網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

人類的刻板印象,該怎樣讓人工智慧不要有樣學樣?──「AI與性別論壇」

Suzuki
・2019/11/16 ・2586字 ・閱讀時間約 5 分鐘 ・SR值 578 ・九年級

人工智慧(Artificial Intelligence,AI)是這世代的熱門詞彙,以後不用公車司機交給 AI 就好,以後不用醫生看診交給AI 就好,以後不用警察巡邏交給 AI 就好,有種「只要有 AI,一切沒問題」的感覺。然而,AI 沒有想像中那麼神,反而很笨無法指出自己的錯誤,還會複製人類的刻板印象。

  • 知名圖庫 ImageNet 將白色禮服的美國新娘的圖片標註為「新娘」、「禮服」,而將穿著紗麗的北印度新娘圖標記為「表演藝術」。
  • 常用於語言分析的「詞嵌入」演算法(word2vector),將「女人」和「家庭主婦」放在同一個詞組中。
  • Nikon 相機的眨眼偵測功能,總是認定亞洲人在眨眼。註1

身為眼睛小的女人的我看到這些結果,真的快氣到翻桌,難道眼睛小錯了嗎!沒想到這種超「政治不正確」的錯誤居然發生在AI上啊!

餵給機器學習的圖片來源若以美國為主,機器就會將白色的新娘標記為「新娘」,右方的則標註為「表演藝術」。圖/截圖自網頁

為什麼 AI 會犯這樣的低級錯誤?我們應如何「教育」AI,以避免造成學習偏差?

面對這些問題,2019 年 10 月,科技部人社中心辦理了「AI與性別論壇」,邀集性別研究學者和理工背景的學者共同研究、討論,希望未來能朝向性別平等的發展方向。

歧視與偏見從何而來?打開演算法的黑盒子

對深度學習演算法有概念的人都知道:AI 並不能夠如神一般憑空生出答案,其運作邏輯是提供數以萬則的內容,讓它學習如何判讀資料,學成完畢再提供其他內容,就能吐出答案。

假若人提供給 AI 的資料本身就有偏見,AI 做出的分析也有偏見,要知曉 AI 為何產生偏見,就要從演算法如何學到歧視來談起。

跨足性別與計算社會學研究的高醫性別研究所助理教授余貞誼表示,演算法的進行過程必定有「人為操控」的成分,可從演算法操作的四個步驟來說明:

(1)決定測量指標

當我們仰賴 AI 來做判斷時,勢必得將社會科學問題變成「可量化」的數值指標,例如在判斷求職者是否具備「領導力」時,就有衡量領導力的有效指標,可能是下屬的服從性、情緒管控程度……等。

「所以在決定用什麼測量指標時,已經蘊含特定的價值選擇。」余貞誼說。這就像是當我們以「年收入」作為衡量職業價值的指標時,注定只有工程師、醫生是最有價值的。

(2)餵資料進演算法

余貞誼分析ptt各版上與「結婚」相近的詞彙。圖/簡鈺璇

「給機器什麼資料就會吐出什麼結果」,她表示在 PTT 男女版、gay 版和拉版上進行詞嵌入分析,就會發現「結婚」、「生小孩」的詞彙在各版的意義不同。因此,若餵給機器的資料有偏差,得出來的結果也會有問題。

(3)資料的篩選與清理

以詞嵌入分析來說,一組詞彙的關聯詞組可能有 100 多個啊!為什麼工程師只挑 20 個詞組留下來呢?這 20 個詞組能反映真實的狀況嗎?

(4)將大數據變成「厚數據」

AI 得到的東西是簡答,但科學家需要將它再詮釋,解釋為何會跑出這樣的結果,錯誤的詮釋會得到不同的結果。像是 AI 臉部辨識系統傾向將黑人偵測為犯罪者,但不會告訴我們為什麼是這樣的結果,若政府因為錯誤詮釋,認為特定族群就是天生好鬥,而採取有問題的政策,後果就不堪設想。

解決AI偏見的幾個解方

那麼面對這堆演算法的問題,有沒有辦法解決呢?如何避免機器成為「性別盲」和「種族主義者」呢?學者提出以下幾個解方:

(1)透明化演算法

「陽光是最好的殺蟲劑」余貞誼認為,演算法被認為是黑箱,是因為大眾不知道許多演算法的設計過程及資料的建立方式,她建議工程師應該將演算法的過程公開,讓大家有檢視與討論的機會。

(2)建立檢核演算法的機制

有些演算法的參數可以被歸納,但更多時候是我們餵給機器一堆東西,根本不知道它運算所考慮的參數。

黃從仁把AI當成人來研究,測出機器人對美的判斷標準,結果發現塗白全臉的分數最高。圖/簡鈺璇

臺大心理系助理教授黃從仁就把AI當成人來研究,透過實驗法與觀察法,測出線上選美比賽的判斷標準,找到AI的bug所在,原來把臉塗成全白在比賽中會拿下冠軍。也許用回推的方式,有助於我們理解AI的侷限與偏見。

(3)理解資料建立的歷史,及它所反映的權力關係

臺大社會系教授吳嘉苓說:「科技使用某程度反映我們在這個社會中的權力關係。」像是輔助型機器人、語音助理總是女性,戰鬥型機器人則為男性,作為程式設計者需要意識到這個問題,去思考為什麼要這樣設計。

圖/吳嘉苓認為,科技使用反映社會的權力關係,值得大家好好思考。圖/簡鈺璇

科學領域中性別比例均衡也是能讓演算法價值多元的方式,吳嘉苓提到,世界經濟論壇的統治指出,在AI研究領域中男性高達78%,而女性僅有22%。

(4)從AI 到 AIs 促成演算法間的對話

臺大語言所副教授謝舒凱表示,AI 應用的目的就是要優化分類效率,而非以價值多元為取向,假使你要機器辨析誰是男生、誰是女生,你不能要機器體認到穿裙子的人可能是男生吧!因為穿裙子又是男生機率太難估算了。

此外,深度學習常是 supervised(監督式)學習,需給電腦正確答案,但一來人本身就是有偏見的,二來電腦若要考慮個別差異,給出不同的答案,那麼注定犧牲運算效能。

謝舒凱認為,AI追求效能優化與我們期待的價值多元是互相抵觸的。圖/簡鈺璇

謝舒凱坦言,科技部訂定「人工智慧科研發展指引註2的立意良善,強調AI研究發展要有「以人為本」、「永續發展」及「多元包容」的核心價值,這牴觸 AI 的發展本質,所以能做的事很有限。

「From AI to AIs」才是重點,他認為目前偏向通用演算法的發展方式,大家都是根據某些 code 做改良,但單一演算法稱霸容易產生盲點,因此演算法的開發也應該多元,讓不同 AI 間可以互動和比對,「社會學家應該做出為人類發展的AI!」

行文至此,我們或許可以思考 AI 的發展意義,以及 AI 發展中所帶來的得與失,也許就會發現很多問題根本不適合用 AI 解決,而控制與效率也未必是最好的價值。

註釋

  1. AI can be sexist and racist — it’s time to make it fair
  2. 科技部訂定「人工智慧科研發展指引」 完善我國AI科研發展環境

文章難易度
Suzuki
18 篇文章 ・ 0 位粉絲
超純社會組學生,對未知的一切感到好奇,意外掉入科技與科學領域,希望在猛點頭汲取知識的同時,也能將箇中妙趣分享給大家。


0

13
5

文字

分享

0
13
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
115 篇文章 ・ 253 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》