1

0
0

文字

分享

1
0
0

網路酸民、網路霸凌不可取,我們該如何避免自己也成為「鍵盤魔人」?——《惡魔不是天生的》

商周出版_96
・2019/11/14 ・3138字 ・閱讀時間約 6 分鐘 ・SR值 552 ・八年級

匿名性將我們去個人化,少了臉孔與姓名,多了更多傷害。圖/GIPHY

感知匿名性被發現是包括網路霸凌等許多網路上不當行為的關鍵預測指標。

雖然研究發現有許多人不需要匿名性就會在網路上謾罵或發洩情緒,匿名性讓我們更有可能按照網路群體行為與規範行事。因此,如果有些人會在網路上做出一些混蛋舉動(總是有人暴力會這樣做),有了匿名性讓我們更可能也成為那樣的混蛋。

根據一份網路匿名性的綜合分析研究,在視覺匿名性時,也就是我們知道其他人無法看到我們的照片或影像時,上述說法尤其如此。

有些人提出,這是因為這類匿名性將我們去個人化的緣故。它讓我們比較不像個個體,少了臉孔與姓名,更像是網路上某個貢獻自己文字的無形體小斑點。而這些網路上的小斑點可以做出相當惡毒的事情。

網路霸凌是邪惡的行為嗎?

一般認為網路上的霸凌比現實生活中的霸凌行為更惡劣,雖然通常不太會涉及身體上的暴力,但部分原因是這種行為更公開,且通常不知道犯人的身分。

身體與心理上的霸凌都會造成傷害!圖/GIPHY

另外一個問題是,跟身體上的霸凌不同,網路霸凌會在網路上無影隨形地緊跟著我們,這使得我們很難,甚至是不可能擺脫這件事。網路霸凌會是造成自殺、心理健康問題,以及像是離職或退學等生活型態轉變的主要因素。

這會引發出一個問題,即這是誰造成的?

是誰造成了這種霸凌行為?

把網路世界分成謾罵與非謾罵兩個部分這樣的想法十分誘人。

我們,是行為端正的人;他們,是網路小白。但你可能也會刻意在網路上寫些攻擊或傷害某人的東西。我也是。我會盡量保持禮貌,但我也不會在推特筆戰時輕易投降。在網路上很容易引發戰火,而我們也會在網路上說出那些我們無法指著那個人的臉說出的話。

找到所謂的「加害者」就好了嗎?圖/GIPHY

賈斯丁.鄭(Justin Cheng)與其同僚著手調查了此事。二○一七年時他們發表了一篇論文,在其中他們問道:

「謾罵是特別反社會的個體,還是普通人造成的呢?」(普通人指的是你和我這種,網路上的「好」居民。)

他們讓六百六十七人完成一份需時五分鐘的網路問卷,其中包含了邏輯、數學與文字問題。這些人在不清楚實際狀況的情況下,有半數拿到了簡單的問題,另一半則是拿到了困難的問題。

拿到簡單題目這組得要解碼像是「PAPHY」(「Happy」)這種變位詞,拿到困難題目這種則得解碼像是「DEANYON」(「Annoyed」)這種詞。再者,問題最後,簡單題目組在做完題目後會收到的評語是他們答的很好,分數高於平均,困難題目組做完後會收到答的很差,分數低於平均的評語。

人們一般痛恨表現低於平均,所以這個動作會讓人產生好跟壞兩種心情。

研究人員想要讓開心與暴躁的參與者把這個情緒帶進下一階段的實驗。下個階段,他們要求參與者以匿名身分參與網路討論。這項研究的時間點在二○一六年美國總統大選前導期,他們給參與者看了一篇解釋為何女性應該投給希拉蕊.柯林頓(Hillary Clinton)的文章。

文章下方,前三則評論是抱持中立或負面觀點。文章與這幾則評論都是實際從網路上擷取的。

  • 負面謾罵貼文的範例為:「是啦,不管怎麼樣,都要含淚投出賣華爾街、說謊、允許虐待行為、很快就會成為重刑犯的未來總統。為你女兒投下這一票。你真的是個楷模呢。」
  • 另一方面,中立─正面的貼文內容像是「我是位女性,我不認為妳應該只因為她是名女性而投給女性。會投給她是因為妳相信她應該得到這一票。」

研究人員發現,有負面情緒的參與者比有正面情緒的參與者回覆了更多謾罵評論,特別是他們在接觸到其他人的謾罵評論後更是明顯。

在負面情緒或負面內容後發文的參與者,有六八% 的參與者會回以謾罵貼文,幾乎是在正面情緒或正面內容後發文的參與者的兩倍之多(三五% )。似乎跟現實生活類似,當我們正處於暴躁情緒,而其他人寫了很混球的內容時,我們非常有可能在網路上扮演混球的角色。

為什麼所有人都有可能會「在網路上扮演混球的角色」呢?

作者解釋說,這是兩種過程的結果。首先是社會傳染(social contagion),這涉及了數十年來的研究所顯示的,人類的行動方式通常會根據他周遭人的行動而定,情緒、行為和態度都會彼此傳遞。

與此事相關的想法就是正規化(normalisation)─許多人都在做某件事情時,我們會覺得做或這樣寫是正常,甚或是適當的行為。

所有人都可能成為加害者。圖/GIPHY

正規化也意味著,只要照著其他人的方式做,就會覺得這件事不會造成負面後果。我們也常會害怕做出違背常規的事情,畢竟我們不會想成為被騷擾的目標。

正如同作者的陳述,「利用先前的研究來解釋傳染的機制,參與者一開始閱讀這篇文章時可能會有負面反應,但由於自我控制或環境因素,不太可能直接把這種情緒顯露出來。負面文本透露出其他人也有類似反應的證據,使得他們更能接受自己也跟著表達出自己的情緒。」

除此之外,「負面情緒進一步強化了他們閱讀這篇文章時察覺到的負面態度,並消除了自我抑制,讓參與者更有可能發洩出不滿情緒。」

根據作者的說法,他們藉由這項對網路評論所組成的大規模研究表示,「心情與討論文本加在一起,比個人過去謾罵的歷史更能解釋謾罵行為」。

換句話說,文本可能比穩定的特質更重要。任何人都可能成為網路上惱人的謾罵者,就連你也有可能。

  • 編註:此處的文本亦可譯成「脈絡」。

想要避免成為「混球」,我們可以怎麼做?

科技正展現出新的賦權與剝削、教化與羞辱方式。不過我們在網路上能成為糟糕的人,不代表我們就能合理化這種行為。如果你在線下不是個混球,在網路上也別當這種人。要避免此事,以下兩點能幫助你:

  1. 重新找回你在網路體驗中的人性吧。在網路上面對某人時,想像他真實或可能的面貌。想像他們回應時的情緒、在你的數位生活中,這些人最後會面臨的結果。在網路上,請保持友善態度。
  2. 在網路上發文時,請以有一天你會在宣誓作證時大聲念出文章內容的態度來寫。你在網路上所寫所說的大部分內容,都可以作為將來在法庭上攻擊你的素材。我在擔任專家證人時,時常看到有人呈上推特、臉書的訊息和電子郵件的內容,作為法庭上的證據。過去曾在網路上張貼放肆言論的話,有這段歷史對你一點好處也沒有。網路從來都不會忘記你的所作所為。
愛人或傷人,只在一念之間。圖/GIPHY

我們全都是這個閃亮的網路新世界之中的公民。只有靠大家努力,才能讓這個新世界成為我們想要生活在其中的場所。

網路還是有希望的。在這個「蠻荒網路世界」中,已經有很多阻撓網路「邪惡」成功作亂的方法。

線上商城對於自家網站可以販售什麼物品採取了應有的立場。國際間已有許多人在努力打擊線上兒童情色內容的散布。暗網在警方介入並確定販售違禁品的使用者身分後,已逐漸明亮。各個公司也陸續成立 AI 倫理董事會。這是個好的開始。

然而,一次對抗一名駭客、一位酸民或一個機器人是沒用的。面對這項挑戰,單靠傳統犯罪學與警力是不夠的。我們得帶上那些網路阿宅。以火攻火、用機器制服機器、用駭客對抗駭客,AI 對抗 AI。

最重要的是,我們得成為更善盡職責的消費者與科技的創造者。

——本文摘自《惡魔不是天生的:心理學家帶你走進那些看不見,卻真實存在的人性黑暗面》,2019 年 7 月,商周出版

文章難易度
所有討論 1
商周出版_96
117 篇文章 ・ 353 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
2020 年公民科學事件簿:#長新冠(#Long Covid)
A.H._96
・2023/10/20 ・5564字 ・閱讀時間約 11 分鐘

通過患者主導的研究和患者主導的行動主義,
患者似乎正在編寫第一本關於長新冠的教科書

(Amali Lokugamage, 2020 而後被世衛總幹事引用1

時空回到 2020 年 5 月下旬,台灣的新冠疫情頭條新聞是國內新冠肺炎疫情趨緩,連續超過一個月沒有本土確診病例,然而全球確診數卻已衝破 500 萬大關 2。那是台灣全民和網路社群每日為 +0 歡欣鼓舞的日子,清零台灣很難想像其他國家在疫情狂飆下的生活樣貌。

全球大部分國家在封城與疫情無法控制的脈絡下,原本防疫科學辭典裡沒有的名詞,在 2020 年春季歐美英語使用者的網路社群中漸漸流傳開來。由於網路社群媒體允許患者在封鎖與身體狀態不佳的限制下,在網路社群中相互尋找和資訊交流,產生共鳴與共識進而發展出一個共通術語,也就是我們現在熟知的「長新冠(Long COVID)」或國內較不熟悉的另一個相似詞「長途運輸者(Long-hauler)/長途運輸的新冠 (long-haul COVID) 3」。

我們現在知道的「長新冠」已不是網路世界中的虛擬事件,而是科學家和國際組織認定的「科學物件 (scientific object)」。世界衛生組織正式定義:新冠後症狀(Post COVID-19 condition ),簡稱長新冠(Long COVID) 是指在初次感染新冠病毒三個月後繼續或出現新症狀,症狀持續至少兩個月,無法用其他診斷來解釋的病症 4。長新冠患者的發病率也從早期研究的 10%,20% 至近期《自然》期刊《科學報告》5 所敘述的 30-60% 。此篇論文主要提出感染新冠兩年後仍對免疫系統造成不良影響,再次令人不僅感嘆新冠的長尾還真是長,不過我們關注的焦點是論文中的這段敘述:

“有趣的是「長新冠」一詞是由倫敦大學考古學家艾爾莎・佩雷戈(Elsa Perego)在推特上推廣來自患者創造的術語而興起的。”

圖一:網路社群廣用的主題標籤來描述或分享長新冠資訊。圖/作者提供

這個來自 2020 年春天「患者創造的術語」, 2021 年 10 月 6 日世衛公布長新冠的正式定義,雖然使用的是「新冠後症狀(post COVID-19 condition)」,但長新冠仍是最通用的術語。在今年(2023)的 7 月 31 日美國衛生與公眾服務部(Health and Human Service, HHS)宣布正式成立「長新冠研究與實務辦公室 (the Office of Long COVID Research and Practice)」,同時也啟動了長新冠的臨床試驗 6。這場網路社群的公眾參與科學論述理念,由下而上的草根運動,進而引起廣泛群眾社會良知並驅動科學家研究,最後促成相關政策組織的成立過程,即是社會學家所稱的「公民科學(citizen science)」7

那麼我們不禁好奇,這一切是如何開始的?

現在若按照世衛的「長新冠」定義,感染三個月後持續二個月症狀合計至少五個月的病程,那麼文獻上 2020 年 5 月這個時間點,反應了歐美國家初期大規模感染後,累積一定數量患者在確診後「理論上康復」但卻持續有各種症狀困擾的情形。當時各國的衛生當局和醫療機構尚未認識到新冠感染造成長期後遺症的可能性,而世衛最初資訊亦表示新冠輕症感染者的病程平均持續兩周。

佩雷戈在 2020 年 5 月 20 日(英國時間)是目前文獻上記載最早的長新冠推文,後續網路社群媒體陸續出現如圖一所標示與長新冠有關的主題標籤。佩雷戈與其他科學家 2020 年 9 月發表了一封公開信,標題是「為什麼我們需要患者所提出的『長新冠』術語」,說明長新冠一詞強調了當時輕症卻持續超過二周以上的多種後遺症,這個術語有助於認識新冠發病機制本身具有特異性,而術語本身的簡單性和力量則有助於在全球範圍內爭取公平認可,並確保公眾在接觸新冠風險時,瞭解感染的潛在長期影響 8

圖二:2020 年自 5 月起長新冠公民科學形成的過程。圖/作者提供
註:長新冠公民科學的發展並非完全線性的發展,其中多種面相是重疊的。
(點圖放大)

圖二摘要描述 2020 年自 5 月起長新冠公民科學形成的過程,主要依據佩雷戈與英國格拉斯哥大學人文地理學教授菲麗西蒂・卡拉德(Felicity Callard)、英國劍橋、牛津等大學研究學者梅洛迪・特納(Melody Turner)等人記錄這場 2020 年公民科學發展過程的三篇論文 9, 10, 11

以 2020 年自 5 月的第一條推文,推特社群與其他網路媒體(如臉書、 Slack 和 WhatsApp 社群)快速構建,並在此過程中引入了長新冠作為一種社會條件,導致在短短的三個月內被世衛確認長新冠為一種醫療狀況:世衛國際疾病分類(International Classification of Diseases 11th Revision, ICD-11)正式定義長新冠為新冠後症狀,圖二最後以《自然》期刊編輯於該年 10 月發表的公開呼籲做結:「長新冠:讓患者協助定義長新冠症狀」副標題:長新冠症狀的術語以及康復的定義必須納入患者的觀點。

「從一條相當不起眼的推文(引入了一個新的主題標籤,最初只被『點讚』一次),在短短三個月內轉變為世衛使用的詞」佩雷戈回憶說明, #longcovid 的使用呈指數級增長。一週內從社群媒體轉向印刷媒體,短短一個月醫學期刊從討論、呼籲、科學家開始下定義、到「長新冠」的引號在主流媒體與科學期刊內容消失,直接使用長新冠一詞,三個月後 2020 年 8 月 21 日在世衛新冠技術負責人瑪麗亞・范克爾霍夫 (Maria Van Kerkhove)聯繫英國的長新冠 SOS 組織(LongCovidSOS)了解宣導者要求後,世衛組織總幹事在線上會議與長新冠宣導者討論這一個疾病。

患者症狀故事:新冠不只影響肺部

佩雷戈與卡拉德指出,長新冠患者在網路社群的公民運動中通過與其他經歷長期後遺症患者集體分享而出現,提供了後來科學的新知,其貢獻包括:口頭、書面、視覺敘述、證詞和論點以及宣傳和政策干預,對傳統科學提出了挑戰,例如在大流行初期的新冠公眾資訊傳遞過程中僅限對肺部影響的討論,長新冠網路社群則協助擴大範圍。

2020 年 4 月一篇廣為流傳的推文,而後經由報紙專欄強調這位患者的後遺症「純粹是胃部症狀」而不是肺部系統,其他患者的多重器官後遺症則陸續在各種平台上,各自分享自身的醫學檢查,要求醫療單位進行更深入調查並向傳統研究團體致電等。現在這些「症狀故事」已在許多科學期刊的出版物中得到驗證,換言之,這些患者不僅提供了早期複雜的症狀,更有助於修正新冠損害的範圍,強調了需要關注所有潛在的面相,並提供有關疾病的機制和治療方法的假設。

新冠不只影響肺部,有位患者的後遺症純粹是胃部症狀。
圖/pexels

特納等人 2023 年發表的研究,在論文中提到是特納本人經歷長新冠症狀後與其他研究人員著手展開的。她反思自己的經歷如何影響她的研究,並質疑患者如何以及為何能在各種醫療機構前識別出長新冠,進而質疑傳統實證醫學的過程。他們蒐集整理 3 萬多筆帶有 #longcovid 和 #longhauler 標籤推文,進一步語意分析 974 條推文內容中的關鍵字後歸納指出:推特使用者最初將長新冠描述為一種無情、多器官、致殘的疾病,卻也因當時公眾和醫療機構缺乏認知,這些推特使用者面臨著恥辱和歧視的不公平待遇。但這些長新冠的早期推特使用者,後來被研究記錄為長新冠最初經歷的科學實證者,藉由此次的集體社會運動 (collective social movement)對長新冠患者的醫療保健需求建立共識。

同時另一個推特標籤 #researchrehabrecognition (#研究康復認知)也引起了世衛總幹事譚德賽的注意,最後承認長新冠問題並力促解決,特納等人解釋,長新冠患者賦予疾病經歷的含義在很大程度上被理解為有價值的知識形式,可以更全面地認識和治療病情及其影響,這些公民知識通過塑造臨床醫生與患者討論診斷的方式來直接影響臨床實踐,提高了就治療方案和任何建議的生活方式改變達成共識的能力。

長新冠公民運動:衛生服務部門的具體回應

佩雷戈與卡拉德提到的另一個網路社群運動也使得英國政府不得不採取具體行動。 2020 年 7 月,患有長新冠的英國南安普敦大學公共衛生教授尼斯林・阿爾萬(Nisreen Alwan)發起了社群媒體活動「#計算長新冠(#CountLongCovid)」,強調迫切需要正確的康復病例定義、收集數據的標準化方法以及大量基於人群的樣本資料,呼籲政府全面收集監測長新冠。

9 月,網友結合「六個月前」脈絡在推特上集合紛紛留下個人長新冠前後的對比故事。現在我們可藉由應用程式 Thread Reader App 將此推文串合併,一窺當時網路社群如何串連長新冠的個人經歷 12。 2020 年底英國國家統計局公布,「長新冠」監測數據,證實了真實患病率可能比以前認為的要高得多、患者症狀持續三個月或更長時間 13

另外針對兒童和青少年的長新冠症狀, 2020 年的 #兒童長新冠(#LongCovidKids)運動亦促成了英國國會跨黨派國會新冠小組(All-Party Parliamentary Group on Coronavirus in the UK)在 2021 年 1 月舉行的兒童長新冠公聽會,今(2023)年 2 月 16 日世衛也公布了兒童和青少年版長新冠的正式定義 14

世界衛生組織也公布了兒童和青少年版長新冠的正式定義。
圖/unsplash

特納等人綜合歸納 #longcovid 推文標籤的六個主題:

  1. 個人長期恢復
  2. 看不見的疾病,例如考慮最初對長新冠缺乏認識可能是一種孤立和無形的體驗
  3. 意外族群,如參與者對觀察結果表示驚訝和擔憂,許多長新冠患者很年輕而且以前「身體健康」
  4. 通過量化進行驗證,如對疫情統計資料和醫療系統有限投入的憂慮,強調最初兩週的定義的不足,要求通過監測計算患者發病率來了解病情
  5. 支持和研究的需要,如推特使用者擔心由於知識的缺乏,醫療機構可能無法充分提供醫療保健服務或投資長新冠的研究,因此使用 #researchrehabrecognition,最後獲得世衛的重視
  6. 衛生服務部門的認可

如推文中參與者評論醫療機構如何逐漸意識到長新冠與受到官方醫療保健的認同,如當時的美國首席醫療顧問安東尼・福奇以及世衛譚德塞,從而創造了衛生服務部門的具體行動以及為社會和科學新的認識契機。

網路社群媒體的開放性

網路社群在 2020 年經歷了所謂的醫療煤氣燈(medical gaslighting)效應,當他們處於科學對長新冠不確定性的大環境時,經常覺得被敷衍或誤診,就像是 1944 年經典電影《煤氣燈下》(Gaslight)明明房間裡煤氣燈忽明忽暗,但影片中的老公卻堅持一切正常,這些求助無門的人們,經歷許多令人沮喪的醫療保健挫折,藉由網路群眾的長新冠公民運動,將確診後揮之不去的各種後遺症和醫療狀況與具有相同經歷的人們聯繫起來,以尋求資訊、支持和認可,最終獲得了疾病的驗證和社會的支援 15

當他們處於科學對長新冠不確定性的大環境時,經常覺得被敷衍或誤診。
圖/pexels

特納等人分析推特如何促進集體社會運動的形成社會共識,通過社群媒體的公開和開放的系統,推特的社交網絡使得以前互不相干的使用者能夠分享這些情緒、資訊與交換知識,從普通公民、醫生、科學家到世衛總幹事等知名人士。推特與其他社交網站(如臉書和 Slack )使用方法不同,後者的長新冠社群多是封閉群組,限制公開分享;推特則在長新冠的推文中具有「去中心化」的特性:如沒有單一的意見領袖、使用者間訊息自由流動等。

例如推特使用者廣泛分享了 #research 、 #rehabilitation 和 #recognition 等單獨術語。 最終,使用者將這三個術語合併成 #researchrehabrecognition ,此標籤的演變展示了集體決策的過程,旨在挑戰長新冠患者由最初缺乏醫療認可和醫療保健規定而面臨的公民知識需求和認可狀態。

長新冠患者的知識因民眾直接地發起參與研究自己或社區、社群的環境和健康危害,提高學界醫界對新冠的新認識,知識從患者通過媒體傳播到正規的臨床和衛生政策管道,就像特納等人的分析,長新冠從一種看不見的疾病轉變為一種公認的疾病。

這些網路社群推文積極的行動,達成的集體共識足以令人信服地向包括世衛在內的醫療機構證明,儘管缺乏傳統的實證醫學,但長新冠是一種真實的疾病。一群網路公民在 2020 年集體編寫了第一本關於長新冠的教科書,此刻我們見證了網路社群的群眾力量,不僅促成了現實世界的真實變化,確保對醫療保健供應的認可,也揭開了科學研究的新序幕。

參考資料

  1. Lokugamage A, Rayner C, Simpson F, Carayon L. We have heard your message about long covid and we will act, says WHO. The BMJ. Published September 3, 2020. ↩︎
  2. Yahoo News:國際新冠肺炎疫情還在燒 全球確診數破 500 萬大關 ↩︎
  3. 目前已知「長途運輸者」在佩雷戈論文中引用來自 2020 年 6 月的推文:「長途運輸新冠戰士」的患者召集人艾咪・沃森(Amy Watson) ,她從她接受測試時戴的卡車司機帽子中衍生出來:https://twitter.com/katemeredithp/status/1277316840453267456 ↩︎
  4. WHO:https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition ↩︎
  5. López-Hernández, Y., Monárrez-Espino, J., López, D.A.G. et al. The plasma metabolome of long COVID patients two years after infection. Sci Rep 13, 12420 (2023) ↩︎
  6. HHS News: https://www.hhs.gov/about/news/2023/07/31/hhs-announces-formation-office-long-covid-research-practice-launch-long-covid-clinical-trials-through-recover-initiative.html ↩︎
  7. 泛科學、左岸文化 (2018/05/17),什麼是公民科學?誰是公民科學家? ↩︎
  8. Perego, Elisa, et al. “Why the patient-made term ‘long covid’ is needed.” Wellcome Open Research 5.224 (2020): 224. ↩︎
  9. Callard, Felicity, and Elisa Perego. “How and why patients made Long Covid.” Social science & medicine 268 (2021): 113426 ↩︎
  10. Perego, Elisa, and Felicity Callard. “Patient-made Long Covid changed COVID-19 (and the production of science, too).” (Feb. 2021) ↩︎
  11. Turner, Melody, et al. “The# longcovid revolution: A reflexive thematic analysis.” Social Science & Medicine (2023): 116130. ↩︎
  12. Thread Reader App#計算長新冠(#CountLongCovid)與“六個月前”結合的網頁: https://threadreaderapp.com/convos/1308678318821199872 ↩︎
  13. 英國獨立報 The Independent (16 December 2020) ,https://www.independent.co.uk/news/health/coronavirus-long-covid-ons-data-b1774821.html ↩︎
  14. WHO:A clinical case definition for post COVID-19 condition in children and adolescents by expert consensus, 16 February 2023 ↩︎
  15. Russell, David, et al. “Support amid uncertainty: Long COVID illness experiences and the role of online communities.” SSM-Qualitative Research in Health 2 (2022): 100177 ↩︎

1

7
1

文字

分享

1
7
1
日常生活範式的轉變:從紙筆到 AI
賴昭正_96
・2023/03/08 ・5723字 ・閱讀時間約 11 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

技術的進步是基於讓它適應你,因此你可能根本不會真正注意到它,所以它是日常生活的一部分。
——比爾.蓋茨(微軟公司創辦人之一)

幾天前與內人米天寶到一家常去的餐館,沒想到已經換了主人;找到一張桌子坐下後,好久都不見服務員上來打招呼;正覺得奇怪時,唯一的服務員終於出現了。內人迫不及待的馬上要菜單,「對不起,我們這裡沒有菜單,請掃描點菜。」內人哦了一聲,不知所措……還好有不落伍的老公在旁,因此總算沒有餓著肚子回家吃泡麵。

又半年前,與三位高中同學聚餐,餐後有位同學問怎麼從這裡到他弟弟的地方……,我回答說路就在你的口袋裡:「嘿,谷歌(Google),導航到……」。再又大約 1 年前,與一對老夫妻同事不知道怎麼談到了 228 事變,先生突然問那是哪一年發生的,沒有人能回答;我突然想到答案就在我口袋裡,拿出手機:「嘿,谷歌,228 事變是哪一年發生的?」

1970 年,林孝信等人在芝加哥大學創辦《科學月刊》時,日常所用的的工具是:紙張、鉛筆、橡皮、透過郵寄傳送的書信、及非必要不用的長途電話或傳真。在下圖中可以看到當時筆者用手寫的第 1 期文章「什麼是半導體」、審稿意見表、審稿人的修改、科學月刊專用稿紙、以及筆者在加州做論文時給總部林孝信的信封。這些工具現在都可以算是古董,早不是《科學月刊》運作模式,也已全部在筆者日常生活中退役了!

圖/筆者提供

是什麼重大科技的發展造成了這些改變呢?年輕的讀者或許不知道,但是筆者回想起來都覺得有點可怕,真不敢相信將不少筆者這一代人甩停在「石器時代」的巨大變化就在筆者後半生中發生!

讓我們在這裡一起來回顧這 40 年來的科技大里程碑吧。

個人電腦

筆者 1975 年回到清華,隔年的暑假為高中化學教師進修班開了一門相當受歡迎的(台灣非法組裝的)蘋果個人電腦程序課。那時個人電腦才剛問世不久,但已經慢慢地引起廣大群眾的注意與興趣。

因此到了 1981 年,曾經是全世界最賺錢、最受歡迎品牌的大型電腦計算機公司 IBM(International Business Machines)終於被迫進入個人電腦市場。IBM 的聲名很快地使個人電腦在消費群眾裡達到臨界量,但那時使用者必須記得電腦語言及程式名字才能執行。

圖/筆者提供

1984 年,蘋果電腦公司(Apple Computers)推出了 Macintosh 後,個人電腦市場才真正開始起飛。Macintosh 導入電腦鼠標,其「所見即所得」(WYSIWYG, what you see is what you get)界面更讓使用電腦變得非常簡單[1]:只要會按鼠標就好,不必再記那些電腦語言及程式名字。隔年,微軟(Microsoft Corporation[2])也推出了具鼠標及「所見即所得」界面的 Windows 操作系統後,儘管個人電腦成為主流還需要幾年時間,但毫無疑問地個人電腦時代已經來臨了!

在個人電腦出現之前,每到月底筆者就為了與銀行對帳搞得頭暈腦脹(時常對不起來);1993 年後,筆者便開始使用「個人賬戶管理軟體」Quicken,現在不但帳目了然,核對更大部分只是一分鐘的事情而已:它早已經是筆者日常生活中不可或缺的一部分!另一個則是微軟的「文件處理軟體」Word。但後者因間接地涉及到人工智能的應用,所以留在後面再做詳細討論。

互聯網與萬維網

互聯網(internet)始於 1960 年代,為美國政府研究人員共享信息的一種方式。它的發展有兩個原因:

  1. 60 年代的計算機體積龐大且固定不動,為了利用存儲在其它地方的計算機信息,人們必須通過傳統郵政系統發送計算機磁帶;
  2. 另一個催化劑是蘇聯於 1957 年 10 月 4 日發射人造衛星 Sputnik,促使國防部考慮即使在核攻擊後仍能傳播信息的方式,因此發展了阿帕網(ARPANET,Advanced Research Projects Agency Network,高級研究計劃署網絡)。

阿帕網雖然非常成功,但其成員僅限於某些與國防部有合同的學術和研究組織,因此創建其它網絡來提供信息共享是無可避免的……。

開始時各計算機網絡並沒有一種標準的方式來相互通信。科技學家終於在 1983 年 1 月 1 日建立了「傳輸控制協議/互聯網協議」(TCP/IP)的一新通信協議,使不同網絡上的不同類型計算機終於可以相互「交談」,現在的互聯網於焉誕生,因此當天被認為是互聯網的官方生日。阿帕網和國防數據網(Defense Data Network)後來也正式改用 TCP/IP標準,因此所有網絡現在都可以通過一種通用語言連接起來。

1989 年 11 月,第一個提供商業互聯網服務(ISP, internet service provider)公司 The World 在美國出現。儘管當時電話撥號連接只能以每秒 5 萬 6 千位元的慢得令人痛苦的速度下載[3],與現在的所謂寬帶(broadband)之至少 2500 萬位元的速度相比,真是小巫見大巫,但在兩年就產生了廣泛的消費者基礎。1991 年,美國國家科學基金會(NSF)看到該公司打開了這似乎再也關閉不了的閘門,終於解除了對商業 ISP 的禁令。

圖/筆者提供

1989 年,為了滿足世界各地大學和研究所的科學家對自動化信息共享的需求,英國計算機學家伯納斯-李(Tim Berners-Lee)爵士在瑞士歐洲核子研究中心(CERN)提出了萬維網(WWW, World Wide Web)的構想:在互聯網上建立一種可以透過「超文本鏈接」(hyperlink)將文檔連接到其它文檔的信息系統,使用戶能夠從一個文檔移到另一個文檔來搜索信息。

伯納斯-李 1990 年底成功地展示了包括 WWW 瀏覽器和 HTTP 服務器的系統,於 1991 年 1 月開始提供給其它研究機構。1991 年 8 月 23 日向公眾發布後,兩年內出現了 50 個網站。現在全世界的網站已經高達 20 億個!

1994 年 10 月 13 日第一款「商業化」網絡瀏覽器 Netscape 問世,四個月內即佔據了四分之三的瀏覽器市場上;配合了個人電腦「所見即所得」的快速發展,上網已漸成為全民運動。2000 年代初期所發展出在一條電話線中可以同時負載電話和互聯網之技術[4],更為互聯網注入了新的活力,使用戶可以同時上網和打電話,提供了可以「永遠在線」的互聯網服務。

離開學校或研究機構後,互聯網、萬維網、網絡瀏覽器、谷歌搜索引擎便成了是筆者寫作時尋求資料的必要工具。例如筆者在 2005 年寫《量子的故事》第二版時,如果不是它們的幫助,根本是不可能的工作!而現在寫這篇文章也是因為它們在陪伴著筆者才能快速完成的。

還有,筆者的所有經濟活動都已經是「無紙」(paperless)化了:水、電公司以及銀行等用電子郵件(見後)寄賬單後,自動提款;退休金、社會福利金每月自動入賬;銀行間可以隨時互相轉賬;……;因此可以整年不上銀行,也可以在遙遠的區域銀行開利息比較高的戶頭。股票的交易更是不可同日而語:以前根本看不到股票的瞬間動盪,買賣股票必須打電話給券商下單;現在都是瞬間個人操作!

生活中的所有經濟活動都已經是「無紙」了。圖/Envato Elements

電子郵件

早期的電腦使用者只能在同一台電腦裡留言。1971 年,麻省理工學院畢業生湯姆林森(Ray Tomlinson)在阿帕網工作時想出了創建一個使用 @ 符號的程序,使用戶能夠在阿帕網系統中的電腦間互發送消息。

沒過多久就有人找到了使用電子郵件賺錢的方法。1978 年,圖雷克(Gary Thurek)為當時 IBM 大型電腦勁敵 DEC(Digital Equipment Corporation)向數百名阿帕網用戶發送電子郵件推銷一款新產品,聲稱為該公司帶來了 1300 萬美元的銷售額,並為自己贏得了「垃圾郵件之父」的美名。 

1982 年,「簡單郵件傳輸協議」(SMTP)標準化了郵件服務器發送和接收消息的方式。其它協議如互聯網「消息訪問協議」(IMAP)和「郵局協議」(POP),相繼在 80 年代中期出現。1993 年,美國兩家大商業互聯網服務商(AOL 和 Delphi)將他們的電子郵件系統連接到互聯網,使用戶能夠利用這種簡單快捷的通信方式。1996 年,微軟 Hotmail 成為第一個完全基於互聯網的免費電子郵件服務;一年後,微軟發布了預裝在 Windows 中的電子郵件程序。

現在的電子郵件當然已經不再只是當初之文字的傳送而已:圖片、網站連接、語音等等都可以透過電子郵件瞬間傳送到地球的另一方;真不敢想像當初一篇文章寄到台灣後、至少兩個禮拜才能收到回音的日子是怎麼過的?!

2012 年,湯姆林森在專門討論技術如何改變廣大群眾未來生活的「The Verge」網站裡謂:「我看到電子郵件的使用方式大體上與我預想的完全一致」。

智能手機

手機(cell phone)和車載電話(car phone)早就存在,但當時只能用來打電話(因為少見及昂貴,擁有它們事實上是一種身份的代表)。80 年代初手機網絡開始出現後,手機便慢慢取代家用電話成為無線便攜式電話。1999 年,加拿大「動態研究」(Research In Motion)公司推出可以傳接電子郵件的黑莓(BlackBerry)手機;2002 年進一步推出了一款「允許用戶管理他們所有的業務通信和信息、永遠在線、永遠連接的時尚……無線手持設備」的智能手機後,黑莓手機迅速成為商務人士必備的生活工具。

黑莓手機為商務人士必備的生活工具。圖/維基百科

2005 年 7 月,谷歌收購移動操作系統「安卓」(Android)。蘋果電腦公司於 2007 年元月推出具有應用程序功能和突破性互聯網通信工具的結合體手機 iPhone;緊接著, 台灣宏達國際電子股份有限公司於 2008 年 9 月推出第一款商用安卓操作系統的智能手機。

2010,谷歌當時的企業發展副總裁勞維(David Lawee)回憶說這是谷歌「有史以來最好的交易」。誠然也!現今,安卓及蘋果手機操作系統(iOS)幾乎已經控制了整個智能手機市場。

現在的手機已經不再只是打電話的工具,而是將巨大的計算能力置於我們的掌中,帶領廣大的群眾進入了掌上個人電腦領域,徹底地完全改變了我們的日常生活方式!

人工智能

前面提到「文件處理軟體」是筆者日常生活中不可或缺的一部分!但真正讓筆者丟掉紙張、鉛筆、和橡皮擦的並不是它,而是谷歌的「語音轉文字軟體」。說來慚愧,筆者以前國文沒學好,不會注音符號;因此雖然有「文件處理軟體」,筆者還是沒有辦法輸入中文。

因此曾有一段時間「威脅」《科學月刊》,謂如果不找人幫打字,那就不寫了。筆者當然心知肚明,隨著科普文章的作者越來越多,這「威脅」遲早會不管用的,因此很早就想用「語音轉文字軟體」。但早期的「語音轉文字軟體」似乎聽不太懂筆者的台灣國語,錯誤百出,因此只能心有餘而力不足的感嘆而已。

「語音轉文字軟體」所使用的思考方式不是寫傳統軟體的邏輯,而是「人工智能」(artificial intelligence)的運用。但中文「童因志泰掇」,因此人工智能必須比較「聰明」,相對地發展也比較慢。但今日的中文「語音轉文字軟體」已非昔比;如果沒有它,筆者在中文文章寫作以及通訊上,不是丟不了紙筆,便還是一位只能用英文的「假外國人」!

今天的「人工智能」不但是能支持語音轉文字的智能設備、還會與你下棋、幫你開車!事實上當然不止如此:如前面所說的,還可以隨時回答你的歷史與地理之無知!你想知道現在的高中生如何做數學作業嗎?只要將問題用智能手機照相下來,就可以立即得到答案!不懂中文的外孫女有一天突然用中文發簡訊給筆者問:「為什麼需要學第 2 種外國語呢?」

「人工智能」幫助我們達成日常生活中的各種事。圖/Envato Elements

去年 11 月 30 日美國舊金山 OpenAI 公司提供了一款免費的人工智能軟體 ChatGPT,它不但可以回答你任何問題、跟你聊天,還可以快速(以秒計)幫你寫散文、詩歌、文章。這不但立即引起整個教育界的震撼,也成為報章雜誌熱門討論的話題!過年後,不少公立高中學校便迫不及待地宣布禁止裝置及使用。

斯坦福大學教育學助理教授萊文(Sarah Levin)說:「如果你要它(對一些流行小說)進行文學分析,它會做得很好,幫你寫一篇會讓許多老師很高興、希望自己的學生都能夠寫出來的 B+ 文章!」寫一篇散文是美國大學「入學考試」中非常重要的一個評估標準,不知道他們以後將如何如何處理這一問題?

斯坦福大學「科技工數」(STEM)教學與學習實驗室的負責人李(Victor Lee)也說:「從技術層面來看,就像谷歌超越所有的網路搜索引擎,或 Netflix 改變了人們對流媒體內容的期望一樣,它(ChatGPT)將沖擊(整個)教育系統。……我們正處於一個新時代。」

這到底是好是壞? ChatGPT 回答說:「在校使用我或其他語言模型可以成為加強教育的寶貴工具;但重要的是要謹慎對待這項技術,並確保以有利於學生學習的方式使用我」。

結論

因為筆者覺得很有道理,在這裡我們就用被誤傳是愛因斯坦所說的話來結束吧:「我害怕技術與我們的人性重疊的那一天,世界上只會有一代白痴[5]。看來那一天已經離我們不遠了!?

在此先警告讀者:或許筆者下篇文章已經不是自己寫的了[6]

註釋

  1. 這兩項技術(鼠標和「所見即所得」)都不是蘋果電腦公司的創見,市場上均早已有之。SRI International 的 Douglas Engelbart 於 1960 年代初開始開發鼠標;鼠標控制計算機系統的第一次公開演示是 1968 年。因其對後來使用個人電腦的重要性發展,該次演示被稱為「所有演示之母」(the mother of all demos)。到 1972 年,從 Engelbert 得來的靈感,隔鄰 Xerox 公司的研究單位 PARC 之圖形用戶界面技術已經發展到可以支持第一個 WYSIWYG 編輯器的程度;1974 年,Butler Lampson、Charles Simonyi、及其團隊推出了世界上第一個所見即所得的文檔處理程序 Bravo。
  2. IBM 一直不看好個人電腦,也害怕個人電腦侵蝕了大型電腦的利潤,因此對個人電腦的發展一直採取消極的態度,所以將操作系統的發展工作交給了微軟。
  3. 可以看到一個接一個的英文字母在螢幕上出現。
  4. 在這之前,人們無法同時打電話和瀏覽互聯網,為了避免家庭爭執,許多家庭(包括筆者)均被強迫裝上兩條電話線。
  5. 愛因斯坦:「我們的技術已經超越了我們的人性,這一點已經變得非常明顯。」
  6. 事實上現在人工智慧的最大問題是:還沒辦法個性化!所以是寫不出這句話來了。

延伸閱讀:
「網路安全技術與比特幣」(科學月刊 2018 年 6 月號),轉載於「財團法人善科教育基金會」的網站

賴昭正_96
38 篇文章 ・ 46 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
0

文字

分享

0
2
0
數據塑造生活與社會,讓人既放心但又不安?——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/28 ・2760字 ・閱讀時間約 5 分鐘

數位世界已經改變了我們日常生活的體驗,一個人從早到晚都會接受到大量數據,受益於大量數據,也貢獻大量數據。這些數據龐大的程度,和消化資訊的方式已經太過繁多,人類心智根本無法處理。

與數位科技建立夥伴關係

所以人會本能地或潛意識地倚賴軟體來處理、組織、篩選出必要或有用的資訊,也就是根據用戶過去的偏好或目前的流行,來挑選要瀏覽的新項目、要看的電影、要播放的音樂。自動策劃的體驗很輕鬆容易,又能讓人滿足,人們只會在沒有自動化服務,例如閱讀別人臉書塗鴉牆上的貼文,或是用別人的網飛帳號看電影時,才會注意到這服務的存在。

有人工智慧協助的網路平臺加速整合,並加深了個人與數位科技間的連結。人工智慧經過設計和訓練,能直覺地解決人類的問題、掌握人類的目標,原本只有人類心智才能管理的各種選擇,現在能由網路平臺來引導、詮釋和記錄(儘管效率比較差)。

日常生活中很少察覺到對自動策劃的依賴。圖/Pexels

網路平臺收集資訊和體驗來完成這些任務,任何一個人的大腦在壽命期限內都不可能容納如此大量的資訊和體驗,所以網路平臺能產出看起來非常恰當的答案和建議。例如,採購員不管再怎麼投入工作,在挑選冬季長靴的時候,也不可能從全國成千上萬的類似商品、近期天氣預測、季節因素、回顧過去的搜尋記錄、調查物流模式之後,才決定最佳的採購項目,但人工智慧可以完整評估上述所有因素。

因此,由人工智慧驅動的網路平臺經常和我們每個人互動,但我們在歷史上從未和其他產品、服務或機器這樣互動過。當我們個人在和人工智慧互動的時候,人工智慧會適應個人用戶的偏好(網際網路瀏覽記錄、搜尋記錄、旅遊史、收入水準、社交連結),開始形成一種隱形的夥伴關係。

個人用戶逐漸依賴這樣的平臺來完成一串功能,但這些功能過去可能由郵政、百貨公司,或是接待禮賓、懺悔自白的人和朋友,或是企業、政府或其他人類一起來完成。

網路平臺和用戶之間是既親密又遠距的聯繫。圖/Envato Elements

個人、網路平臺和平臺用戶之間的關係,是一種親密關係與遠距聯繫的新穎組合。人工智慧網路平臺審查大量的用戶數據,其中大部分是個人數據(如位置、聯絡資訊、朋友圈、同事圈、金融與健康資訊);網路會把人工智慧當成嚮導,或讓人工智慧來安排個人化體驗。

人工智慧如此精準、正確,是因為人工智慧有能力可以根據數億段類似的關係,以及上兆次空間(用戶群的地理範圍)與時間(集合了過去的使用)的互動來回顧和反應。網路平臺用戶與人工智慧形成了緊密的互動,並互相學習。

網路平臺的人工智慧使用邏輯,在很多方面對人類來說都難以理解。例如,運用人工智慧的網路平臺在評估圖片、貼文或搜尋時,人類可能無法明確地理解人工智慧會在特定情境下如何運作。谷歌的工程師知道他們的搜尋功能若有人工智慧,就會有清楚的搜尋結果;若沒有人工智慧,搜尋結果就不會那麼清楚,但工程師沒辦法解釋為什麼某些結果的排序比較高。

要評鑑人工智慧的優劣,看的是結果實用不實用,不是看過程。這代表我們的輕重緩急已經和早期不一樣了,以前每個機械的步驟或思考的過程都會由人類來體驗(想法、對話、管理流程),或讓人類可以暫停、檢查、重複。

人工智慧陪伴現代人的生活

例如,在許多工業化地區,旅行的過程已經不需要「找方向」了。以前這過程需要人力,要先打電話給我們要拜訪的對象,查看紙本地圖,然後常常在加油站或便利商店停下來,確認我們的方向對不對。現在,透過手機應用程式,旅行的過程可以更有效率。

透過導航,為旅途帶來不少便利。圖/Pexels

這些應用程式不但可以根據他們「所知」的交通記錄來評估可能的路線與每條路線所花費的時間,還可以考量到當天的交通事故、可能造成延誤的特殊狀況(駕駛過程中的延誤)和其他跡象(其他用戶的搜尋),來避免和別人走同一條路。

從看地圖到線上導航,這轉變如此方便,很少人會停下來想想這種變化有多大的革命性意義,又會帶來什麼後果。個人用戶、社會與網路平臺和營運商建立了新關係,並信任網路平臺與演算法可以產生準確的結果,獲得了便利,成為數據集的一部分,而這數據集又在持續進化(至少會在大家使用應用程式的時候追蹤個人的位置)。

在某種意義上,使用這種服務的人並不是獨自駕駛,而是系統的一部分。在系統內,人類和機器智慧一起協作,引導一群人透過各自的路線聚集在一起。

持續陪伴型的人工智慧會愈來愈普及,醫療保健、物流、零售、金融、通訊、媒體、運輸和娛樂等產業持續發展,我們的日常生活體驗透過網路平臺一直在變化。

網路平台協助我們完成各種事項。圖/Pexels

當用戶找人工智慧網路平臺來協助他們完成任務的時候,因為網路平臺可以收集、提煉資訊,所以用戶得到了益處,上個世代完全沒有這種經驗。這種平臺追求新穎模式的規模、力量、功能,讓個人用戶獲得前所未有的便利和能力;同時,這些用戶進入一種前所未有的人機對話中。

運用人工智慧的網路平臺有能力可以用我們無法清楚理解,甚至無法明確定義或表示的方式來形塑人類的活動,這裡有一個很重要的問題:這種人工智慧的目標功能是什麼?由誰設計?在哪些監管參數範圍裡?

類似問題的答案會繼續塑造未來的生活與未來的社會:誰在操作?誰在定義這些流程的限制?這些人對於社會規範和制度會有什麼影響?有人可以存取人工智慧的感知嗎?有的話,這人是誰?

如果沒有人類可以完全理解或查看數據,或檢視每個步驟,也就是說假設人類的角色只負責設計、監控和設定人工智慧的參數,那麼對人工智慧的限制應該要讓我們放心?還是讓我們不安?還是既放心又不安?

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

聯經出版_96
27 篇文章 ・ 19 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。