0

0
0

文字

分享

0
0
0

聲音總是慢一拍?無線耳機的致命傷「藍牙延遲」是怎麼回事?

鳥苷三磷酸 (PanSci Promo)_96
・2020/09/18 ・3365字 ・閱讀時間約 7 分鐘 ・SR值 515 ・六年級

本文由 量子音樂 委託,泛科學企劃執行

  • 文/YC WANG

「玩射擊遊戲先看到火光,才聽到槍聲,還沒來得及反應就死了!」、「玩太鼓達人聲音和畫面不同步,玩得好痛苦!」你也曾有過類似的經驗嗎?

常使用藍牙耳機的人,可能會遇到「藍牙延遲」影音不同步的情況。圖/Pexels

習慣使用藍牙耳機的人,對於「藍牙延遲」大約都不陌生。到底為什麼藍牙耳機會有聲音延遲的問題?隨著技術的進步,又有什麼新的方法能減少這個潛在惱人的困擾?挑選耳機,怎樣才能符合自己的需求?

泛科學這次訪問量子音樂創辦人蔡明耀(Hikari),請專家來一一解釋什麼是藍牙延遲,並對於不同屬性的用戶挑選最適合自己的藍牙耳機,提出一些建議。

聲音延遲……為什麼專業音樂人無法忍受?

「延遲會遇到的狀況其中一項是回音,你在錄 podcast 時,會聽到,Hi Hikari,然後馬上又再有回音 Hi Hikari。」量子音樂的 Hikari 也是一名混音師,他每天工作的日常除了音樂製作、聲音系統還有人工智慧的研發。

他表示,在工作上對於聲音的傳輸,需要嚴苛要求「低延遲」,尤其是在錄音室中,錄音要求延遲在 30 毫秒以下。目前大多錄音室都採用數位設備,數位設備較有機會造成延遲回聲等效果,無論是歌手錄音或 podcast 製作上,均難以接受明顯的聲音延遲。不過,除非經過特殊訓練,否則一般人耳僅能辨別出 60 毫秒以上的延遲。

相較於數位設備,類比器材的速度較快也不會造成延遲,但目前在聲音的編輯處理上,時常需要轉數位化,這也就是造成延遲的開始。

為何類比較不會有延遲的問題?類比音訊的輸出與輸入是透過線來傳輸,不需要經過類比、數位的轉換。但類比雖然速度快,在聲音調控上就完全要靠類比電路,操作不易,目前為了聲音編輯,大部分的聲音處理也主要採數位化,缺點就是有延遲的可能。

藍牙耳機延遲問題究竟可以如何改善?

其實除了 Hikari 提到在音樂製作上專業上不容出現的聲音延遲,在玩遊戲或看電影的時候,「看到火光之後慢半拍才聽到『砰!』」應該是選用藍牙耳機或喇叭的人都有過的經驗。

為什麼使用藍牙的音響系統,會有這種延遲問題呢?藍牙延遲簡單來說就是:「當藍牙訊號開始傳輸,到接收端收到訊號的時間差」。

藍牙是無線傳輸,聲音源透過「藍牙立體聲音訊傳輸協議」(Advanced Audio Distribution Profile, A2DP)來傳輸訊號,並只能在有限的頻寬下,透過編碼壓縮的方式傳遞音樂訊號,而藍牙接收端(耳機、喇叭裝置)接收訊號後,便會解壓縮藍牙訊號、轉成數位音訊,最後再輸出給裝置上的DAC(數位類比轉換器),然後聲音就會傳到我們的耳朵裡了。

這段音訊訊號傳輸的過程所產生的時間差,便是所謂的藍牙延遲。

圖/泛科學製

藍牙透過 A2DP 協議來傳輸訊號,一開始是以「能聽到不斷續聲音」而設計。為了避免遭到干擾,藍牙預備了一個的緩衝區(buffer),一個傳出一個接收,如果中間有斷音、不連續,就可以用緩衝丟出音訊,也因此而有延遲。但隨著藍牙耳機用途越來越廣泛,不再像過去只用在通話上時,藍牙延遲問題就需要被改善。這也是藍牙耳機難以應用於製作音樂、錄音、電競產業的主要原因。

藍牙耳機不再像過去只用在通話上,藍牙延遲問題需要被改善才能被廣泛運用。圖/Pexels

其實,像是 Netflix或 YouTube 串流影片有調整延遲的協定,也就是設計當聲音變慢了,畫面也一起變慢,藉由「一起延遲」來解決影音不同步問題。然而,這樣的設計無法應用於電玩,因為遊戲的影像是即時生成,聲音馬上就出來了,因此延遲的問題就較為棘手。

那要怎麼讓藍牙延遲不要這麼嚴重呢?改善的做法之一,在於改進通訊設計。過去藍牙的兩個耳機是兩個藍牙裝置,由裝置傳到 A耳機(主要耳機),再傳到 B耳機(副耳機)會造成二段延遲。

為了解決二段延遲問題,先是將雙邊耳機都設計成可以跟系統溝通的主要耳機,再用 Sniff(監聽)到通訊協定的作法,緩衝就不用設計的那麼長,能降低延遲、縮短傳輸的時間。

一般藍牙耳機傳送訊號方式是,由主要耳機接收訊號,再傳遞給另一個耳機;目前也有技術是將藍牙左右耳機都設為主要耳機,耳機可以視情況選擇左耳或右耳當主要耳機。除了以此增加效率,還可以加入「監聽」(Sniff,虛線部分)功能,讓另一支耳機能攔截訊號,使訊號不需要繞過頭部來傳輸,降低延遲。圖/泛科學製

優化後就不一樣!藍牙低延遲排行公開

除了優化通訊設計,要改善藍牙延遲的問題,可以調整的細節很多,包括優化傳輸編碼以及天線、晶片優化等各項調整,就有機會維持可接受的音質,並有效改善延遲情況。

挑選藍牙耳機時,最常出現的討論當然還包括傳輸編碼的選擇。

藍牙傳輸的編碼,主要可分為四種常見規格:SBC、AAC、aptX、LDAC。在數據的封包傳輸量上,一般來說,SBC<AAC<aptX<LDAC。越後者理論上封包越大,越有機會延遲。

但除了考慮到延遲,實際應用還有支援度與音質的問題。

首先,討論支援度的部分。SBC、AAC 是普遍手機、電腦都具有的編碼規格,而 aptX則是高通所開發的一系列編碼(包括 aptX、aptX HD、aptX LL、aptX Adaptive)。目前 Android 手機普遍支援apt X、aptX HD規格,但 iPhone 就沒有支援aptX系列,僅支援SBC與AAC;另外,aptX LL雖然很快,但目前沒有任何手機支援。而 LDAC 則是 Sony 獨家的技術,目前僅有少數高階藍牙耳罩耳機有支援此項傳輸協定,音質好但延遲問題明顯。

前面描述的規格僅限於一般的規範,實際上還要看耳機的優化狀況。有些討論中常誤解認為 AAC 技術在傳輸速度必定輸給 aptX LL,但實際上考量到支援度,已經有開發團隊以優化 AAC 的方式來改善延遲問題。最知名的例子就是,在Apple生態系之下,iOS系統連接蘋果的藍牙耳機 AirPods Pro,經過優化的結果,就要比一般藍牙耳機透過 AAC 連接 iOS 延遲還要低上許多。因此加入「優化AAC」選項後,藍牙傳輸速度排名:優化AAC > aptX LL>AAC>aptX。

圖/Pexels

再來,討論音質的部分。影響音質的因素很多,耳機的整體配置都會有所影響,包括耳機共鳴體、驅動單體、組件搭配……等,再加上考慮到使用情境,若大多聽 KKBOX、Spotify、YouTube 等串流音樂,「優化 AAC」在音質與降低延遲取得平衡可以有很不錯的成效,提供使用者最佳的體驗。

怎麼選擇藍牙耳機?便利性、環繞音、低延遲

討論到最後,我們問到混音師 Hikari 對於藍牙耳機音質的評價,他坦率表示曾實際測試多款耳機。現有的藍牙耳機對專業混音師來說,完全難以達到工作所需要的音質,但他個人並不排斥在生活中使用。在通勤等生活情境中,藍牙耳機的「方便性」是他最在意的優點之一。

對一般消費者來說,選擇耳機主要要考量喜歡聽哪種頻率的音樂,例如中頻很好的耳機,拿來聽蔡琴的聲音很理想,但拿來打遊戲可能就聽不到敵方腳步聲的聲音。

對Hikari來說,選擇合適的耳機,跟使用情境與慣聽的音樂屬性有很大的關聯,對想一邊舒適地聽音樂、又可以通話,甚至想要輕鬆玩遊戲的人來說,無線藍牙耳機肯定是最好的選擇啦。

以下是他的推薦名單,如果你也有各種心頭好,也不妨推薦給我們吧!

Hikari推薦耳機名單

  • 注重隔音、主動降噪(ANC),想隔絕外部噪音:
    Airpods Pro、Sony WH-1000XM4
  • 注重中低頻響應,適合電音、Dubstep聆聽且具備情境切換功能:
    jlab jbuds air executive
  • 低價但擁有不錯音質的超高CP值耳機:
    pamu scroll plus
  • 錄音與音樂製作,或是想要發燒耳機品質:
    Sony MDR-900ST、BEYERDYNAMIC DT1770 pro (所有藍牙耳機都不適合,請乖乖用類比耳機)

參考資料

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
111 篇文章 ・ 252 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia


0

1
0

文字

分享

0
1
0

【2021諾貝爾化學獎】化學史的革命性進展:簡單又環保的「不對稱有機催化」

諾貝爾化學獎譯文_96
・2021/10/27 ・5691字 ・閱讀時間約 11 分鐘

本文轉載自諾貝爾化學獎專題系列,原文為《【2021諾貝爾化學獎】他們的工具帶給了建構分子的革命性發展

  • 譯者/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。
  • 譯者/蔡蘊明|台大化學系名譽教授

他們的工具帶給了建構分子的革命性發展

化學家可以透過連接許多小的化學塊材來創造新分子,但控制這些看不見的物質,以所需的方式結合是很困難的。班傑明 • 李斯特(Benjamin List)和大衛 • 麥克米蘭(David MacMillan)獲得了 2021 年諾貝爾化學獎的桂冠,以表彰他們開發了一種新而巧妙的工具來建構分子:有機催化。它的用途包括研發新的藥物,以及使得化學更為環保。

許多行業和研究領域都須依賴化學家建構新功能分子的能力,那些可以是任何在太陽能電池中捕獲光或將能量儲存在電池中的物質,也可以是製造輕便跑鞋或抑制疾病在身體內進展的分子。

然而,如果我們將大自然建造化學物質的能力,與我們自己的能力進行比較,那我們就好像是長期的被困在石器時代一般。大自然的進化產生了令人難以置信的特殊工具,酵素(或稱酶),用於建構賦予生命形態的各種形狀、顏色和功能的分子複合物。最初,當化學家分離出這些化學傑作後,他們只能以崇敬的眼光看著。在他們自己的分子建構工具箱中的錘子和鑿子,顯得愚鈍和不可靠,所以當他們企圖複製大自然的產品時,往往最終會產生許多不需要的副產物。

精細化學的新工具

化學家添加到工具箱中的每一個新工具,都漸漸地提高了他們建構分子的精確度。緩慢但確實地,化學已經由用在石頭上的鑿子發展出許多精細的技藝。這對人類實在大有助益,而其中一些工具已經獲得諾貝爾化學獎的肯定。

獲得 2021 年諾貝爾化學獎的發現,已經將分子的建構拉到一個全新的水平。它不僅使化學更為環保,而且更容易製造不對稱分子。在化學分子的構築過程中,經常會出現一種狀況,就是可以形成兩種分子 —— 就像我們的手一樣 —— 是彼此的鏡像。尤其是在製造藥品時,化學家經常希望只得到這兩個鏡像中的一個,但卻很難找到有效的方法來做到這一點。李斯特和麥克米蘭為此研發出的概念 —— 不對稱有機催化 —— 既簡單又出色。實際上很多人都很納悶,為什麼我們沒有早點想到它。

真的,為什麼呢?這不是一個容易回答的問題,但在我們嘗試之前,需要快速地回顧一下歷史,我們將會定義「催化」(catalysis)和「催化劑」(catalyst)這兩個術語,並為 2021 年的化學諾貝爾獎奠定理解的基礎。

許多分子有兩種異構物存在,其中一種是另一種的鏡像,它們經常對身體產生完全不同的影響。例如,一種版本的檸檬烯分子具有檸檬香味,而其鏡像則聞起來像橘子。圖/諾貝爾獎官網

催化劑加速化學反應

在十九世紀,當化學家開始探索不同化學物質相互反應的方式時,他們有了一些奇怪的發現。例如,如果他們將銀放入含有過氧化氫(H2O2)的燒杯中,過氧化氫會突然開始分解成水(H2O) 和氧氣(O2)。但是促發這個過程的銀,似乎完全不會受到反應的影響。類似的,從發芽的穀物中獲得的一種物質,則可以將澱粉分解成葡萄糖。

1835 年,著名的瑞典化學家貝吉里斯(Jacob Berzelius)開始注意到其中的規律。在皇家瑞典科學院年度報告中,敘述物理和化學的最新進展時,他寫到了一種可以"產生化學活性"的新"力"。他列舉了幾個例子,其中只要有某一種物質的存在,就可讓化學反應發生,並指出這種現像似乎比以前認知的要普遍得多。他認為這種物質具有一種「催化力」,並稱這種現象為「催化作用」。

催化劑產生塑膠、香水和美味的食物

自貝吉里斯時代以來,大量的汗水流過了化學家的吸管,他們已經發現許多種催化劑,可以分解分子或將它們連接在一起。多虧了這些催化劑,他們現在可以開發出我們日常生活中使用的數千種不同的物質,例如藥品、塑膠、香水和食品調味劑。事實是,估計有世界 GDP 總量的 35%,在某種程度上涉及化學催化。

原則上,西元 2000 年之前發現的所有催化劑都屬於以下兩類之一:它們若不是金屬那就是酵素。金屬通常是極好的催化劑,因為它們具有特殊的能力,能在化學反應過程中暫時容納電子或將它們提供給其它分子。這有助於鬆開分子中原子間的鍵結,因此使得尋常時候很強的鍵結可以被打破,形成新的鍵結。

然而,一些金屬催化劑的問題是它們對氧氣和水非常敏感。因此,要使這些試劑正常運作,它們需要一個無氧和無濕氣的環境,而這在大規模的產業界很難實現。此外,許多金屬催化劑都是重金屬,可能對環境有害。

生命的催化劑以驚人的精確度運作

第二種形式的催化劑屬於一些稱為酵素(或酶)的蛋白質。所有的生物都具有數以千計的不同酵素,來驅動生命所必需的化學反應。其中有許多酵素是不對稱催化方面的專家,原則上,總是只生成兩個可能的鏡像中的一個。它們也並肩工作;當一個酵素完成反應時,另一個就會接管。通過這種方式,它們能以驚人的準確度建構複雜的分子,例如膽固醇、葉綠素或稱為番木虌鹼(strychnine)的毒素,它是我們知道的分子中最複雜的物質之一(我們將回到這一點)。

由於酶是如此有效的催化劑,1990 年代的研究人員試圖開發新的酵素變體,以驅動人類所需的化學反應。一個致力於此領域的,是總部設在美國加利福尼亞州南部的斯克里普斯(Scripps)研究所中,由已故的巴爾巴斯三世(Carlos F. Barbas III)所領導的研究小組。李斯特在巴爾巴斯的研究小組中獲得了博士後研究員的職位,此時一個絕妙的想法誕生了,從而導致今年諾貝爾化學獎其中的一項發現。

李斯特跨出了盒外來思考

李斯特在研究催化抗體(catalytic antibodies)。通常情況下,抗體會附著在外來病毒或我們體內的細菌之上,但斯克里普斯的研究人員重新設計了它們,使得它們反而可以驅動化學反應。

在研究催化抗體期間,李斯特開始思考酵素實際上是如何的運作。它們通常是由數百個胺基酸所構成的巨大分子,除了這些胺基酸,很大一部分的酵素也含有能幫助驅動化學反應的金屬。但是 —— 這就是重點 —— 許多酵素在沒有金屬幫助的情況下,也能催化化學反應。此外,反應只是由酶中的一個或幾個單獨的胺基酸所驅動的。李斯特跳脫出盒外所問的問題是:胺基酸是否必須是酶的一部分才能催化一個化學反應?或者一個單獨的胺基酸或其它類似的簡單分子,是否也可以達成同樣的工作?

產生具有革命性的結果

他知道 1970 年代初就有人研究過,用一種名為脯胺酸的胺基酸作為催化劑 —— 但那是 25 多年前的事了。當然,如果脯胺酸真的是一種有效的催化劑,當然有人會繼續研究它吧。

這或多或少是李斯特的想法;他認為沒有人繼續研究這一現像的原因,是發現效果不是特別好。 在沒有任何真正的期待下,他測試了脯胺酸是否可以催化一種「醛醇反應」(aldol reaction),將其中來自兩個不同分子的碳原子結合在一起。這只是一個簡單的嘗試,但令人驚訝的是,它立即奏效。

李斯特確定了自己的未來

通過他的實驗,李斯特不僅證明了脯胺酸是一種有效的催化劑,而且還認為這種胺基酸可以驅動不對稱催化反應。在兩個可能的鏡像產物中,其中的一個比另一個更易生成。

與之前測試脯胺酸作為催化劑的研究人員不同,李斯特了解它可能具有的巨大潛力。與金屬和酵素相比,脯胺酸是一個化學家夢幻的工具。它是一種非常簡單、廉價且環保的分子。當他在 2000 年 2 月發表他的發現時,李斯特將使用有機分子進行的不對稱催化,描述為一個具有很多機會的新穎概念:"這些催化劑的設計和篩選是我們未來的目標之一"。

不過他並不孤單,在加利福尼亞北部的一個實驗室裡,麥克米蘭也在朝著同樣的目標努力。

麥克米蘭將敏感的金屬拋諸腦後

兩年前,麥克米蘭剛從哈佛搬到加州大學伯克萊分校。他在哈佛曾致力於改善使用金屬的不對稱催化反應,那是一個受到許多研究人員關注的領域,但麥克米蘭注意到,為何研究人員開發的催化劑在工業界卻很少使用?他開始思考原因,並認為那是因為敏感的金屬使用起來很困難,而且太貴了。一些金屬催化劑所要求的無氧無濕氣的條件,在實驗室中運作相對簡單,但要在這種條件下進行大規模工業製造是很複雜的。

他的結論是,如果要讓他正在開發的化學工具有用,他需要一個新的思維。所以,當他搬到伯克萊時,他把金屬拋在腦後。

開發了一種型式更簡單的催化劑

取而代之,麥克米蘭開始設計簡單的有機分子 —— 就像金屬一樣 —— 可以暫時提供或容納電子。在這裡,我們需要定義什麼是「有機分子」 —— 簡而言之,那是建構所有生物的分子。他們擁有一個穩定的碳原子骨架,各種活性化學基團可附著在這個碳骨架上,它們通常含有氧、氮、硫或磷。

因此,有機分子是由簡單而常見的元素組成,但是,取決於它們是如何組合在一起的,它們可以具有複雜的性質。麥克米蘭的化學知識使得他認為,若要用有機分子來催化他感興趣的反應,它需要能夠形成一個「亞胺離子」(iminium ion),這個離子包含了一個氮原子,而且對電子具有天生的親和力。

他選擇了幾種具有正確特性的有機分子,然後測試了它們驅動狄耳士-阿德爾(Diels-Alder)反應的能力,化學家用這個反應來建構碳原子環。正如他所期盼並相信的那樣,它們運作得非常出色。其中的一些有機分子,在不對稱催化方面的表現也很突出。在兩個可能的鏡像產物中,其中一個佔了 90% 以上。

麥克米蘭創造了有機催化一詞

當麥克米蘭準備發表他的結果時,他意識到自己發現的催化概念需要一個名字。事實上,研究人員雖早已成功地使用有機小分子催化化學反應,但這些都是個別單獨的例子,沒有人意識到這種方法可以被推廣。

 麥克米蘭希望找到一個術語來描述這個新方法,如此一來其他研究人員就能夠理解,尚有更多有機催化劑仍未被發現。他的選擇是「有機催化」(organocatalysis)。

於 2000 年 1 月,就在李斯特發表他的發現之前,麥克米蘭送出了他在科學期刊上發表的原稿。文章中的引言寫著:

"在此,我們介紹了一種新的有機催化策略,而我們預計這個新策略將適用於一系列的不對稱轉化。"

有機催化應用的蓬勃發展

李斯特和麥克米蘭各自獨立地發現了一個全新的催化概念。從 2000 年至今此領域的發展幾乎可以比擬為淘金熱,其中李斯特和麥克米蘭保持著領先地位。他們設計了大量廉價且穩定的有機催化劑,可用於驅動各式各樣的化學反應。

有機催化劑不僅一般由簡單分子組成,在某些情況下 —— 就像自然界的酵素一樣 —— 它們可以在輸送帶上工作。以前,在化學生產過程中,需要對每個中間產物進行分離和純化,否則副產物的量會太多,這導致了在化學合成的每個步驟中都會有一些物質損失。

有機催化劑的寬容度則比較高,因為相對而言,合成過程中的幾個步驟可以連續進行,這稱為串級反應(cascade reaction),可以減少許多化學合成中的浪費。

番木虌鹼的合成效率提高了 7,000 倍

一個有機催化使分子建構更有效率的例子,是合成天然且極其複雜的番木虌鹼分子。許多人會從謀殺案件小說女王阿加莎・克莉絲蒂(Agatha Christie)的書中認出番木虌鹼。然而,對於化學家來說,番木虌鹼的合成就像一個魔術方塊:一個步驟越少越好的挑戰。

在 1952 年首次合成出番木虌鹼時,需要經過 29 種不同的化學反應步驟,只有 0.0009% 的起始物被轉換成產物,剩下的都浪費掉了。

到了 2011 年,研究人員能夠使用有機催化和串級反應,在僅僅 12 個步驟中建構番木虌鹼分子,生產過程的效率提高了 7,000 倍。

有機催化在藥物生產中最為重要

有機催化對經常需要不對稱催化的藥物研究產生了重大影響。在化學家可以進行不對稱催化之前,許多藥物分子都含有兩個鏡像的異構物。其中一個是有活性的,而另一個可能有時會產生不良的影響。一個災難性的例子是 1960 年代的沙利多邁(thalidomide)醜聞,沙利多邁藥物分子的一個鏡像,導致數千個發育中的人類胚胎產生嚴重畸形。

使用有機催化,研究人員現在可以相對簡單地製造大量不同的不對稱分子。例如,他們能以人工方式來合成具有治療潛力的物質,否則就只能從稀有植物或深海生物中,分離出微量的相同分子進行研究。

在製藥公司,這種方法還用於簡化已知藥物的生產。這方面的例子包括用於治療焦慮和抑鬱的帕羅西汀(paroxetine),以及用於治療呼吸道感染的抗病毒藥物克流感(oseltamivir)。

簡單的構想往往是最難設想的

我們可以很簡單地舉出數千個如何使用有機催化的例子 —— 但為什麼沒有人更早提出這種簡單、綠色且廉價的非對稱催化概念?這個問題有很多答案,其中一個是簡單的構想往往是最難設想的。我們的觀點被這個世界應該運作的模式,先入為主且強烈地遮蔽了,例如只有金屬或酵素才能驅動化學反應的想法。李斯特和麥克米蘭成功地打破了這些先入為主的想法,找到了困擾化學家數十年問題的巧妙解方。因此,有機催化劑才能夠 —— 在此時此刻 —— 為人類帶來莫大的裨益。

參考資料

諾貝爾化學獎譯文_96
952 篇文章 ・ 245 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策