯,去年的十大突破之首就是預測蛋白質 3D 結構的 DeepMind 團隊,而在今年,他們著手設計全新的蛋白質,用來開發疫苗、建築材料和奈米機器。

與此同時,DeepMind 發布了 AlphaTensor,用來找出更有效率的矩陣乘法演算法。高中就學過的矩陣是代數中最簡單的運算之一,可以用來壓縮網路資料、辨識語音指令、模擬與預測天氣、生成電腦遊戲圖形等。

另外,DeepMind 還發布了可以自主編寫程式、解決問題的 AlphaCode。在程式解題競賽網站 Codeforces 定期舉辦的比賽中,AlphaCode 甚至打敗了過半的參賽者,取得排名前 54% 的成績,跌破創辦人的眼鏡。

除了科學、數學、程式設計之外,AI 在藝術領域更是大放異彩。

繼 OpenAI 去年發布繪圖軟體 DALL-E 後,今年 4 月發布了進化版的 DALL-E 2,只要輸入幾個字詞,AI 模型就能自動生成圖像。在 9 月,有一位藝術家利用類似的 AI 繪圖工具 Midjourney 奪下美國科羅拉多州博覽會首獎。

此舉在藝術界掀起一股旋風,卻也引來了哲學辯論和道德抨擊,但毫無疑問的是,人類可以借助逐年進化的 AI 拓展創造力,開發出更多、更好的工具。

使用 Midjourney 創作的科羅拉多州博覽會首獎作品。圖/Science

超級華麗的大~大~大細菌!

在你的印象中,細菌是不是都很小、不用顯微鏡就看不見呢?今年 2 月,科學家在法屬西印度群島發現一種肉眼可見的巨無霸細菌——華麗硫珠菌(Thiomargarita magnifica),震驚了生物學界。

一般來說,細菌沒有細胞核和膜狀胞器,遺傳物質都在細胞中自由漂浮,但華麗硫珠菌真的很華麗,不只可以長到 2 公分,比多數細菌大上 5000 倍,而且還有隔間可以容納 1200 萬個基因組——這大概是多數細菌基因總量的 3 倍。

身為一種不應該有膜的原核生物,華麗硫珠菌的結構或許即將改寫原核生物和真核生物的定義,甚至有機會成為一塊拼圖,補足細胞進化過程中缺失的環節。

華麗硫珠菌挑戰了「細菌」的傳統定義。圖/Science

開發新疫苗,呼吸道合胞病毒治療現曙光

在這 COVID-19 肆虐之年,美國感染呼吸道合胞病毒(RSV)的病例數也急遽上升。呼吸道合胞病毒傳染性極強,通常只會引起類似感冒的輕微症狀,但在嬰幼兒身上,這種病毒會使肺部發炎,而在老年人身上,會使既有的心肺疾病惡化。

早在 50 多年前,就有科學家試圖開發呼吸道合胞病毒的疫苗,但在臨床試驗導致 80% 的接種者住院、2 名兒童死亡後,開發就此中斷。後來,科學家發現敗筆在於這種殺死病毒後製成的「滅活疫苗」所引發的抗體較弱,不只殺不掉活生生的病毒,還能反過來幫助病毒破壞氣管。

如今,莫爾豪斯醫學院(Morehouse School of Medicine)開發了能夠引發強效抗體的新疫苗。在輝瑞(Pfizer)和葛蘭素史克藥廠(GSK)進行臨床試驗後,證實這兩種新疫苗可以保護嬰兒和老年人,不會引起嚴重副作用,而在孕婦注射後,也能將抗體傳給胎兒。

雖然過往的失敗讓開發團隊心存疑慮,但目前沒有任何數據顯示疫苗不安全,其中幾種候選疫苗也可能將在明年獲得監管機構批准上市。

RSV 疫苗證實能有效保護易受感染的嬰幼兒和老年人。圖/Science

好啦~這篇到這裡,先介紹前五項突破就好!因為《Science》今年提供的內容實在是太精彩了,為了避免讀者一次閱讀太多字很累,只好拆成上下兩篇⋯⋯看完這篇後,如果你好奇另外五項突破是何方神聖,就來看第二篇吧!

接續下篇:2022 年《Science》年度十大科學突破(下):EBV 病毒與發燒的地球

所有討論 2
PanSci_96
1013 篇文章 ・ 1233 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
數據塑造生活與社會,讓人既放心但又不安?——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/28 ・2760字 ・閱讀時間約 5 分鐘

數位世界已經改變了我們日常生活的體驗,一個人從早到晚都會接受到大量數據,受益於大量數據,也貢獻大量數據。這些數據龐大的程度,和消化資訊的方式已經太過繁多,人類心智根本無法處理。

與數位科技建立夥伴關係

所以人會本能地或潛意識地倚賴軟體來處理、組織、篩選出必要或有用的資訊,也就是根據用戶過去的偏好或目前的流行,來挑選要瀏覽的新項目、要看的電影、要播放的音樂。自動策劃的體驗很輕鬆容易,又能讓人滿足,人們只會在沒有自動化服務,例如閱讀別人臉書塗鴉牆上的貼文,或是用別人的網飛帳號看電影時,才會注意到這服務的存在。

有人工智慧協助的網路平臺加速整合,並加深了個人與數位科技間的連結。人工智慧經過設計和訓練,能直覺地解決人類的問題、掌握人類的目標,原本只有人類心智才能管理的各種選擇,現在能由網路平臺來引導、詮釋和記錄(儘管效率比較差)。

日常生活中很少察覺到對自動策劃的依賴。圖/Pexels

網路平臺收集資訊和體驗來完成這些任務,任何一個人的大腦在壽命期限內都不可能容納如此大量的資訊和體驗,所以網路平臺能產出看起來非常恰當的答案和建議。例如,採購員不管再怎麼投入工作,在挑選冬季長靴的時候,也不可能從全國成千上萬的類似商品、近期天氣預測、季節因素、回顧過去的搜尋記錄、調查物流模式之後,才決定最佳的採購項目,但人工智慧可以完整評估上述所有因素。

因此,由人工智慧驅動的網路平臺經常和我們每個人互動,但我們在歷史上從未和其他產品、服務或機器這樣互動過。當我們個人在和人工智慧互動的時候,人工智慧會適應個人用戶的偏好(網際網路瀏覽記錄、搜尋記錄、旅遊史、收入水準、社交連結),開始形成一種隱形的夥伴關係。

個人用戶逐漸依賴這樣的平臺來完成一串功能,但這些功能過去可能由郵政、百貨公司,或是接待禮賓、懺悔自白的人和朋友,或是企業、政府或其他人類一起來完成。

網路平臺和用戶之間是既親密又遠距的聯繫。圖/Envato Elements

個人、網路平臺和平臺用戶之間的關係,是一種親密關係與遠距聯繫的新穎組合。人工智慧網路平臺審查大量的用戶數據,其中大部分是個人數據(如位置、聯絡資訊、朋友圈、同事圈、金融與健康資訊);網路會把人工智慧當成嚮導,或讓人工智慧來安排個人化體驗。

人工智慧如此精準、正確,是因為人工智慧有能力可以根據數億段類似的關係,以及上兆次空間(用戶群的地理範圍)與時間(集合了過去的使用)的互動來回顧和反應。網路平臺用戶與人工智慧形成了緊密的互動,並互相學習。

網路平臺的人工智慧使用邏輯,在很多方面對人類來說都難以理解。例如,運用人工智慧的網路平臺在評估圖片、貼文或搜尋時,人類可能無法明確地理解人工智慧會在特定情境下如何運作。谷歌的工程師知道他們的搜尋功能若有人工智慧,就會有清楚的搜尋結果;若沒有人工智慧,搜尋結果就不會那麼清楚,但工程師沒辦法解釋為什麼某些結果的排序比較高。

要評鑑人工智慧的優劣,看的是結果實用不實用,不是看過程。這代表我們的輕重緩急已經和早期不一樣了,以前每個機械的步驟或思考的過程都會由人類來體驗(想法、對話、管理流程),或讓人類可以暫停、檢查、重複。

人工智慧陪伴現代人的生活

例如,在許多工業化地區,旅行的過程已經不需要「找方向」了。以前這過程需要人力,要先打電話給我們要拜訪的對象,查看紙本地圖,然後常常在加油站或便利商店停下來,確認我們的方向對不對。現在,透過手機應用程式,旅行的過程可以更有效率。

透過導航,為旅途帶來不少便利。圖/Pexels

這些應用程式不但可以根據他們「所知」的交通記錄來評估可能的路線與每條路線所花費的時間,還可以考量到當天的交通事故、可能造成延誤的特殊狀況(駕駛過程中的延誤)和其他跡象(其他用戶的搜尋),來避免和別人走同一條路。

從看地圖到線上導航,這轉變如此方便,很少人會停下來想想這種變化有多大的革命性意義,又會帶來什麼後果。個人用戶、社會與網路平臺和營運商建立了新關係,並信任網路平臺與演算法可以產生準確的結果,獲得了便利,成為數據集的一部分,而這數據集又在持續進化(至少會在大家使用應用程式的時候追蹤個人的位置)。

在某種意義上,使用這種服務的人並不是獨自駕駛,而是系統的一部分。在系統內,人類和機器智慧一起協作,引導一群人透過各自的路線聚集在一起。

持續陪伴型的人工智慧會愈來愈普及,醫療保健、物流、零售、金融、通訊、媒體、運輸和娛樂等產業持續發展,我們的日常生活體驗透過網路平臺一直在變化。

網路平台協助我們完成各種事項。圖/Pexels

當用戶找人工智慧網路平臺來協助他們完成任務的時候,因為網路平臺可以收集、提煉資訊,所以用戶得到了益處,上個世代完全沒有這種經驗。這種平臺追求新穎模式的規模、力量、功能,讓個人用戶獲得前所未有的便利和能力;同時,這些用戶進入一種前所未有的人機對話中。

運用人工智慧的網路平臺有能力可以用我們無法清楚理解,甚至無法明確定義或表示的方式來形塑人類的活動,這裡有一個很重要的問題:這種人工智慧的目標功能是什麼?由誰設計?在哪些監管參數範圍裡?

類似問題的答案會繼續塑造未來的生活與未來的社會:誰在操作?誰在定義這些流程的限制?這些人對於社會規範和制度會有什麼影響?有人可以存取人工智慧的感知嗎?有的話,這人是誰?

如果沒有人類可以完全理解或查看數據,或檢視每個步驟,也就是說假設人類的角色只負責設計、監控和設定人工智慧的參數,那麼對人工智慧的限制應該要讓我們放心?還是讓我們不安?還是既放心又不安?

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

聯經出版_96
27 篇文章 ・ 16 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。

0

1
0

文字

分享

0
1
0
AI 的 3 種學習形式:不同的目標功能,不同的訓練方式——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/27 ・2368字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

搭配不同的任務,人工智慧的應用方式也不一樣,所以開發人員用來創造人工智慧的科技也不一樣。這是部署機器學習時最基礎的挑戰:不同的目標和功能需要不同的訓練技巧。

機器學習最基礎的挑戰:不同目標和功能需配合不同訓練技巧。圖/Pexels

不過,結合不同的機器學習法,尤其是應用神經網路,就出現不同的可能性,例如發現癌症的人工智慧。

機器的 3 種學習形式

在我們撰寫本章的時候,機器學習的三種形式:受監督式學習、不受監督式學習和增強式學習,都值得注意。

受監督式學習催生了發現海利黴素的人工智慧。總結來說,麻省理工學院的研究人員想要找出有潛力的新抗生素,在資料庫裡放入二千種分子來訓練模型,輸入項目是分子結構,輸出項目是抑菌效果;研究人員把分子結構展示給人工智慧看,每一種結構都標示抗菌力,然後讓人工智慧去評估新化合物的抗菌效果。

這種技巧稱為受監督式學習,因為人工智慧開發人員利用包含了輸入範例(即分子結構)的資料集,在這裡面,每一筆數據都單獨標示研究人員想要的輸出項目或結果(即抗菌力)。

開發人員已經把受監督式學習的技巧應用於許多處,例如創造人工智慧來辨識影像。為了這項任務,人工智慧先拿已經標示好的圖像來訓練,學著把圖像和標籤,例如把貓的照片和「貓」的標籤,聯想在一起,人工智慧把圖片和標籤的關係編碼之後,就可以正確地辨識新圖片。

貓貓!圖/Pexels

因此,當開發人員有一個資料集,其中每個輸入項目都有期望的輸出項目,受監督式學習就能有效地創造出模型,根據新的輸入項目來預測輸出項目。

不過,當開發人員只有大量資料,沒有建立關係的時候,他們可以透過不受監督式學習來找出可能有用的見解。因為網際網路與資料數位化,比過去更容易取得資料,現在企業、政府和研究人員都被淹沒在資料中。

行銷人員擁有更多顧客資訊、生物學家擁有更多資料、銀行家有更多金融交易記錄。當行銷人員想要找出客戶群,或詐騙分析師想要在大量交易中找到不一致的資訊,不受監督式學習就可以讓人工智慧在不確定結果的資訊中找出異常模式。

這時,訓練資料只有輸入項目,然後工程師會要求學習演算法根據相似性來設定權重,將資料分類。舉例來說,像網飛(Netflix)這樣的影音串流服務,就是利用演算法來找出哪些觀眾群有類似的觀影習慣,才好向他們推薦更多節目;但要優化、微調這樣的演算法會很複雜:因為多數人有好幾種興趣,會同時出現在很多組別裡。

影音串流服務利用演算法,進而推薦使用者可能喜歡的節目。圖/Pexels

經過不受監督式學習法訓練的人工智慧,可以找出人類或許會錯過的模式,因為這些模式很微妙、數據規模又龐大。因為這樣的人工智慧在訓練時沒有明定什麼結果才「適當」,所以可以產生讓人驚豔的創新見解,這其實和人類的自我教育沒什麼不同——無論是人類自學或是人工智慧,都會產生稀奇古怪、荒謬無理的結果。

不管是受監督式學習法或不受監督式學習法,人工智慧都是運用資料來執行任務,以發現新趨勢、識別影像或做出預測。在資料分析之外,研究人員想要訓練人工智慧在多變的環境裡操作,第三種機器學習法就誕生了。

增強式學習:需要理想的模擬情境與回饋機制

若用增強式學習,人工智慧就不是被動地識別資料間的關聯,而是在受控的環境裡具備「能動性」,觀察並記錄自己的行動會有什麼反應;通常這都是模擬的過程, 把複雜的真實世界給簡化了,在生產線上準確地模擬機器人比較容易,在擁擠的城市街道上模擬就困難得多了。

但即使是在模擬且簡化的環境裡,如西洋棋比賽,每一步都還是會引發一連串不同的機會與風險。因此,引導人工智慧在人造環境裡訓練自己,還不足以產生最佳表現,這訓練過程還需要回饋。

西洋棋比賽中的每一步會引發一連串機會與風險。圖/Pexels

提供反饋和獎勵,可以讓人工智慧知道這個方法成功了。沒有人類可以有效勝任這個角色:人工智慧因為在數位處理器上運作,所以可以在數小時或數日之內就訓練自己幾百次、幾千次或幾十億次,人類提供的回饋相比之下根本不切實際。

軟體工程師將這種回饋功能自動化,謹慎精確地說明這些功能要如何操作,以及這些功能的本質是要模擬現實。理想情況下,模擬器會提供擬真的環境,回饋功能則會讓人工智慧做出有效的決定。

阿爾法元的模擬器就很簡單粗暴:對戰。阿爾法元為了評估自己的表現,運用獎勵功能,根據每一步創造的機會來評分。

增強式學習需要人類參與來創造人工智慧的訓練環境(儘管在訓練過程中不直接提供回饋):人類要定義模擬情境和回饋功能,人工智慧會在這基礎上自我訓練。為產生有意義的結果,謹慎明確地定義模擬情境和回饋功能至關重要。

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

聯經出版_96
27 篇文章 ・ 16 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。