0

1
1

文字

分享

0
1
1

積體電路不再漏電的明天?潛力股 MESO 讓電腦手機更小更快!

活躍星系核_96
・2020/09/28 ・1487字 ・閱讀時間約 3 分鐘 ・SR值 555 ・八年級

用科學預見半導體的未來!PanSci 泛科學現正強力徵件!邀請半導體領域專家、研究者、學生來與臺灣最大的科學社群分享你最懂的半導體科學主題~不管是評論、科普、還是圖文影音,都歡迎與我們聯繫:contact@pansci.asia

文/台大物理系大二學生 林彥全、林禹廷
台大數學系大二學生 董沛承

半導體 CMOS 積體電路設計製程末路

互補式金屬氧化物半導體 (CMOS) 是目前最廣泛使用於積體電路 (IC) 的設計製程,具有能量耗損較低、發熱量少等優點,所以現今的 IC 大多使用 CMOS 。但 CMOS 也逐漸遇到許多無法突破的極限,例如理想的電晶體在截止狀態時電流應該為零,但實際上依然有電流的存在,讓電晶體不斷耗電,就像關不緊的水龍頭一樣。

你可能會想:那把水龍頭鎖得更緊不就解決啦!可是把水龍頭鎖得更緊對應到電子元件就是加大電壓,加大電壓也會增加電路消耗的能量,所以 CMOS 已經沒辦法再更省電了。

除此之外,由於漏電流會隨著電晶體尺寸的縮小而增加,因此漏電流同時也限制了電晶體的大小,換句話說, CMOS 已經沒辦法再更小了。總而言之,為了做出更快、更省電的電腦,人類需要一種完全不同於 CMOS 的設計製程。

-----廣告,請繼續往下閱讀-----

劃時代的發明:MESO 裝置突破的瓶頸

為解決 CMOS 在發展上遇到的瓶頸,英特爾與柏克萊大學的研究人員提出一種全新的裝置──磁電自旋軌道耦合裝置 (MESO) 。

MESO 的運作概念如下圖 1 所示,首先對裝置輸入電流(即輸入電荷訊息),再將此電荷的訊息透過磁電效應 (magnetoelectric effect) 轉變為磁場的資訊,儲存在磁鐵中(圖 2 紅色區塊),隨後通入電流 I 供給,並利用自旋軌道效應 (spin-orbit effect) 將存在磁鐵中的資訊以電流與電壓的形式讀出。

換句話說, MESO 能透過輸入電流(I 輸入)決定磁鐵磁性的方向以及輸出電流(I 輸出)的方向,並且能用 I 供給當作整個裝置的開關。

圖 1 :為電晶體示意圖。雖然電晶體處在截止狀態,但仍會有漏電流 (ISUB) 的情形。圖\wikipedia
圖 2 :磁鐵內部磁場與電荷的轉換模式

具體來說, MESO 的運作模式如圖 3 ,他具有兩種運作模式,當 I 輸入向 x 方向輸入時,磁鐵磁性指向 -y 方向, I 輸出向 -x 方向輸出(圖 3-A),反之亦然(圖 3-B)。裝置中,磁鐵的兩種狀態就可以當作數位電路中的 0 跟 1 。有了 0 跟 1 就可以拿來做很多事情,例如日常生活中可見的手機、電腦,都是由數位電路所構成。所以 MESO 可以替代 CMOS 成為新的積體電路製程。

圖 3 :MESO 的運作模式。圖\改編自《Scalable energy-efficient magnetoelectric spin–orbit logic

MESO 和 CMOS 的差在哪裡?

MESO 跟 CMOS 比起來好在哪呢?從上一段可以看到 MESO 的結構和 CMOS 完全不同,所以 MESO 沒有漏電流的問題,因此可以順利的將裝置縮小並減少供應電壓,將裝置縮小意味著 IC 能有更高的邏輯密度,而減少供應電壓就能減少每次開關時的能量損耗,讓我們能繼續提升運算速度,而不讓原件過熱。

-----廣告,請繼續往下閱讀-----

此外,相較於 CMOS ,由於使用磁鐵的磁性作為儲存訊息的媒介, MESO 具有非揮發性(關閉時仍能保持訊息),因此可從待機迅速回到運作狀態,有著巨大的優勢。

MESO 可以在沒有恆定電流的情況下維持磁性,且能在超低功率的情況下運行,相較於傳統 CMOS 消耗的能量更少,運算速度也更快。對未來的發展,如人工智慧或是你家電腦等需要大量與運算的裝置提供更高效能的晶片。

不過,MESO 仍處於研發階段,有許多關鍵材料與技術尚未開發,距離商業化仍需一段時間,但相信將來 MESO 將會延續摩爾定律,創造超越 CMOS 的新世代。

參考資料

  1. Sasikanth Manipatruni, Dmitri E. Nikonov, Chia-Ching Lin, Tanay A. Gosavi, Huichu Liu,Bhagwati Prasad, Yen-Lin Huang, Everton Bonturim, Ramamoorthy Ramesh & Ian A.Young.(2019)《Scalable energy-efficient magnetoelectric spin–orbit logic》
  2. Sasikanth Manipatruni, Dmitri E. Nikonov, Chia-Ching Lin, Tanay A. Gosavi, Huichu Liu,Bhagwati Prasad, Yen-Lin Huang, Everton Bonturim, Ramamoorthy Ramesh & Ian A.Young.(2019)《Scalable energy-efficient magnetoelectric spin–orbit logic_Supplement》
文章難易度
活躍星系核_96
752 篇文章 ・ 120 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia