0

0
0

文字

分享

0
0
0

蜜蜂與農藥的戰爭──歐盟禁用新菸鹼藥物的始末

科學月刊_96
・2019/08/15 ・4116字 ・閱讀時間約 8 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/林宇軒│是個從學術象牙塔逃離的化學系所學生,比起做實驗,更愛分享科學故事,寫科普就是希望能和大家一起領略科學的力與美。

2018 年 4 月 27 日,歐盟認定新菸鹼類 (Neonicotinoid) 藥物對蜜蜂有害,決議禁止含有益達胺(imidacloprid)、賽速安 (thiamethoxam) 或可尼丁 (clothianidin0) 三種新菸鹼類農藥產品用於露天環境,一場持續超過 20 年的研究論戰才終於落幕。

bee pollination on sunflower
穿梭在花田中的蜜蜂/圖片來源:Unsplash

新藥有問題?!第一個「蜂」向球

要說起蜜蜂與農藥的戰爭,得把時間拉回到 1994 年的夏天。那時,風和日麗的法國田園,成片向日葵一如往常地隨風搖擺。在晴朗的天空下,綿延不絕的向日葵田間,偶有幾隻蜜蜂穿梭其中,牠們時而翩翩飛舞,時而駐足停留在向日葵上採蜜,並帶回自己所屬的巢穴供女王蜂與幼蟲食用。

不過仔細一看,這些蜜蜂似乎不太正常,他們只會在同一個定點飛來飛去,而沒有辦法朝下一朵花移動或飛回自己的蜂巢。不只野蜂不回自己的蜂窩,就連人類馴養的蜜蜂也出現這樣的現象,蜂農紛紛發現自家蜂窩裡工蜂的數量越來越少。

蜂農將矛頭指向這一株株的向日葵,他們認為都是因為蜜蜂從向日葵的花蕊上採粉、採蜜,才讓蜜蜂「迷航」、造成蜂農們損失慘重,並懷疑包裹葵花籽的披衣 (seed coating) 材料中含有一種會影響蜜蜂的物質。這項行之有年、為保護種子並供其營養的「種子披衣技術」,會在 1994 年才開始出現問題,是因為法國在這一年剛好核准了一種可添加在葵花籽披衣材料裡的新農藥,這個新核准的農藥正是屬於新菸鹼類分子的「益達胺」。

全世界最受歡迎的殺蟲劑──新菸鹼藥物

新菸鹼類分子並非 1990 年代才突然出現的,自 1970 年代起,就有不同的新菸鹼分子前驅物陸續被合成出來,而科學家們也發現了這些分子具有殺蟲的效果,如黃色貝殼商標的殼牌 (Shell) 公司,他們就在 1970 年代推出這類專利殺蟲劑,但是這個農藥的分子照光後卻會分解掉,使得英雄無用武之地、無法進行商業化產製賣給農夫使用。

-----廣告,請繼續往下閱讀-----

一時的失意,並不代表尋找更高效殺蟲劑的旅程就此結束。1985 年,化學巨擘拜耳 (Bayer) 公司利用 10 年前殼牌公司的失敗產品做出第一個合成出來的新菸鹼類分子益達胺,比起之前各家廠商合成的各種前驅物分子穩定又有效。此後,拜耳公司將益達胺製成農藥,於 1991 年將產品推出上市,很快就在全球瘋狂熱賣。

其他公司當然不會讓拜耳專美於前,在益達胺上市幾年後,同為全球市佔率數一數二的農藥生產商先正達(Syngenta)也推出了新的新菸鹼農藥產品,這個新產品內含的新菸鹼分子是賽速安,也是一種殺蟲不手軟的分子。面對競爭對手的攻勢,拜耳公司繼續推出其他如可尼丁等產品,後來也相當熱銷。

這次歐盟所禁用的新菸鹼農藥正是這三者:拜耳的益達胺、可尼丁,以及先正達的賽速安。令人驚訝的是,由於它們殺死害蟲的效果實在太好,以至於在 2007 年,這三種分子和其他的新菸鹼分子農藥,在全球就有高達 25% 的市佔率總和。

探尋新菸鹼類農藥與蜂群減少的關係

讓我們回到 1994 年法國工蜂迷航的事件,當時蜂農發起的輿論持續得沸沸揚揚,這波民怨導致 1999 年法國禁止益達胺用於種子披衣技術中,不過當時並沒有任何科學證據可以佐證「益達胺是造成蜂群減少的元凶」,也就是說這項政策完全只是預防性措施。

-----廣告,請繼續往下閱讀-----

為了解事情的真相,科學家著手研究益達胺與蜜蜂迷航之間的關聯。新菸鹼類農藥會殺死蜜蜂嗎?什麼樣的濃度會影響到蜜蜂正常的行為?而新菸鹼類的農藥影響蜜蜂行為的原理又是什麼?

科學家發現餵食高劑量新菸鹼藥物的蜜蜂 (Honeybee, Apis mellifera) 的確會死亡,但即使將劑量降低到不會讓蜜蜂死掉的程度,蜜蜂的行為仍然不正常,許多蜜蜂在接受該類藥物後會改變進食習慣,離巢覓食也變得較不頻繁,但只要每次出去、就會待上更長的時間。此外,也有研究發現該類藥物會影響蜜蜂的記憶和學習能力,使牠們辨識花朵的能力變差,甚至完全無法學會辨認他們所需要去覓食的花朵。

研究人員也找到了昆蟲會被新菸鹼類藥物影響的可能原因,由於新菸鹼類分子的高水溶性,因此能隨毛細現象散佈到植物體內各處,當昆蟲吃了植物的某個部位後,也一併吃進了新菸鹼類分子。當這些分子進到昆蟲體內後,便會和昆蟲神經系統的尼古丁乙醯膽鹼受體 (nicotinic acetylcholine receptor, nAChRs) 結合。一般來說,原本用來傳導神經電訊號的乙醯膽鹼分子和受體結合後,會刺激接收端的神經細胞繼續傳遞電訊號,直到乙醯膽鹼酯分解酶將它分解掉為止。然而新菸鹼類分子結合到昆蟲的受體上以後,卻無法被分解酶處理掉,反而一直卡在受體上,使得神經細胞不斷放電,造成昆蟲的神經系統過度興奮,最終導致昆蟲癱瘓、死亡。

這些對昆蟲來說相當致命的毒物,對我們人類卻沒有太大的影響。其實人體的神經細胞上也有這種接收神經傳導物質的受體,只不過昆蟲的受體和脊椎動物的蛋白質結構不同。新菸鹼藥物之所以不會對脊椎動物有太大的影響,是因為其與脊椎動物的受體結合力較弱,相對地容易從脊椎動物的受體上分離,當然也不會造成神經細胞過度興奮。

-----廣告,請繼續往下閱讀-----
新菸鹼類藥物的作用模式/圖片來源:Bio Ninja

隨著新菸鹼類農藥造成危害的證據越來越多,歐洲食品安全管理局 (European Food Safety Authority, EFSA)統整諸多研究,並在 2013 年陸續公布幾項風險評估報告,報告指出這三種新菸鹼類農藥對蜜蜂的健康造成很高的風險。雖然當時沒有取得多數會員國的共識,但歐盟基於保護蜜蜂的立場,仍決定在 2013 年 12 月 1 日起「暫時限制」這三種農藥的使用範圍,只要是會吸引蜜蜂的植物、穀類以及其種子、土壤和葉面的處理等都不得使用。

不過,針對歐盟的暫時禁令,民間仍有許多不同的聲音。批評者認為此時為止的所有研究,沒有一個算是真正的野外調查,全都是實驗室裡的測試,只有少數幾項研究是「模擬」野外環境,但他們也質疑研究者怎麼知道餵了含有農藥的花粉,農藥的劑量就真的是跟野外環境相符合?

遺失的最後一塊拼圖──野外蜂群的大規模調查

一直到 2015 年 4 月,終於有了第一個確確實實的野外調查研究,。瑞典南部隆德大學的倫德洛芙(Maj Rundlöf)率領她的研究團隊親自種了 16 塊油菜花田,其中 8 塊種了含有可尼丁農藥的種子,另外 8 塊用的則不含農藥,每塊地彼此間隔 4 公里以上。他們統計了每塊地方圓 2 公里內區域的野蜂密度、獨居性壁蜂 (Mason Bee, Osmia bicornis) 的築巢活動性以及熊蜂 (Bumblebee,  Bombus terrestris)蜂巢的重量,發現有使用可尼丁農藥的田附近,野蜂密度較低、壁蜂築巢量下降,且熊蜂蜂巢重量成長得較為緩慢,也因此證實了新菸鹼藥物的確會干擾野生蜂群的活動。

File:Bombus terrestris queen - Tilia cordata - Keila.jpg
熊蜂/圖片來源:Wikipedia
File:Male red mason bee (Osmia bicornis), Sandy, Bedfordshire (8694209006).jpg
壁蜂/圖片來源:Wikipedia

論文發表後,多家大型企業的發言人發表聲明,認為這篇研究的證據並不足以支持倫德洛芙的論點。他們注意到論文中也發現一般蜜蜂的蜂群並沒有因為可尼丁而受到影響,並認為在「區域內野蜂密度」這個項目所統計到的野蜂數量過少,不具統計上意義,根本不能當作證據。

-----廣告,請繼續往下閱讀-----

雖然這項研究有些微瑕疵,卻也讓質疑新菸鹼藥物的聲浪越來越大。為了解決這個證據支持性的問題,拜耳與先正達兩家公司決定挹注 300 萬美金(折合台幣 9 千萬),讓英國的生態與水文學中心(Center of Ecology & Hydrology, CEH)進行更大規模的野外研究。研究人員選定了英國 12 處、德國 9 處與匈牙利 12 處,共 33 塊油菜花田進行實驗,每塊油菜花田彼此距離 3.2 公里以上,在冬天的時候預先種下含有可尼丁、賽速安或是不含新菸鹼農藥的種子,並等到油菜花開花後,將一般蜜蜂與熊蜂的巢以及壁蜂搭配人為提供的築巢材料放到試驗田中央,等待 1~2 週後統計分析所受到的影響。

沒想到,最終實驗結果竟讓拜爾與先正達公司跌破眼鏡,根本可以說是自打臉。2017 年這項大規模研究發表在《Science》上,研究人員認為整體來說新菸鹼藥物對三種蜂類的確造成了負面影響,結果顯示英國與匈牙利農藥使用區的蜜蜂巢中的工蜂數量減少,在匈牙利更觀察到蜂卵數量降低,不過在德國農藥使用區的蜜蜂蜂巢卻匪夷所思地產生了更多蜂卵,而工蜂數量則沒有明顯變化。另一方面,野蜂的部分,發現農藥使用區的熊蜂女王蜂產卵量在三個國家都是呈現負相關,也就是農藥殘留量越高,產量越低;而農藥使用區的壁蜂製造的蜂房數量也不分國家都呈現負相關,農藥殘留量越高,壁蜂製作蜂房的數量與效率越差。

從播種到蜜蜂相繼迷航、死亡,這些殺蟲劑是如何對蜜蜂產生作用的?/圖片來源:科學月刊提供

不斷翻轉的結局

不過,拜耳和先正達兩家公司的發言人在論文發布記者會的當下,透過記者抨擊研究結論非常令人懷疑,他們緊咬著論文數據的的可信度不放,儘管如此,大量的統計分析結果的確受到許多科學家的認可,一位拜耳公司的科學家對此字斟句酌地表示:「我認為新菸鹼藥物的確是對蜜蜂有些本質上的影響,不過就實際情況而言,正確使用的話,我們還是沒看到任何有效證據可以說明這些藥物會傷害蜜蜂。」

2018 年 2 月,歐洲食品安全局再度統整近年研究,並正式宣告新菸鹼藥物危害蜂群證據明確,歐盟委員會最終在 2018 年 4 月 27 日決議,要在 2018 年底全面禁止戶外使用新菸鹼農藥,但居家環境仍可使用,以免繼續傷害蜂群。

-----廣告,請繼續往下閱讀-----

持續了超過 20 年的研究論戰到此暫告一段落,不過仍有科學家對禁令表示憂心,因為禁用可能造成害蟲增加、導致農業產量下滑,甚至可能有農民為了要殺蟲而用了更毒的藥物,造成更可怕的環境問題。只是,新菸鹼農藥繼續用下去,也有機會讓蜂群崩潰,讓蜜蜂大量減少,或許這樣才是更加慘烈的,因為寂靜的春天可能會連作物都無法順利成熟結果。歐盟的決定的確影響了世界各國決定新菸鹼藥物的去留,但究竟禁用了之後結果如何,也只有時間能告訴我們答案。

在接觸過新菸鹼類藥物後,個體乃至群體的死亡可能「蜂」擁而至。/圖片來源:科學月刊提供

延伸閱讀

  1. Cressey D., The bitter battle over the world’s most popular insecticides,  Nature, Vol. 551, pp. 156-158, 2017.
  2. Butler D., EU expected to vote on pesticide ban after major scientific review,  Nature, Vol. 555, pp. 150-151, 2018.

〈本文轉載自《科學月刊》2018年 7月號 583期〉

文章難易度
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。