0

2
1

文字

分享

0
2
1

運用高中物理,你也能做出美國設計的AS-1 地震儀

震識:那些你想知道的震事_96
・2019/03/21 ・2117字 ・閱讀時間約 4 分鐘 ・SR值 592 ・九年級
  • 文/林欽仁 (中央研究院地球科學研究所 研究助技師)

地震儀是地震學家了解地震波傳遞過程所仰賴的工具,而地震儀的發明也帶動了地震科學的發展。

為推廣地震科學教育,讓大眾了解地震儀器的原理,美國地震學研究聯合會 (Incorporated Research Institutions for Seismology, IRIS) 提出 AS-1 地震儀的機構設計,並撰寫地震資料軟體 Amaseis,期許大眾透過 DIY 實作了解地震儀器的運作,筆者的工作環境再加上身為 TEC 的一員,認為此地震儀相當符合教育推廣的需求,遂與同仁打造出中央研究院地球科學研究所版本的 AS-1,提供給高中及大學作為地科課程的教材。

質量塊、彈簧,再加點阻尼,於是地震儀就誕生了

首先來談談「如何觀測地震」,如果要測量地震造成的震動,我們需要一個作為相對於地面的參考點觀測,最理想的方式便是從空中來觀測地面的起伏變化。然而實務上此想法不容易達成,於是科學家想到另一個方法:利用質量塊、彈簧阻尼製作出地震儀,這也是組成地震儀的三要素。

這裡直接以 AS-1 地震儀的結構設計為例,詳述地震儀的運作原理。

地震儀利用彈簧拉起質量塊(也就是圖中的磁鐵),當地面震動的頻率大於彈簧頻率時,透過彈簧所懸吊的磁鐵會近似於靜止不動,這是利用牛頓運動定律中的「慣性」。因此地面的震動,也就是圖中的線圈,便與磁鐵有了相對運動,如此一來線圈的兩端產生了與地面震動速度成正比的電壓,運用的便是法拉第感應電壓原理

到此為止地震儀已經有了觀測地面震動的能力,但其系統響應[註1]並非理想,因為當地面以低於或接近於彈簧頻率來震動時,懸掛於彈簧上的磁鐵便也跟著地面晃動,在缺乏阻尼(可想像成是如摩擦力的阻力)的作用下,彈簧本身將產生自然振盪,也就是當地震的搖晃減小時,彈簧仍不住的搖晃,而這些非地震本身的運動,仍會反映於磁鐵線圈所產生的電壓變化,其紀錄的振幅甚至大於實際地面的震動訊號,影響了我們對地表震動的觀測。儘管彈簧造成的振動訊號可以透過儀器響應修正的方式來移除,卻也對分析地震資料的人來說造成不必要的困擾,為了克服此問題,地震儀需要加入阻尼的機制[註2]。

中央研究院地球科學研究所AS-1地震儀。圖/臺灣地震科學中心提供

有點晃又不能太晃,合適的阻尼如何設計?

AS-1 阻尼系統是由銅片及磁鐵組成,銅是良好的導電材料,但銅本身卻不會被磁鐵直接吸引。因此當銅片進、出磁鐵的磁場時,磁通量的變化會在銅片上產生感應電流,感應電流產生感應磁場,與磁鐵的磁場相互作用下可減緩銅片的運動速度,也就增加了地震儀的阻尼,這便是應用冷次定律來實現阻尼的結構。

地震儀在質量塊(磁鐵)、彈簧及阻尼三個元件的協調作用下,可達成觀測地面震動的工作。其實地震儀的運作原理與我們平常搭乘車子的懸吊系統類似,避震器之彈簧的功能在於避免路面的坑洞產生的不適,而避震器之阻尼在於減緩彈簧的自然振動,避免過多的振動影響汽車的操縱性。

其實地震儀的運作原理與車子的避震器有些相似。圖/pixabay

目前的 AS-1 地震儀僅能觀測地面垂直向的運動,水平向的觀測需仰賴不同的懸吊設計,但原理大致接近。此外,由於磁鐵質量塊的擺動為圓周運動,當擺動較大時其擺角將不可視為與地面垂直運動維持線性關係(d=l*sin(θ)≠l*θ; d為磁鐵圓周運動位移軌跡,l為旋轉半徑,θ為擺角),此時地震儀的系統方程式將會略加複雜。

為了解決這些問題,現代化的地震儀使用迴授控制技術[註3],控制質量塊之位置使其與地面震動無相對位移,此時控制的力量即與地面震動加速度成正比,此方式可以增加地震儀的頻寬,卻不增加其體積(譬如不需更大的質量塊),又可保持地震動觀測之線性度[註4],此技術已成為現代地震儀之基石。

設置於地球所大廳之AS-1地震儀所觀測之2017.11.11南投地震

最後,筆者希望透過組裝及運用 AS-1 地震儀的經驗,讓更多有興趣的人瞭解地震觀測儀器的原理,進而成立討論社群。期許 AS-1 地震儀的推廣教育,也能對地震的防救災有所貢獻!

備註

  • [註1]:簡單來說,系統響應是指地震儀器相對於真實地震情況的感應和記錄的能力,包括地震波的振幅與相位與頻率的關係。
  • [註2]:在沒有阻尼的機制下,便無法阻止地震後彈簧和質量塊多餘的晃動,這些紀錄便干擾了地震波紀錄。
  • [註3]:迴授控制:相對於 AS-1 地震儀其磁鐵與彈簧懸吊可自由運動我們稱其為開迴路系統 (open-loop system),另外一種地震儀的設計透過感測器來監控磁鐵與線圈的相對位移,並提供額外電流於線圈,所產生的電磁場可以改變磁鐵的位置,最終目的在於讓磁鐵與線圈無相對位移,稱為閉迴路系統 (close-loop system),而此控制技術稱為迴授控制。
  • [註4]:數學上來說線性關係為輸入與輸出可用一階線性方程式來描述,簡單來說為地震儀觀測之輸入(地動)與輸出(電壓)維持常數倍率之關係。

本文轉載自震識:那些你想知道的震事,原文為《地震儀自己動手作:AS-1地震儀介紹》,也歡迎追蹤粉絲頁震識:那些你想知道的震事了解更多地震事。

文章難易度
震識:那些你想知道的震事_96
38 篇文章 ・ 6 位粉絲
《震識:那些你想知道的震事》由中央大學馬國鳳教授與科普作家潘昌志(阿樹)共同成立的地震知識部落格。我們希望透過淺顯易懂的文字,讓地震知識走入日常生活中,同時也會藉由分享各種地震的歷史或生活故事,讓地震知識也充滿人文的溫度。


0

0
0

文字

分享

0
0
0

推開地獄之門?冰島開挖全球首座「火山岩漿井」,開啟地球科學新篇章!

安比西林_96
・2021/10/20 ・2720字 ・閱讀時間約 5 分鐘

水井、石油井和天然氣井大家都知道,但你有聽過「岩漿井」嗎?最近,冰島著手開挖全球第一座「火山岩漿井」。這似乎是一個瘋狂的主意,滾燙的岩漿可高達攝氏上千度,還可能伴隨著可怕的火山災害。不過這個前所未有的大膽計劃,不僅具備新興可再生能源的巨大潛能,更有望開啓地球科學的新篇章!

冰與火之地——冰島,100% 依靠可再生能源的國家

落在北極圈邊緣的冰島(Iceland),擁有壯闊冰川與絢麗極光,同時也是地球上火山活動最頻繁的地區之一,可謂名副其實的「冰與火的國度」。這座大約 1500 萬年前才因火山活動形成的年輕島嶼,因位在大西洋中洋脊[註1]之上,受到歐亞大陸板塊與北美洲板塊往各自方向的拉扯,而有著 32 個活躍的火山系統,且平均每 4 年就會發生噴發。

圖/wikimedia

除了令人屏息的天然極地美景,冰島更是全球綠能國家中的模範生。得天獨厚的地理條件,讓冰島超過 99% 的電力都是依靠可再生能源,其中 73% 的電力源自水力發電,另 26.8% 則來自地熱能。在可再生能源,尤其是地熱能的開發應用技術上領先世界的冰島,在地發電厰不單是觀光旅游的賣點之一,更吸引了不少國外的投資入駐,以降低企業的碳足跡。

延伸閲讀:利用地球的熱情發電吧:深層地熱發電

通往「地獄」之門,也是推開科學新研究的大門

地熱能開發技術純熟的冰島,在 2009 年的一次鑽探中,卻遇到了意想不到的變故:原本想開挖深達 4500 公尺下的熱水,沒想到卻在 2100 公尺處挖到了一個岩漿庫[註2]!這此的開挖位於冰島北部的 Krafla 火山口附近,一個較小火山口 Víti (冰島語中正是「地獄」之意)邊上。

大量的蒸汽與玻璃從鑽孔中噴湧而出,在鑽探套管報廢之前,還觀測到破紀錄的 900°C 高溫。原先的計劃被迫喊停,但科學家卻從中看到進行地科研究的大好機會。

2009 年時,原先要鑽探地熱井的冰島團隊,卻意外挖到了一口岩漿井。圖/science.org

這起事故,促成了克拉夫拉岩漿試驗臺( Krafla Magma Testbed,簡稱 KMT)研究計劃的誕生。時隔多年籌備,這個備受矚目與期待的計劃,在國際大陸科學鑽探計劃(International Continental Scientific Drilling Program)與多個科研機構的支持資助下,終於於今年展開。這一次,科學家們帶著更堅實的鑽探工具,與明確的鑽研目標,要來敲開通往「地獄」的大門。

「我們曾去過火星,也到過金星,但我們從未觀測過地表下的岩漿。」意大利國家地理物理與火山學的研究主任 Paolo Papale 如是説道。

過去火山學家一直缺乏直接觀測地底岩漿的機會,只能仰賴地震儀、GPS 感測系統和雷達衛星,來推測岩漿的運動。儘管他們可以調查噴發到地表的熔岩,但這些已固化的樣本,早已失去大部分原本所含有的氣體。這些氣體是驅動火山噴發,影響岩漿原始溫度、壓力與成分的關鍵。

自 2009 年與這口岩漿井打交道以來,科學家確認它的脾氣相當溫和,並無噴發的太大風險,加上位處偏僻無人居住之地,因此非常適合進行研究。未來若從 KMT 取得新鮮熱辣的岩漿樣本,將可用來驗證過去科學家對於岩漿的認知是否屬實。

地底下的岩漿,揭開大陸形成的秘密

地球大部分海床,都是由玄武質熔岩[註3]構成,冰島也不例外 。然而組成大陸地殼的花崗岩,卻是由另一種更粘稠、富有二氧化矽的流紋質岩漿而來,而 KMT 岩漿井底下的就是流紋質岩漿。

為什麽構成海床與大陸地殼的熔岩種類有所差異?科學家相信,探究以玄武岩為主要構成的冰島上的流紋質岩漿樣本,將揭秘這個地質科學中很基本,卻未解決的問題。

要長期監測岩漿井的溫度、氣壓、化學成分等參數,實實在在地挑戰人類科技的極限,因為靠近岩漿處的溫度可是超過攝氏一千度。鑽探團隊正測試各種能耐高溫及膨脹的器械,而科學家也在研發各種可抵抗高溫高壓的新型偵測器。

這些研究成果不僅能用於地球科學,有朝一日更可能造福太空探索,如被運用在登陸太陽系中環境最惡劣的金星上。

水手 10 號拍攝的金星,由可見光與紫外光影像疊合而成,可見其表面被一層厚厚的硫酸雲遮蓋。圖/維基百科

一口岩漿井,將成為世界重要的火山學中心

KMT 引領科技的創新,也為冰島的地熱能產業帶來突破的機會。越靠近熾熱的岩漿,利用地熱能發電的效率便會增倍,這麽一來便可減少為了滿足能源需求而開挖的地熱井數量,降低對周圍環境造成的衝擊。光是在 2009 年意外挖掘的這一口岩漿井,就具備可以供應一整個小鎮電力的潛能。

開挖岩漿井時,需要注入大量的水來冷卻與潤滑鑽頭,這個對火山系統進行擾動的過程,也提供科學家一個瞭解火山運動的絕佳觀測機會。進行鑽探後,地震波速度發生的改變,也可透露岩漿流動的範圍。透過探究這些細微的火山運動變化,科學家能更好預測火山的噴發,讓我們能建立更整全的火山預警系統。

「十年後,這裏將可能成為火山學的中心。」冰島地熱研究中心科學主管 Ottó Elíasson 這麽認為。觀察地底下流動的岩漿,就像在瞭解地球的脈動,可以告訴人類更多關於這顆星球的故事,更能帶領我們走向更多科學新的可能性。

註釋

  1. 大西洋中洋脊(Mid – Atlantic Ridge,又稱中大西洋帶),是橫跨大西洋及北冰洋、大部分地區位於海底的山脈。
  2. 岩漿庫(Magma chamber,又稱岩漿房),是地球表面下一至十公里處由熔岩和火山灰氣體形成聚集之處。由於其內的岩漿密度比周圍的母岩來得低,因此會產生使岩漿往上移動的浮力。如果出現可讓岩漿通往地表的管道,便會造成火山噴發。
  3. 玄武岩(basalt),由基性岩漿噴發凝結而成,主要成分是矽鋁酸鈉或矽鋁酸鈣,是一種細粒緻密的黑色火成岩。玄武岩質熔漿被認為源自地球的上部地函。

延伸閱讀

參考資料

  1. Forget oil or water. In Iceland, well diggers seek to tap a volcano’s magma
  2. VisitIceland – Geography of Iceland
  3. VisitIceland – Renewable energy
  4. Magma chamber
  5. Krafla Magma Testbed
  6. Rhyolite
  7. Basalt

安比西林_96
1 篇文章 ・ 3 位粉絲
本職為生態環境領域的可撥煙酒生。 不定時掉落科普文章。 大家一起嗑科科(❍ᴥ❍ʋ)
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策