Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

由泰利斯、畢達哥拉斯到亞里斯多德,古希臘如何開展科學思維——《月球之書》

時報出版_96
・2020/02/04 ・3327字 ・閱讀時間約 6 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者/大衛.翁弗拉許;譯者/林柏宏

科學的起源:以真實性質的角度來理解自然

二十世紀物理學家理查. 費曼(Richard Feynman,1918-1988)認為,當代物理學奠基於巴比倫人的數學方法,他們會以數學的方式來闡述問題,這種經驗能夠讓人學會歸納,進而發現自然原理。歐幾里得(Euclid ofAlexandria,西元前三世紀中期到西元前 285 年)的治學方法則與此相對,這位希臘思想家運用基本的邏輯規則,從我們稱為公設的基礎事實推導出更多複雜的定理。

製作於十九世紀晚期的古希臘地圖。圖/時報出版提供

在大約西元前三百年時,歐幾里得的方法很流行,而他的演繹法發源於更早的幾世紀前,當時的希臘思想家剛開始大膽地以真實性質的角度來理解自然。

對於月亮、太陽與眾行星性質的了解要真正有所進展,希臘的天文學家就得接受量化的方法。他們會需要巴比倫人研究天文的方法,包含實際數學運算,以及從單調的天象觀測中蒐集大量資料。他們的研究必須將這些資料融合希臘文化特有的、探討本質的思維。這種思維是從西元前六世紀的愛奧尼亞人社群開始的。

愛奧尼亞地區位於今日土耳其西部沿岸的城市與島嶼,最早開始推斷大自然是可探究、可預測的希臘人都來自這一帶,他們認為大自然的運作與眾神的意志無關。這種去除神祕面紗的世界觀由米利都的泰利斯起頭,從而解放了愛奧尼亞人的思考,開始為自然現象提出物理學的解釋模型,對科學的進步發揮了重要作用。

然而,希臘世界另一邊的哲學家都反對泰利斯的論點,這些哲學家的根據地是位於南義大利的希臘殖民地─大希臘(Magna Grecia)。

在這場論爭裡,一些大希臘區的哲學家其實是最早發現月亮是球形而非一圓盤的人,有一批大希臘的人還引進了會讓希臘天文學突飛猛進的數學知識。但是,大希臘區並無科學思維,這裡的人高張神祕主義,鄙視實證精神,影響力最大的神祕主義團體還掩蓋、打壓與其主張相左的新發現。

-----廣告,請繼續往下閱讀-----

諷刺的是,這個神祕主義勢力團體的創始人,出生於愛奧尼亞區中心地帶薩摩斯島(Samos)的畢達哥拉斯(Pythagoras,約西元前 570-495),其實就學於泰利斯門下,並由此展開他的學術之路。

泰利斯預測日食,阻止戰爭

要是西元前二千六百年就有諾貝爾和平獎,肯定會頒發給米利都的泰利斯。

他出生時,正是巴比倫文明崛起,催生出前所未有的知識創發活躍期,他也漸漸愛上數學與天文學。愛奧尼亞隸屬於呂底亞王國(Lydian),不過泰利斯或許去過巴比倫,不然就是取得了巴比倫的天文學文獻。不管是哪種情形,泰利斯都認識到日食與月食的沙羅週期,這與他的想法不謀而合,他本來就認為神明與自然無涉。

泰利斯畫像。描繪這位希臘天文學家的是荷蘭次畫家兼版畫家雅各·德·葛恩(Jacob de Gheyn),這是他 1616 年完成的作品。十七世紀時,荷蘭的鏡片磨製技術領先全球,因此這幅畫時空錯亂地讓泰利斯帶著一副眼鏡,泰利斯預測了西元前 585 年的一場日食。圖/時報出版提供

當時呂底亞正與其敵對國之一,米迪亞(Media)交戰,泰利斯知道雙方指揮官都是迷信的人,便提出警告說,眾神要求他們休兵,並且會在西元前五百八十五年春季的某一天使太陽暗下來,以表明神意,其實泰利斯根據沙羅週期進行計算後,已經得知這一天應該會發生日食。

儘管泰利斯自己未察覺,但當他如此運用沙羅週期時,實際上計算的正是月球在太陽前方的移動。總之,日食確實出現了,戰事也平息了,泰利斯在愛奧尼亞聲名大噪,想向他學習自然研究的人蜂擁而至,其中一位就是從薩摩斯島搭船前來的畢達哥拉斯。

-----廣告,請繼續往下閱讀-----

當時的米利都是個富庶的港口城市,當地的希臘居民不願向帝國統治者效忠,他們獨立自主,擁抱新知,或許是因為常從各地的航海貿易商口中得知新觀念,長此以往,泰利斯與其他米利都人的思考方式開始變得新穎激進。

比方說,他們認為地震是由於海中巨浪擊打陸地,土地陸塊是來自海水淤積堆造而成。這些關於自然的解釋終究會被證明並不正確,但重要的是,當時他們的想法和其他地方的人不一樣,他們的想法是可以接受驗證、有可能被否證推翻的,與那些虛無縹緲的神明無關。

泰利斯和在他之後的愛奧尼亞人之所以與眾不同,乃在於他們斷定,認識自然是可行的,可以接受觀察與分析─ 而且,對於他們之中某些人而言,也能透過試驗實證。

為封口無理數的發現而殺人的畢達哥拉斯

薩摩斯的畢達哥拉斯是目前已知世上最早指出月亮是球狀的第一人,他會這麼想或許一開始源自觀察的結果,例如發現月球明暗分界線(lunarterminator)是彎曲的,這道線區分了月球被照亮與未被照亮的兩部分。

-----廣告,請繼續往下閱讀-----

畢達哥拉斯畢竟是泰利斯的學生,而且比同時代的人更早認出晨星(the MorningStar)與暮星(the Evening Star)是同一顆物體─ 金星。這種認知來自於觀察,雖然畢達哥拉斯後來排斥觀測,轉而堅持藉由純粹的思索即可了解宇宙。

繪有畢達哥拉斯的十八世紀蝕刻畫,以義大利畫家拉斐爾(Raphael,1483-1520)在〈雅典學院〉(The School of Athens,1511)一畫中對這位希臘思想家模樣的詮釋為摹本。圖/時報出版提供

旅居埃及多年,又去了巴比倫之後,畢達哥拉斯帶來了一項定理,直角三角形斜邊圍成的正方形面積,等於兩短邊各自圍成正方形的面積和。這不是他自己想出來的,埃及人與巴比倫人早將這觀念實際運用在生活中好幾百年了,巴比倫甚至發展出三角學這門數學。無論如何,由於畢達哥拉斯將這個定理引介給希臘人,未來幾世代探究大自然所需的數學知識才有機會出現。

但對畢達哥拉斯而言,數學不僅是工具,而是宗教信仰。

球狀月亮的想法只是畢達哥拉斯兄弟會神祕思想的一部分,畢達哥拉斯在位於義大利的克羅敦殖民地(the Croton colony)創立了這支教派。畢達哥拉斯教徒主張天界的「星球和諧」,認為月亮與其他星體不只是球形,而且是完美球形,繞著絕對的圓旋轉,每顆星球會產生特定的音符。再加上畢達哥拉斯輕視觀測法,凡是和其完美和諧觀念牴觸的新發現都一貫打壓。

其中一例是他的學生發現數字 2 開平方根會得到無理數,也就是無法化作分數,不能以兩個整數做為分子與分母來表示。謠傳畢達哥拉斯為了封口,謀殺了那個學生。

-----廣告,請繼續往下閱讀-----

但他並不需要依靠暴力來提倡自己的學說。不久後,柏拉圖(Plato,約西元前 427-347)將熱心採納畢達哥拉斯的神祕主義,包含那些完美球形、圓形軌道、對觀察實測的輕蔑,以及阻撓接下來幾世紀科學進展的一切花俏玩意兒。

採納實證主義的亞里斯多德

和他的老師柏拉圖比起來,亞里斯多德比較有科學精神。

雖然兩人的出發點都是想將畢達哥拉斯、巴門尼德提倡的這類神祕主義哲學與愛奧尼亞人的自然主義整合在一起,柏拉圖終究傾向了神祕主義,亞里斯多德則對愛奧尼亞思維更有好感。若提到愛奧尼亞的實證主義(empiricism)── 主張知識必須透過感官作用的經驗才能取得,兩人的分歧會特別明顯。

義大利文藝復興時期畫家拉斐爾在〈雅典學院〉(1511)一畫中描繪了古典時期眾多知識界巨星。正中央兩位面對面的人是柏拉圖(左)與亞里斯多德(右)圖/時報出版提供

愛奧尼亞人泰利斯觀察尼羅河的沉積土層後,做出了假設,認為全世界的大塊陸地都是經由類似過程,從一原始大洋中形成的。而泰利斯的學生、米利都的阿那克西曼德(Anaximander of Miletus,西元前 610-545)觀察幼魚和人類的差異,並在看過化石骨骼後,構想出早期版本的生物演化假說。綜合他們的所見所聞,愛奧尼亞人了解到,大自然不停地在變動。

亞里斯多德在研究如生物這一類地球上的物質時,大致上採納愛奧尼亞式的實證主義與變化觀念,可是一旦主題來到天象,他就表現出神祕主義的遺緒。畢達哥拉斯有個很妙的想法,認為天上的星體都是繞著正圓形軌道轉的完美球形,亞里斯多德深受此思想荼毒,同時還採用巴門尼德的主張,認為萬物恆定不變,結果形成了以下觀點:

-----廣告,請繼續往下閱讀-----

星星、太陽與行星都是恆久不變的,有永遠固定的幾何形狀,地球是墮落不潔的,也因此不完美。違背這完美理念的還有月球表面的暗黑地貌,亞里斯多德對此的解釋是,月球和地球走太近了,太靠近存在於地表上的汙染,指的就是人類和其他生命形式。

——本文摘自《月球之書》,2019 年 9 月,時報出版

 

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
4

文字

分享

0
6
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

2

0
1

文字

分享

2
0
1
秋季星空中一抹光亮:北落師門殘屑盤的觀測史——《科學月刊》
科學月刊_96
・2024/01/19 ・4118字 ・閱讀時間約 8 分鐘

  • 謝承安/ EASY 天文地科團隊成員,因喜愛動畫《戀愛中的小行星》開始研究小行星,現就讀臺大物理系。
  • 林彥興/清大天文所碩士, EASY 天文地科團隊總編輯,努力在陰溝中仰望繁星。
  • Take Home Message
    • 殘屑盤是恆星周遭的盤狀結構,由於北落師門殘屑盤離地球僅 25 光年,數十年來天文學家時常會藉由觀測它以了解殘屑盤的特性。
    • 去(2023)年韋伯望遠鏡的觀測結果與過去不同,顯示北落師門殘屑盤其實分成多個部分,更讓他們相信北落師門中有多個行星環繞。
    • 韋伯望遠鏡提供的影像還揭露許多來源未知的構造及現象,例如內側殘屑盤與內側裂縫等,都有待繼續探索。

北落師門(Fomalhaut)又稱南魚座 α 星,是秋季星空中著名的亮星之一。去年 5 月,以美國亞利桑那大學(University of Arizona)天文學家加斯帕(András Gáspár)為首的研究團隊在《自然天文學》(Nature Astronomy)期刊上發表,他們藉由詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST,簡稱韋伯望遠鏡),在北落師門周圍殘屑盤(debris disk)中首次發現了「系外小行星帶」的存在。韋伯望遠鏡拍下美麗的照片,也瞬間席捲各大科學與科普媒體的版面(圖一)。

圖一:韋伯望遠鏡在波長約 25 微米(μm)的中紅外線拍攝的北落師門影像,首次呈現北落師門殘屑盤中的三層結構。(NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

天文學家選擇北落師門作為目標並非偶然。半個世紀以來,北落師門一直是天文學家研究殘屑盤時的首選目標之一。韋伯望遠鏡的新影像為我們帶來什麼新發現?過去與現在的觀測方式又有什麼差異?本文將帶著大家一起回顧北落師門殘屑盤的觀測史。

行星相互碰撞後的殘屑盤

殘屑盤是環繞在恆星周遭,由顆粒大小不一的塵埃所組成的盤狀結構。如果讀者們聽過行星形成的故事,也知道行星是從恆星四周、由氣體與塵埃組成的「原行星盤」(protoplanetary disk)中誕生,那你或許會認為殘屑盤可能就是行星形成後剩下的塵埃。但實際上並非如此,在恆星形成初期的數百萬年間,原行星盤中的氣體和塵埃會被恆星吸積或是吸收恆星輻射的能量後蒸發,同時也會聚集成小型天體或行星,這些原因都會使原行星盤消散。而殘屑盤則是由盤面上的小行星等天體們互相碰撞後,產生的第二代塵埃組成(圖二)。

圖二:殘屑盤想像圖(NASA/JPL-Caltech)

這些塵埃發光的機制主要有兩種。第一,塵埃本身可以散射來自母恆星的星光,從而讓天文學家能在可見光與近紅外波段看到它們。第二,塵埃在吸收來自恆星的星光之後,以熱輻射的形式將這些能量重新釋放。由於恆星的光強度與距離成平方反比,愈靠近恆星,塵埃的溫度就愈高,因此發出的輻射以近紅外線為主;反之,愈是遠離恆星,塵埃的溫度就愈低,發出的光就以中遠紅外線為主。

-----廣告,請繼續往下閱讀-----

觀測目標:北落師門

北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。

● 哈伯的觀測

2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。

圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)

● ALMA 的觀測

ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。

圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)

● 韋伯望遠鏡的觀測

最後則要來看去年韋伯望遠鏡所使用中紅外線儀(mid-infrared instrument, MIRI)拍攝的影像(圖五)。與之前的觀測不同,這次的影像顯示北落師門的殘屑盤其實分成幾個部分:

-----廣告,請繼續往下閱讀-----
圖五:韋伯望遠鏡在 25 微米波段觀測到的北落師門殘屑盤。(NASA GSFC/CIL/Adriana Manrique Gutierrez;NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

首先,哈伯望遠鏡與 ALMA 之前就已觀測到的塵埃環,它的半徑約 136~150 天文單位(AU)、寬約 20~25 AU,而溫度則落在約 50~60 K,與太陽系的古柏帶(Kuiper belt)十分相似,因此被稱為「類古柏帶環」(KBA ring)。雖然在觀測上的溫度相似,但其實此塵埃環與北落師門的距離是古柏帶到太陽的四倍;不過北落師門光度約為太陽的 16 倍,根據前述提及的平方反比關係,才導致兩者的溫度相近。此外,在更外層名為「暈」(halo)的黯淡結構則對應古柏帶外圍天體密度較低的區域。

再來,韋伯望遠鏡還發現了更多未解的謎團:內側殘屑盤(inner disk)與中間環(intermediate ring)。其實早在本次韋伯望遠鏡的觀測之前,天文學家就已經從北落師門的光譜推測,北落師門的殘屑盤中除了存在前面提過的類古柏帶環之外,應該還有另一批更靠近恆星、溫度更高的塵埃,溫度與大小對應太陽系中的環狀小行星帶。但當韋伯望遠鏡實際觀測後,卻發現與太陽系的環狀小行星帶相比,北落師門有著相當瀰散的內側殘屑盤。為什麼會有這樣的不同呢?目前天文學家也不清楚,仍待進一步研究。

最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。

此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。

-----廣告,請繼續往下閱讀-----

另一方面,天文學家也藉由數值模擬發現,如果僅考慮來自北落師門的重力影響,類古柏帶環應該要比觀測到的更寬才對。因此他們推測,很可能在類古柏帶環內外兩側有兩顆行星,像控制羊群的牧羊犬一樣以自身的重力限制塵埃移動,才產生了這麼細的塵埃環。

● 更多的殘屑盤觀測

北落師門雖然是一顆年齡僅4.4億年的年輕恆星,卻已經是一個擁有殘屑盤、形成行星的成熟恆星系統。而來自韋伯望遠鏡的最新觀測結果,無疑讓天文學家更深入地認識殘屑盤中複雜的結構,也更令他們相信北落師門系統中有多個行星環繞。

不過,北落師門系統仍舊有許多未解之謎。例如為什麼太陽系有著環狀的小行星帶,北落師門卻是瀰散的內側殘屑盤?在無數的恆星中,究竟是太陽系還是北落師門的殘屑盤構造比較常見?殘屑盤中是否有行星存在?如果有,在北落師門的演化歷史中又扮演著怎樣的角色呢?這些問題都有待更多的觀測與理論模擬來解答。

在北落師門之後,觀測團隊預計將韋伯望遠鏡指向天琴座的織女星(α Lyr, Vega),以及位於波江座的天苑四(ε Eri),兩者都是離地球非常近且擁有殘屑盤的恆星。其中織女星的溫度與質量比北落師門更大,而天苑四的質量與溫度雖然比太陽小,卻有強烈的磁場活動。藉由觀測不同系統中殘屑盤的性質差異,並與太陽系進行對比,不僅能更加認識殘屑盤的起源、與行星的交互作用,更能理解我們自己的恆星系中,數百萬顆的太陽系小天體從何而來。

-----廣告,請繼續往下閱讀-----

JWST 原始資料的處理過程影片介紹,非常值得一看!

  • 〈本文選自《科學月刊》2024 年 01 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
  2. MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
  3. Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
-----廣告,請繼續往下閱讀-----
所有討論 2