1

0
1

文字

分享

1
0
1

聲音總是慢一拍?無線耳機的致命傷「藍牙延遲」是怎麼回事?

鳥苷三磷酸 (PanSci Promo)_96
・2020/09/18 ・3365字 ・閱讀時間約 7 分鐘 ・SR值 515 ・六年級

本文由 量子音樂 委託,泛科學企劃執行

  • 文/YC WANG

「玩射擊遊戲先看到火光,才聽到槍聲,還沒來得及反應就死了!」、「玩太鼓達人聲音和畫面不同步,玩得好痛苦!」你也曾有過類似的經驗嗎?

常使用藍牙耳機的人,可能會遇到「藍牙延遲」影音不同步的情況。圖/Pexels

習慣使用藍牙耳機的人,對於「藍牙延遲」大約都不陌生。到底為什麼藍牙耳機會有聲音延遲的問題?隨著技術的進步,又有什麼新的方法能減少這個潛在惱人的困擾?挑選耳機,怎樣才能符合自己的需求?

泛科學這次訪問量子音樂創辦人蔡明耀(Hikari),請專家來一一解釋什麼是藍牙延遲,並對於不同屬性的用戶挑選最適合自己的藍牙耳機,提出一些建議。

-----廣告,請繼續往下閱讀-----

聲音延遲……為什麼專業音樂人無法忍受?

「延遲會遇到的狀況其中一項是回音,你在錄 podcast 時,會聽到,Hi Hikari,然後馬上又再有回音 Hi Hikari。」量子音樂的 Hikari 也是一名混音師,他每天工作的日常除了音樂製作、聲音系統還有人工智慧的研發。

他表示,在工作上對於聲音的傳輸,需要嚴苛要求「低延遲」,尤其是在錄音室中,錄音要求延遲在 30 毫秒以下。目前大多錄音室都採用數位設備,數位設備較有機會造成延遲回聲等效果,無論是歌手錄音或 podcast 製作上,均難以接受明顯的聲音延遲。不過,除非經過特殊訓練,否則一般人耳僅能辨別出 60 毫秒以上的延遲。

相較於數位設備,類比器材的速度較快也不會造成延遲,但目前在聲音的編輯處理上,時常需要轉數位化,這也就是造成延遲的開始。

為何類比較不會有延遲的問題?類比音訊的輸出與輸入是透過線來傳輸,不需要經過類比、數位的轉換。但類比雖然速度快,在聲音調控上就完全要靠類比電路,操作不易,目前為了聲音編輯,大部分的聲音處理也主要採數位化,缺點就是有延遲的可能。

-----廣告,請繼續往下閱讀-----

藍牙耳機延遲問題究竟可以如何改善?

其實除了 Hikari 提到在音樂製作上專業上不容出現的聲音延遲,在玩遊戲或看電影的時候,「看到火光之後慢半拍才聽到『砰!』」應該是選用藍牙耳機或喇叭的人都有過的經驗。

為什麼使用藍牙的音響系統,會有這種延遲問題呢?藍牙延遲簡單來說就是:「當藍牙訊號開始傳輸,到接收端收到訊號的時間差」。

藍牙是無線傳輸,聲音源透過「藍牙立體聲音訊傳輸協議」(Advanced Audio Distribution Profile, A2DP)來傳輸訊號,並只能在有限的頻寬下,透過編碼壓縮的方式傳遞音樂訊號,而藍牙接收端(耳機、喇叭裝置)接收訊號後,便會解壓縮藍牙訊號、轉成數位音訊,最後再輸出給裝置上的DAC(數位類比轉換器),然後聲音就會傳到我們的耳朵裡了。

這段音訊訊號傳輸的過程所產生的時間差,便是所謂的藍牙延遲。

-----廣告,請繼續往下閱讀-----
圖/泛科學製

藍牙透過 A2DP 協議來傳輸訊號,一開始是以「能聽到不斷續聲音」而設計。為了避免遭到干擾,藍牙預備了一個的緩衝區(buffer),一個傳出一個接收,如果中間有斷音、不連續,就可以用緩衝丟出音訊,也因此而有延遲。但隨著藍牙耳機用途越來越廣泛,不再像過去只用在通話上時,藍牙延遲問題就需要被改善。這也是藍牙耳機難以應用於製作音樂、錄音、電競產業的主要原因。

藍牙耳機不再像過去只用在通話上,藍牙延遲問題需要被改善才能被廣泛運用。圖/Pexels

其實,像是 Netflix或 YouTube 串流影片有調整延遲的協定,也就是設計當聲音變慢了,畫面也一起變慢,藉由「一起延遲」來解決影音不同步問題。然而,這樣的設計無法應用於電玩,因為遊戲的影像是即時生成,聲音馬上就出來了,因此延遲的問題就較為棘手。

那要怎麼讓藍牙延遲不要這麼嚴重呢?改善的做法之一,在於改進通訊設計。過去藍牙的兩個耳機是兩個藍牙裝置,由裝置傳到 A耳機(主要耳機),再傳到 B耳機(副耳機)會造成二段延遲。

為了解決二段延遲問題,先是將雙邊耳機都設計成可以跟系統溝通的主要耳機,再用 Sniff(監聽)到通訊協定的作法,緩衝就不用設計的那麼長,能降低延遲、縮短傳輸的時間。

-----廣告,請繼續往下閱讀-----
一般藍牙耳機傳送訊號方式是,由主要耳機接收訊號,再傳遞給另一個耳機;目前也有技術是將藍牙左右耳機都設為主要耳機,耳機可以視情況選擇左耳或右耳當主要耳機。除了以此增加效率,還可以加入「監聽」(Sniff,虛線部分)功能,讓另一支耳機能攔截訊號,使訊號不需要繞過頭部來傳輸,降低延遲。圖/泛科學製

優化後就不一樣!藍牙低延遲排行公開

除了優化通訊設計,要改善藍牙延遲的問題,可以調整的細節很多,包括優化傳輸編碼以及天線、晶片優化等各項調整,就有機會維持可接受的音質,並有效改善延遲情況。

挑選藍牙耳機時,最常出現的討論當然還包括傳輸編碼的選擇。

藍牙傳輸的編碼,主要可分為四種常見規格:SBC、AAC、aptX、LDAC。在數據的封包傳輸量上,一般來說,SBC<AAC<aptX<LDAC。越後者理論上封包越大,越有機會延遲。

但除了考慮到延遲,實際應用還有支援度與音質的問題。

-----廣告,請繼續往下閱讀-----

首先,討論支援度的部分。SBC、AAC 是普遍手機、電腦都具有的編碼規格,而 aptX則是高通所開發的一系列編碼(包括 aptX、aptX HD、aptX LL、aptX Adaptive)。目前 Android 手機普遍支援apt X、aptX HD規格,但 iPhone 就沒有支援aptX系列,僅支援SBC與AAC;另外,aptX LL雖然很快,但目前沒有任何手機支援。而 LDAC 則是 Sony 獨家的技術,目前僅有少數高階藍牙耳罩耳機有支援此項傳輸協定,音質好但延遲問題明顯。

前面描述的規格僅限於一般的規範,實際上還要看耳機的優化狀況。有些討論中常誤解認為 AAC 技術在傳輸速度必定輸給 aptX LL,但實際上考量到支援度,已經有開發團隊以優化 AAC 的方式來改善延遲問題。最知名的例子就是,在Apple生態系之下,iOS系統連接蘋果的藍牙耳機 AirPods Pro,經過優化的結果,就要比一般藍牙耳機透過 AAC 連接 iOS 延遲還要低上許多。因此加入「優化AAC」選項後,藍牙傳輸速度排名:優化AAC > aptX LL>AAC>aptX。

圖/Pexels

再來,討論音質的部分。影響音質的因素很多,耳機的整體配置都會有所影響,包括耳機共鳴體、驅動單體、組件搭配……等,再加上考慮到使用情境,若大多聽 KKBOX、Spotify、YouTube 等串流音樂,「優化 AAC」在音質與降低延遲取得平衡可以有很不錯的成效,提供使用者最佳的體驗。

怎麼選擇藍牙耳機?便利性、環繞音、低延遲

討論到最後,我們問到混音師 Hikari 對於藍牙耳機音質的評價,他坦率表示曾實際測試多款耳機。現有的藍牙耳機對專業混音師來說,完全難以達到工作所需要的音質,但他個人並不排斥在生活中使用。在通勤等生活情境中,藍牙耳機的「方便性」是他最在意的優點之一。

-----廣告,請繼續往下閱讀-----

對一般消費者來說,選擇耳機主要要考量喜歡聽哪種頻率的音樂,例如中頻很好的耳機,拿來聽蔡琴的聲音很理想,但拿來打遊戲可能就聽不到敵方腳步聲的聲音。

對Hikari來說,選擇合適的耳機,跟使用情境與慣聽的音樂屬性有很大的關聯,對想一邊舒適地聽音樂、又可以通話,甚至想要輕鬆玩遊戲的人來說,無線藍牙耳機肯定是最好的選擇啦。

以下是他的推薦名單,如果你也有各種心頭好,也不妨推薦給我們吧!

Hikari推薦耳機名單

  • 注重隔音、主動降噪(ANC),想隔絕外部噪音:
    Airpods Pro、Sony WH-1000XM4
  • 注重中低頻響應,適合電音、Dubstep聆聽且具備情境切換功能:
    jlab jbuds air executive
  • 低價但擁有不錯音質的超高CP值耳機:
    pamu scroll plus
  • 錄音與音樂製作,或是想要發燒耳機品質:
    Sony MDR-900ST、BEYERDYNAMIC DT1770 pro (所有藍牙耳機都不適合,請乖乖用類比耳機)

參考資料

文章難易度
所有討論 1
鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 308 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。