Loading [MathJax]/extensions/tex2jax.js

1

0
1

文字

分享

1
0
1

聲音總是慢一拍?無線耳機的致命傷「藍牙延遲」是怎麼回事?

鳥苷三磷酸 (PanSci Promo)_96
・2020/09/18 ・3365字 ・閱讀時間約 7 分鐘 ・SR值 515 ・六年級

本文由 量子音樂 委託,泛科學企劃執行

  • 文/YC WANG

「玩射擊遊戲先看到火光,才聽到槍聲,還沒來得及反應就死了!」、「玩太鼓達人聲音和畫面不同步,玩得好痛苦!」你也曾有過類似的經驗嗎?

常使用藍牙耳機的人,可能會遇到「藍牙延遲」影音不同步的情況。圖/Pexels

習慣使用藍牙耳機的人,對於「藍牙延遲」大約都不陌生。到底為什麼藍牙耳機會有聲音延遲的問題?隨著技術的進步,又有什麼新的方法能減少這個潛在惱人的困擾?挑選耳機,怎樣才能符合自己的需求?

泛科學這次訪問量子音樂創辦人蔡明耀(Hikari),請專家來一一解釋什麼是藍牙延遲,並對於不同屬性的用戶挑選最適合自己的藍牙耳機,提出一些建議。

-----廣告,請繼續往下閱讀-----

聲音延遲……為什麼專業音樂人無法忍受?

「延遲會遇到的狀況其中一項是回音,你在錄 podcast 時,會聽到,Hi Hikari,然後馬上又再有回音 Hi Hikari。」量子音樂的 Hikari 也是一名混音師,他每天工作的日常除了音樂製作、聲音系統還有人工智慧的研發。

他表示,在工作上對於聲音的傳輸,需要嚴苛要求「低延遲」,尤其是在錄音室中,錄音要求延遲在 30 毫秒以下。目前大多錄音室都採用數位設備,數位設備較有機會造成延遲回聲等效果,無論是歌手錄音或 podcast 製作上,均難以接受明顯的聲音延遲。不過,除非經過特殊訓練,否則一般人耳僅能辨別出 60 毫秒以上的延遲。

相較於數位設備,類比器材的速度較快也不會造成延遲,但目前在聲音的編輯處理上,時常需要轉數位化,這也就是造成延遲的開始。

為何類比較不會有延遲的問題?類比音訊的輸出與輸入是透過線來傳輸,不需要經過類比、數位的轉換。但類比雖然速度快,在聲音調控上就完全要靠類比電路,操作不易,目前為了聲音編輯,大部分的聲音處理也主要採數位化,缺點就是有延遲的可能。

-----廣告,請繼續往下閱讀-----

藍牙耳機延遲問題究竟可以如何改善?

其實除了 Hikari 提到在音樂製作上專業上不容出現的聲音延遲,在玩遊戲或看電影的時候,「看到火光之後慢半拍才聽到『砰!』」應該是選用藍牙耳機或喇叭的人都有過的經驗。

為什麼使用藍牙的音響系統,會有這種延遲問題呢?藍牙延遲簡單來說就是:「當藍牙訊號開始傳輸,到接收端收到訊號的時間差」。

藍牙是無線傳輸,聲音源透過「藍牙立體聲音訊傳輸協議」(Advanced Audio Distribution Profile, A2DP)來傳輸訊號,並只能在有限的頻寬下,透過編碼壓縮的方式傳遞音樂訊號,而藍牙接收端(耳機、喇叭裝置)接收訊號後,便會解壓縮藍牙訊號、轉成數位音訊,最後再輸出給裝置上的DAC(數位類比轉換器),然後聲音就會傳到我們的耳朵裡了。

這段音訊訊號傳輸的過程所產生的時間差,便是所謂的藍牙延遲。

-----廣告,請繼續往下閱讀-----
圖/泛科學製

藍牙透過 A2DP 協議來傳輸訊號,一開始是以「能聽到不斷續聲音」而設計。為了避免遭到干擾,藍牙預備了一個的緩衝區(buffer),一個傳出一個接收,如果中間有斷音、不連續,就可以用緩衝丟出音訊,也因此而有延遲。但隨著藍牙耳機用途越來越廣泛,不再像過去只用在通話上時,藍牙延遲問題就需要被改善。這也是藍牙耳機難以應用於製作音樂、錄音、電競產業的主要原因。

藍牙耳機不再像過去只用在通話上,藍牙延遲問題需要被改善才能被廣泛運用。圖/Pexels

其實,像是 Netflix或 YouTube 串流影片有調整延遲的協定,也就是設計當聲音變慢了,畫面也一起變慢,藉由「一起延遲」來解決影音不同步問題。然而,這樣的設計無法應用於電玩,因為遊戲的影像是即時生成,聲音馬上就出來了,因此延遲的問題就較為棘手。

那要怎麼讓藍牙延遲不要這麼嚴重呢?改善的做法之一,在於改進通訊設計。過去藍牙的兩個耳機是兩個藍牙裝置,由裝置傳到 A耳機(主要耳機),再傳到 B耳機(副耳機)會造成二段延遲。

為了解決二段延遲問題,先是將雙邊耳機都設計成可以跟系統溝通的主要耳機,再用 Sniff(監聽)到通訊協定的作法,緩衝就不用設計的那麼長,能降低延遲、縮短傳輸的時間。

-----廣告,請繼續往下閱讀-----
一般藍牙耳機傳送訊號方式是,由主要耳機接收訊號,再傳遞給另一個耳機;目前也有技術是將藍牙左右耳機都設為主要耳機,耳機可以視情況選擇左耳或右耳當主要耳機。除了以此增加效率,還可以加入「監聽」(Sniff,虛線部分)功能,讓另一支耳機能攔截訊號,使訊號不需要繞過頭部來傳輸,降低延遲。圖/泛科學製

優化後就不一樣!藍牙低延遲排行公開

除了優化通訊設計,要改善藍牙延遲的問題,可以調整的細節很多,包括優化傳輸編碼以及天線、晶片優化等各項調整,就有機會維持可接受的音質,並有效改善延遲情況。

挑選藍牙耳機時,最常出現的討論當然還包括傳輸編碼的選擇。

藍牙傳輸的編碼,主要可分為四種常見規格:SBC、AAC、aptX、LDAC。在數據的封包傳輸量上,一般來說,SBC<AAC<aptX<LDAC。越後者理論上封包越大,越有機會延遲。

但除了考慮到延遲,實際應用還有支援度與音質的問題。

-----廣告,請繼續往下閱讀-----

首先,討論支援度的部分。SBC、AAC 是普遍手機、電腦都具有的編碼規格,而 aptX則是高通所開發的一系列編碼(包括 aptX、aptX HD、aptX LL、aptX Adaptive)。目前 Android 手機普遍支援apt X、aptX HD規格,但 iPhone 就沒有支援aptX系列,僅支援SBC與AAC;另外,aptX LL雖然很快,但目前沒有任何手機支援。而 LDAC 則是 Sony 獨家的技術,目前僅有少數高階藍牙耳罩耳機有支援此項傳輸協定,音質好但延遲問題明顯。

前面描述的規格僅限於一般的規範,實際上還要看耳機的優化狀況。有些討論中常誤解認為 AAC 技術在傳輸速度必定輸給 aptX LL,但實際上考量到支援度,已經有開發團隊以優化 AAC 的方式來改善延遲問題。最知名的例子就是,在Apple生態系之下,iOS系統連接蘋果的藍牙耳機 AirPods Pro,經過優化的結果,就要比一般藍牙耳機透過 AAC 連接 iOS 延遲還要低上許多。因此加入「優化AAC」選項後,藍牙傳輸速度排名:優化AAC > aptX LL>AAC>aptX。

圖/Pexels

再來,討論音質的部分。影響音質的因素很多,耳機的整體配置都會有所影響,包括耳機共鳴體、驅動單體、組件搭配……等,再加上考慮到使用情境,若大多聽 KKBOX、Spotify、YouTube 等串流音樂,「優化 AAC」在音質與降低延遲取得平衡可以有很不錯的成效,提供使用者最佳的體驗。

怎麼選擇藍牙耳機?便利性、環繞音、低延遲

討論到最後,我們問到混音師 Hikari 對於藍牙耳機音質的評價,他坦率表示曾實際測試多款耳機。現有的藍牙耳機對專業混音師來說,完全難以達到工作所需要的音質,但他個人並不排斥在生活中使用。在通勤等生活情境中,藍牙耳機的「方便性」是他最在意的優點之一。

-----廣告,請繼續往下閱讀-----

對一般消費者來說,選擇耳機主要要考量喜歡聽哪種頻率的音樂,例如中頻很好的耳機,拿來聽蔡琴的聲音很理想,但拿來打遊戲可能就聽不到敵方腳步聲的聲音。

對Hikari來說,選擇合適的耳機,跟使用情境與慣聽的音樂屬性有很大的關聯,對想一邊舒適地聽音樂、又可以通話,甚至想要輕鬆玩遊戲的人來說,無線藍牙耳機肯定是最好的選擇啦。

以下是他的推薦名單,如果你也有各種心頭好,也不妨推薦給我們吧!

Hikari推薦耳機名單

  • 注重隔音、主動降噪(ANC),想隔絕外部噪音:
    Airpods Pro、Sony WH-1000XM4
  • 注重中低頻響應,適合電音、Dubstep聆聽且具備情境切換功能:
    jlab jbuds air executive
  • 低價但擁有不錯音質的超高CP值耳機:
    pamu scroll plus
  • 錄音與音樂製作,或是想要發燒耳機品質:
    Sony MDR-900ST、BEYERDYNAMIC DT1770 pro (所有藍牙耳機都不適合,請乖乖用類比耳機)
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。