當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
-----廣告,請繼續往下閱讀-----
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray
第一個不好是物理限制:「延遲」。 即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第三個挑戰:系統「可靠性」與「韌性」。 如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。 所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
-----廣告,請繼續往下閱讀-----
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray
模型剪枝(Model Pruning)—基於重要性的結構精簡
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
-----廣告,請繼續往下閱讀-----
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
-----廣告,請繼續往下閱讀-----
邊緣 AI 的強心臟:SKY-602E3 的三大關鍵
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
三、可靠性 SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技
環保局表示,新北青年氣候論壇已邁入第四屆,今年更強化全球行動能量與國際視野,邀請多位國際產官學界專家參與暢談氣候行動實踐力,包括去年首次參與新北青年氣候論壇後,將再度來台的美國紐約荒野中心氣候行動主任 Jen Kretser,其獲白宮科技政策辦公室認可為「氣候教育和素養變革倡導者」,持續培養有潛力的青年成為氣候領袖,本次也將帶來全球青年氣候實踐行動的豐富經驗。
另外,論壇還將邀請強調社區永續及跨域人才培訓的日本 Glocal Center 主任 Hila Yamada、致力於建構永續生產與消費系統的韓國非營利組織 Hansalim 專案規劃 Park Ye-Jin、持續幫助在地社區提出應對氣候挑戰解決方案的馬拉威 Green Girls Platform 創辦人 Joy Hayley Munthali 共同交流。同時也邀請到前述 4 個國家的青年代表來到論壇現場,以行動沙龍形式進行國際交流,凝聚各國年輕人的思考與創意能量。
何飛鵬社長邀請我寫這篇導讀時,《成長的極限》(The Limits to Growth)系列書籍已被翻譯成近 40 種語言,全球銷售一千多萬本,被譽為 20 世紀最具影響力書籍之一。1972 年出版的本書源自傑伊.佛烈斯特(Jay W. Forrester)教授創立的 MIT System Dynamics Group 系統科學研究,由羅馬俱樂部(Club of Rome)支持其研究及出版。17 位科學家運用佛烈斯特的世界模型原型為基礎提出 World3 電腦模型,分析描述地球環境與經濟社會從 1972 年到 2100 年的可能未來景象並提出警示建議,由唐妮菈.米道斯(Donella Meadows)、丹尼斯.米道斯(Dennis Meadows)、喬詹.蘭德斯(Jorgen Randers)及威廉.貝倫斯(William Behrens)代表撰文出版成為世界第一本以電腦科學分析環境風險的報告。同年聯合國提出《人類環境宣言》。
本書所引發的跨世紀跨領域對話,可以從研究方法學的特性來理解。古有云:事實勝於雄辯。對於已經發生的事件及資料加以科學分析歸納,是為研究方法中的歸納法(inductive reasoning)。這種方法的好處是依據取得資料幫助吾人從經驗中學習,以及傳遞知識。然而,對於還沒有發生的未來可能,歸納法則可能受到限制或僅能以過去相關資料有限度的推測未來趨勢。演繹法(deductive reasoning)則是一種運用行為邏輯與科學分析推論未來可能發展的研究方法,可依據邏輯幫助吾人規畫未來情境並分析可能性。若是從科學研究角度,要隨著時代持續進步,最好是同時有從經驗學習的能力以及展望未來的能力,亦即歸納法加上演繹法的持續運用。反之,若將歸納法 vs 演繹法直接二選一,便容易產生對立觀點。
面對成長的極限與可能的崩潰,作者仍然採取積極的思考方式,建議人類從面臨成長極限的經濟模式反思典範轉移到永續系統(Transitions to a Sustainable System),為長存發展之道。因此作者提出了許多可能協助人類邁向永續系統的作法。惟面對未來發展,值得我們重視的並不僅於作者所建議的作法,亦或是再次爭論作者所提方法的精準度,而是我們是否能夠用非常審慎的態度、以科學方法為基礎來關注分析真實環境威脅與經濟及社會需求,進而可能找到兼容並進的永續發展路徑。作者也表示其研究是在試圖找出各種可能的未來,而不是要單一預測未來。他們鼓勵讀者多學習、多思考、並做出個人的選擇。
思索面對未來發展,心智模式非常重要。永續發展需奠基於人類自我覺察的視界與能力。挪威前首相、唐獎永續發展獎第一屆得主布倫特蘭(Gro Harlem Brundtland)所領導的聯合國環境與發展委員會(United National Commission on Environment and Development)在 1987 年發布著名報告:〈我們共同的未來〉(Our Common Future),為「永續發展」提供經典定義:「永續發展係指能滿足當今需求,卻不犧牲未來世代滿足其需求」。在諸多學者、倡議人士的持續努力下,永續發展成為一種理性看待世界的系統性思考,有了結合物理環境、工程系統、社會經濟文化背景的分析框架。永續發展試圖理解世界經濟、全球社會和地球的實體環境等三個複雜系統的互動。而為了實現永續的經濟、社會及環境目標,也必須達成政府和企業的良善治理。
-----廣告,請繼續往下閱讀-----
邁向永續系統的未來展望
教育與自覺非常重要,我們主動選擇的行為改變與經濟社會轉型,是邁向永續系統的未來展望。聯合國倡議推動的永續發展教育(Education for Sustainable Development, ESD)已將系統思考、自我覺察、未來情境策略規畫等能力列入未來人才核心能力培育綱領。2023 年《聯合國氣候變化綱要公約》(UNFCCC)第 28 屆締約方大會(COP28),更是首度盤點全球近200國氣候行動,正視具體實踐。
羅馬俱樂部沒有停止其主動選擇權和科學精神,在《成長的極限》出版 50 年後,發布了核心主張聲明,希望協助大眾正確瞭解該書所欲傳遞的訊息。並邀請原作者丹尼斯.米道斯和喬詹.蘭德斯再撰寫出版《極限與超越》(Limits and Beyond)一書,回應他們 50 年期間對相關重大議題的持續考證與反思學習報告。羅馬俱樂部仍持續出版其他以科學探索永續發展未來路徑的書籍報告。
MIT System Dynamics Group 持續推廣系統科學研究並成立永續發展倡議單位。國際系統動態學會(System Dynamics Society)在全球五大洲許多國家及區域設立分會,以推廣相關教育及產業社會服務。在臺灣,系統思考能力的培養已列入教育部頒布的十二年國民教育課綱(108 課綱),系統動態學的核心管理科學技術已經國科會核定成立全國第一個 ESG 產學技術聯盟。SDGs 與 ESG 等永續發展行動與相關政策已經在具體實踐過程中,如本書所建議的方針「In transition to a sustainable system」,以科學基礎和建設性的對話,大家一起集思廣益地球與人類發展典範轉移邁向永續系統。最後呼應本書以及聯合國的倡議及努力,「Towards sustainable system development from the limits to growth」,從成長的極限到永續系統發展的積極作為,是我們共同的未來。