0

7
9

文字

分享

0
7
9

「量子力學」如何天翻地覆的改變我們對世界的理解?

活躍星系核_96
・2018/04/12 ・8398字 ・閱讀時間約 17 分鐘 ・SR值 595 ・九年級

  • 文 / Brian

對「理解世界」造成天翻地覆改變的量子物理

圖/TheDigitalArtist @Pixabay

在量子力學以後,我們對於世界的理解從原先的本體論(ontology)變成了認識論(epistemic)。

讓我們先來回顧一下歷史,這一切要從馬赫(Ernst Mach,1838/2/18-1916/2/19)講起,他認為科學的目的本來就不是探尋甚麼真理,科學只是想要找到一種「最經濟的思想」。例如當我們想要描述自由落體時,一個方法是收集大量的自由落體實驗數據,從而發現這些數據間的一致性;我們也可以採取另一個方法,找尋背後的物理定律,像是速度的變化是常數。

對於馬赫而言,第二種方法更好只是因為它更「經濟」,只需寫出一條式子就解釋了很多同類的現象,但對於「認識」這個世界如何運行而言,兩種方法是等價的。科學是用最少的腦力來解釋最多可能的事實,我們認為某條物理定律是有價值的並非因為它是「對的」、是「真理」,僅僅是因為它可以很簡潔的解釋我們觀察到的事實

馬赫的這種哲學觀念影響了 20 世紀許多科學家,包括愛因斯坦、海森堡、包立、費曼……,注意這裡沒有列出玻爾,這是因為玻爾有另一種哲學思想。愛因斯坦終其一生都不能接受量子力學的不確定或非實在性,我現在覺得有這種想法非常合理,肯定沒有人能徹底明白量子力學究竟是怎麼回事,大家都只是記下了數學怎麼操作然後就開始做研究,對於背後的規律都避而不談。

-----廣告,請繼續往下閱讀-----

玻爾曾說:「如果你沒有被量子力學所困惑,那就代表你根本沒有徹底了解它。」1

費曼也認為:「我幾乎可以說沒有人能了解量子力學。」2

我們通常都傾向於相信存在一個實質的外在世界,它本來就存在那裡,當我們說想要「描述」這個世界時,其實已經默認說有個世界等著我們去描述。這種想法並不能被證實,我們只是「相信」了這件事,愛因斯坦認為:「相信有個獨立於感知主體的外在世界是所有自然科學的基礎。」3自古以來科學家們都認為這個外在世界有一些實質的狀態等待我們去發掘,而科學的目的則是完善那些告訴我們世界如何組成和演化的知識。儘管科學的方法需要觀察和測量來達到此目的,但我們相信這些被描述的物理「實在」是獨立於操作手段而存在的。

正如愛因斯坦所說:「物理學就是在嘗試從概念上理解現實,且它獨立於被觀察的事物。」4

然而量子力學不允許有獨立於觀測存在的物理實在。

一切的「存在」與「樣貌」都取決於「可測量與否」?

1927 年第五次索爾維會議參與者,攝於國際索爾維物理研究所。 第一排:歐文·朗繆耳、馬克斯·普朗克、瑪麗·居禮、亨德里克·勞侖茲、阿爾伯特·愛因斯坦、保羅·朗之萬、查爾斯·古耶、查爾斯·威爾森、歐文·理查森 第二排:彼得·德拜、馬丁·努森、威廉·勞倫斯·布拉格、亨德里克·克雷默、保羅·狄拉克、阿瑟·康普頓、路易·德布羅意、馬克斯·玻恩、尼爾斯·波耳 第三排:奧古斯特·皮卡爾德、亨里奧特、保羅·埃倫費斯特、愛德華·赫爾岑、西奧費·頓德爾、埃爾溫·薛丁格、維夏菲爾特、沃爾夫岡·包立、維爾納·海森堡、拉爾夫·福勒、萊昂·布里淵。圖/摄影:Benjamin Couprie @wiki

愛因斯坦曾和年輕時的海森堡有過一次對談,愛因斯坦提到:「原則上由觀察到的數值來建立一個理論是不對的。實際上往往相反,反而是你用的理論決定你能觀察到甚麼。」5這個想法一直在海森堡的心中,後來更導致他提出不確定性原理。海森堡說:「在原子尺度時,物理學家只該考慮可測量量。」6他認為在量子尺度時,我們只能考慮能被測量的量。這是甚麼意思呢?

當量子還在建立階段時,古典的物理學家都質問他們:「你看你們的理論一點都不好,因為它不能回答粒子的實際位置是甚麼、或是在干涉實驗中粒子究竟穿過了哪個孔,或諸如此類的問題。」

-----廣告,請繼續往下閱讀-----

海森堡卻說:「我不需要回答這類問題,因為你無法由實驗的方法問這個問題。」7

我們不需要回答這種問題,因為每個在物理中使用的概念都需要有個可操作的定義,除非我們可以指出它要怎麼被測量,否則我們不允許談論某個概念。

玻爾的互補原理

爾後玻爾提出了互補原理,他認為不能用單獨一種概念來完備地描述整體量子現象,為了完備地描述整體量子現象,必須將分別描述波動性粒子性的概念都囊括在內。這兩種概念可以視為同一個硬幣的兩面。互補的兩件事情(例如波粒二象性或位置動量不確定性)無法被同時觀察到,不可能在某一時刻看到波動和粒子兩種性質,所以當我們想要描述量子行為時,必須同時考慮波動和粒子兩種觀點,不可能用單一種概念來描述整個量子現象。

因此在這個基礎上,他認為人們原先無法解釋電子干涉圖樣中出現既有粒子又有波的現象,只是互補的兩面,而這兩種概念都不能被捨棄,波動和粒子兩種描述都是必要的,它們適用於不同的條件,兩種概念是互補而非互斥的。

他說:「由不同實驗條件下得到的結果無法被單一圖像包含,他們必須被認為是互補的,因為只有總體的現象能夠徹底探討關於這些對象的可能信息。」8

我們必須放棄以往只用單一模型來描述物理概念的這種想法,玻爾認為海森堡發現的不確定原理是更深刻的互補原理的一種表現。玻爾甚至把互補原理和東方的「陰/陽」聯繫起來,還在自己的墓碑上刻了一個太極符號,他體悟到一項真諦:沒有一種角度可以窮盡真實,不同的觀點可能都有價值,卻是互相排斥的。

-----廣告,請繼續往下閱讀-----

玻爾的墓上甚至有一個互補的陰陽的符號。 圖 By Kim Bach [CC BY-SA 4.0 ], from Wikimedia Commonswiki
在量子力學建立後,物理學家對於世界的認識有了革命性的改變,以往視為理所當然的物理實在現在出問題了,因為從互補原理可以得知用不同的儀器觀測同一物體竟然會出現不同的現象。我們只能透過儀器來認識這個世界,而由不同的儀器所看到的世界也是不同的。

玻爾認為:「並不存在量子世界。只有一個抽象的量子物理描述。認為物理學的任務是弄清楚自然是怎麼回事是不對的。物理學只關注我們對自然的看法。」9

描述世界」這件事只是在融合我們經驗中的客觀事件,客觀的外在世界根本就不存在,一切實驗只是客觀世界在我們的主觀意識上的投影。愛因斯坦的本體論觀點認為科學的任務是要描述自然的「本質」;但玻爾的知識論觀點則認為科學的任務是描述我們「怎麼了解自然」,也就是所有可能的感知與實驗的綜合結果。這聽起來還是很抽象,我們以不確定原理為例,本體論觀點會告訴你:「一個電子不能同時『擁有』確切的位置和確切的動量。」而知識論觀點則會說:「不可能同時『知道』電子確切的位置和動量。」我不在乎有沒有,我只能說測不了,沒法設計某種實驗同時測到位置和動量。

我們能觀察到的世界是我們認知世界的「投影」?那什麼才是真實?或者根本沒有真實?圖/pixabay

玻爾和海森堡都同意物理研究的目的是促進我們對於觀察到的自然現象的了 解。那究竟甚麼是「了解」世界呢?海森堡依然受到馬赫的影響,他認為:「了解」代表找到一個數學方法,而只要按照這些方法就可以成功的預測實驗結果。但對玻爾而言,「了解」有更深刻的意義:它代表對於觀察到的現象的一種「描述」。

舉個例子,若有人問:電子是甚麼?我們應該回答電子甚麼也不是,更精確地說,除了被測量的時候,電子實際上並不存在;沒被測量時,電子只是一堆潛在可能性的疊加(我們對存在的定義就是能夠和你產生相互作用「像是暗物質是否存在」,但要想感受到作用就得做測量)。在測量前,電子有可能在甲處也有可能在乙處,而當真的進行了測量之後,電子只可能在甲處或在乙處被發現。玻爾否定本體論的闡述,在他看來,既然兩種互補的表述已經窮盡「我們能對自然的了解」,那就不需要再說更多了,現在我們不在乎本質為何,我們只在乎可不可測。

-----廣告,請繼續往下閱讀-----

以不確定原理為例,本體論的觀點是:

「在某一時刻,位置的不確定性越小,則動量的不確定性越大,反之亦然。」

而知識論的表述則更繁瑣:

「在某一時刻,如果對位置和動量『同時進行測量』,位置的不確定性越小,則動量的不確定性越大,反之亦然。」

從現在開始,我們不能再談論那些無法被測量的事情了,若想要談論某個概念,我們就必須先設計出一個實驗來測量它,否則此概念就沒有任何意義。如果有人想問某個定律背後的機制是什麼,像是原子內部是否有軌道,氫原子能級是否真的是電子在軌道間躍遷;或是電子的自旋是否真的是某種超光速的自轉所產生。我們只能回答這些問題毫無意義,如果你不能設計某種實驗來驗證這種猜測。沒有人可以給你任何更深刻的描述,我們不知道有任何更基本的機制可以拿來推導出這些結果。擔心某件在原則上不能被驗證的事情是「物理之外」(metaphysics ,中譯「形上學」)的管轄了。包立便說:

「和討論一個針尖上能坐多少個天使的遠古問題一樣,我們無需為某些我們根本無法知道的事情費腦筋。」10

一個針尖可以坐幾個天使?這真的值得好好思考…… 圖/pixabay

這世界是否可以用量子力學來描述?

玻爾回答:「當然不是!量子力學並沒有解釋自然,它描述了我們對自然的看法。」11

但海森堡則認為:「當然!量子力學告訴我們微觀世界是怎麼回事,它們原先是一些可能性,在測量後會變成實際的。」12

那究竟誰的想法更好?哥本哈根學派認為物理實在對於像「動量」或「位置」這種物理量,在測量它們之前並沒有確切的值。愛因斯坦會問在測量前的瞬間粒子是否有確切(雖然我們不知道)的位置,他甚至提出,對於這種問題我們只能回答:沒有、我們不知道、這問題沒有意義。

-----廣告,請繼續往下閱讀-----

這革命性的改變了人類對於世界的了解,曾經我們認為可以無限精確的探索世界,原子只是比較小的東西而已,遵循的物理規律跟宏觀物體一樣,但現在則發現用不同儀器所觀測到的世界也大不相同,客觀世界不再存在,主觀操作決定了我們能看到甚麼

讓物理學家困擾的塌縮不確定機率性

我們必須來談談測量和塌縮。在量子力學裏,量子態可以用波函數(wave function)來描述,概念有點像是震動的彈簧在不同的時間裡有不同的形狀;薛丁格方程式則用來計算波函數如何隨著時間而變化。波函數塌縮指的是,在量子力學體系中與外界發生某些作用(如測量或觀察)後,波函數會發生突變:由原先若干本徵態的疊加在測量後塌縮到單一本徵態。

波函數塌縮,也就是「量子態經過測量受影響其結果」這概念困擾了無數的物理學家。曾經有位史丹佛的年輕教授在量子力學課的頭兩周試圖探討測量問題,結果卻被系上資深的教授批評說:「你這麼做是有害的,學生們不需要了解量子力學的建立,這些都無用,只要讓他們會算就行了。」而朗道在他的書中試圖給測量一個數學定義(第一類測量和第二類測量),但依然避不開塌縮這個概念,雖然他整本書中都不曾出現「塌縮」這個詞,然而他指出「當量子客體和經典儀器相互作用後, 原先展開的完備集就只會剩下一項被讀出來,選中任何一項的機率是它的係數之模平方」,這其實就是在說測量後波函數會塌縮至某一本徵態。朗道已經算是比較良心了,至少願意談一下測量,更多的教科書直接把測量當作只可意會不可言談之事,而像是「退相干」(decoherence,另一個對於塌縮的解釋)這種較現代的概念更是絕口不提。

我們為何不喜歡塌縮,最直接的原因就是其中具有「機率」的概念,物理學家們一向認為我們只要掌握所有定律就能預知未來,像拉普拉斯就是一位決定論支持者,他提出:

-----廣告,請繼續往下閱讀-----

「我們可以把宇宙現在的狀態視為其過去的果以及未來的因。假若一位智者能知道在某一時刻所有促使自然運動的力和所有組構自然的物體的位置,假若他也能夠對這些數據進行分析,則在宇宙裡,從最大的物體到最小的粒子,它們的運動都包含在一條簡單公式裏。對於這位智者來說,沒有任何事物會是含糊的,並且未來只會像過去般出現在他眼前。」

愛因斯坦熟讀斯賓諾莎並深受他的哲學影響,斯賓諾莎在《倫理學》中對神的看法是,他認為神是決定論宇宙的一環,沒有任何事情是偶然發生的。愛因斯坦從斯賓諾莎思想的精神中發展出一套決定性本質的概念,認為萬物規律受到嚴格的法則所規範。

薛丁格由哈密頓建立的光學方法得到了德布羅伊物質波波函數,但薛丁格方程依然符合決定論,我們只要知道某一時刻的波函數,就可以推出未來任一時刻的波函數,如果你高興的話也可以往過去推。薛丁格一直認為這波函數是在描述物質波,但他卻無法解釋電子所分布的範圍竟會越來越大這種詭異現象。後來玻恩提出模平方是找到電子的機率。但這導致向來有明確因果關係的物理竟然跑出來不確定的機率,大部分科學家都對此無法接受,其中也包括薛丁格本人與愛因斯坦。

所以薛丁格才提出貓的思想實驗來反諷,按機率理論貓會處於既死又活的莫名狀態,而愛因斯坦也在當年十二月寫給玻恩的信中寫下著名的「上帝不擲骰子」。

把一隻貓、一個裝有氰化氫氣體的玻璃燒瓶和放射性物質放進封閉的盒子裏。當盒子內的監控器偵測到衰變粒子時,就會打破燒瓶,殺死這隻貓。根據量子力學的哥本哈根詮釋,在實驗進行一段時間後,貓會處於又活又死的疊加態。可是,假若實驗者觀察盒子內部,他會觀察到一隻活貓或一隻死貓,而不是同時處於活狀態與死狀態的貓。這事實引起一個謎題:到底量子疊加是在甚麼時候終止,並且塌縮成兩種可能狀態中的一種狀態? 圖/Dhatfield [CC BY-SA 3.0] via wikipedia

塌縮的機率性破壞了古典決定論,愛因斯坦始終認為這種不確定性只是因為量子力學不夠完備所致,還提出隱變量理論試圖解釋。

-----廣告,請繼續往下閱讀-----

「觀察者」的存在,影響了測量結果?這科學嗎?

溫伯格也質問:

「既然薛丁格方程能確定任何時刻的波函數。如果觀察者及其測量儀器本身都是由決定性的波函數所描述的,為什麼我們不能準確預測測量結果,而只能知道機率? 作為一個普遍的問題:如何建立量子與古典現實之間的對應關係?」13

還有「究竟是甚麼導致了塌縮?是人類的意識嗎?又如果我們只能透過測量來觀察這個世界?」

愛因斯坦就問:

「當我們不看月亮時,月亮是否還在那?」

當我們不看月亮時,月亮是否還在那? 如果森林中有棵樹倒了,沒有人在場聆聽,那麼會有聲響嗎? 圖/flo222 @Pixabay

舉個具體例子,如果森林中有棵樹倒了,沒有人在場聆聽,那麼會有聲響嗎?如果真實的森林中有一棵真實的樹倒下了,那麼即便沒有人在附近,聲音當然還是會出現。即使沒有人在場聽到,還是會有其他的蛛絲馬跡,聲響透過空氣會搖晃一些樹葉,我們只要夠仔細,就會發現荊棘劃過葉子而留下了割痕。若是問:是否有聲音的「感覺」呢?沒有。照理講,聲音的感覺是和認知連接在一起的, 我們不知道別的生物是否有知覺。

也有人說塌縮是經典客體(如觀察儀器、觀察者)和量子客體(被測量的量子)相互作用後的結果,此過程完全不需要一位實驗操作者存在。但如果有本質論的物理法則存在,一個經典客體哪來的魔力去塌縮波函數呢?宏觀和微觀的分割線又是甚麼?量子力學非常畸形,它在進行定義時竟然需要用到作為自身極限情形的經典儀器,頗有種剪不斷理還亂的感覺,不像相對論可以完全拋棄自身極限的牛頓體系獨立存在。

諾貝爾獎得主萊格特就說:「如果說塌縮是由有意識的觀察者所導致的會不會更好?」14其實量子力學初建立時,人們對測量理論的看法就有所分歧,玻爾認為測量是微觀系統和宏觀儀器相互作用的結果、海森堡認為測量是指留下一個永久的「紀錄」、維格納認為當一位有意識的觀察者介入後才完成了測量。

和經典的不同,量子中的「測量」此一行為是創造性的,它簡直創造了被測量的物理實在。約當(矩陣力學的三位創始人之一,因為加入納粹黨沒獲諾貝爾獎)就宣稱:

「觀測不僅會干擾被觀測量,而且產生了它!我們強迫電子出現在 特定的位置。一般來說,原先它既不在這也不在那,它尚未決定一個確切位置……每一次觀察不僅僅是一種干擾,而是一種尖銳的侵犯:『我們自己產生了測量結果。』」15

唯心主義者認為塌縮是由人類的意識所造成的,但貓狗或是昆蟲是否擁有意識,能否引發波函數的塌縮,他們卻不願意繼續探討。曾有物理學家問狄拉克塌縮是如何產生的,他回答:「自然會自己做出選擇。」那究竟大自然是怎麼做出選擇的呢?他又說:「當機率不再有干涉時。」這想法就是後來的量子退相干,退相干能夠解釋為什麼不會觀察到干涉現象,但是退相干能否解釋波函數塌縮的後果,這議題至今仍舊存在巨大爭議。退相干是一種標準量子力學效應,它不是一種量子力學詮釋,而是利用量子力學分析獲得的結果。

如霍金所說:「在魚缸裡的金魚感知到的『現實』並不真實,因為彎曲的表面會讓金魚眼中的『現實』世界變得扭曲。金魚看見的世界與我們所謂的『現實』不同,但我們怎麼能肯定它看到的就不如我們真實?就連我們自己終其一生,也在透過一塊扭曲的鏡片(望遠鏡)打量周遭的世界呢。」圖/pixabay

關於物理學,我們還不了解的是……

愛因斯坦認為有個客觀的物理實在,不同觀察者都從自己的角度看問題;而玻爾則認為對於想要研究的問題不同,觀察者會設計各種相異的實驗,而這些實驗創造了物理實在。最後貝爾不等式的實驗驗證為這場世紀辯論帶來終結,宣告玻爾是對的,測量的過程創造了一個特定的結果。粒子在對它進行測量之前沒有一個確定的位置,是測量的過程給出了一個具體數值,測量「創造」出了一個結果

這種挺像魔法的儀器「創造說」不太令人滿意,但是維格納的唯心論想法也有荒謬之處,以薛丁格的貓為例,是你「看的行為」看死了貓,而非毒藥,這變得非常荒謬,宏觀事件的線性組合會非常奇怪。現在人們普遍接受的說法是:測量的本質是某些宏觀體系受到了影響,在測量發生的時刻,宏觀體系與微觀體系相互作用,並留下一個永久記錄。宏觀體系不允許處於由不同態所構成的線性組合的態,當然宏觀和微觀之間並沒有明確的分割線,但是由退相干理論,在極短的時間內它就會回到普通的經典態。

最後以海森堡的一段話為量子力學作結:

「我們不能再獨立於觀察過程來談論粒子的行為。作為最後的結果,量子理論中的數學法則不再處理粒子本身,而是我們對於粒子的了解。也不能再客觀地詢問這些粒子是否在空間和時間上存在。科學不再是自然界的客觀觀察者,而是將自己視為人與自然之間相互作用的演員。分析、解釋、分類的科學方法已經意識到了它的局限性。方法和對象不能再分開。」16

這大概要說是哥本哈根學派的瑕疵,我們應該對測量的本質和波函數的塌縮有更深刻的理解。

註釋:

  1. If you are not confused by quantum mechanics, then you haven’t really understood it.
  2. I think I can safely say that nobody understands quantum mechanics.
  3. The belief in an external world independent of the perceiving subject is the basis of all natural science.
  4. Physics is an attempt conceptually to grasp reality as it is thought independently of its being observed.
  5. On principle it is quite wrong to try founding a theory on observable magnitudes alone. In reality the very opposite happens. It is the theory which decides what we can observe.
  6. Physicists must consider none but observable magnitudes while trying to solve the atomic puzzle.
  7. I do not need to answer such questions because you cannot ask such a question experimentally.
  8. Evidence obtained under different experimental conditions cannot be comprehended within a single picture, but must be regarded as complementary in the sense that only the totality of the phenomena exhausts the possible information about the objects.
  9. There is no quantum world. There is only an abstract quantum physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature.
  10. One should no more rack one’s brain about the problem of whether something one cannot know anything about exists all the same, than about the ancient question of how many angels are able to sit on the oint of a needle.
  11. Absolutely not! Quantum mechanics does not describe nature. It describes what we can say about nature.
  12. Yes, of course. Quantum mechanics tells us what atomic and subatomic particles are really like. They are fields of potentiality that become actual when measured.
  13. The Schrödinger wave equation determines the wave function at any later time. If observers and their measuring apparatus are themselves described by a deterministic wave function, why can we not predict precise results for measurements, but only probabilities? As a general question: How can one establish a correspondence between quantum and classical reality?
  14. Wouldn’t be better to propose that the collapse is produced by the mind/consciousness of the observer?
  15. Observations not only disturb what has to be measured, they produce it! We compel the electron to assume a definite position; previously it was, in general, neither here nor there; it had not yet made its decision for a definite position…. Every observation is not only a disturbance; it is an incisive encroachment
    into the field of observation: ‘we ourselves produce the results of measurement.’
  16. We can no longer speak of the behavior of the particle independently of the process of observation. As a final consequence, the natural laws formulated mathematically in quantum theory no longer deal with the elementary particles themselves but with our knowledge of them. Nor is it any longer possible to ask whether or not these particles exist in space and time objectively. Science no longer confronts nature as an objective observer, but sees itself as an actor in this interplay between man and nature. The scientific method of analyzing, explaining, and classifying has become conscious of its limitations. Method and object can no longer be separated.

參考資料:

  1. The Feynman Lectures on Physics Vol 3. by Richard Feynman, Robert B. Leighton, Matthew L. Sands. Addison Wesley
  2.  Nature Loves to Hide: Quantum Physics and Reality; A Western Perspective. by Shimon Malin. World Scientific Publishing Company
  3.  Is the moon there when nobody looks? Reality and the quantum theory. by ND Mermin – Physics Today. April 1985, 38 (4): 38–47. doi:10.1063/1.880968.
  4.  Epistemic and Ontic Quantum Realities. by Atmanspacher, Harald & Primas, Hans. (2005). AIP Conference Proceedings. 750. . 10.1063/1.1874557.
  5.  Quantum mechanics: non-relativistic theory. by L. D. Landau, E. M. Lifshitz. Butterworth-Heinemann
  6.  Introduction to Quantum Mechanics. by David J. Griffiths. Pearson Prentice Hall
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
從太陽發光到生命突變,一切都歸功於量子穿隧效應?
PanSci_96
・2024/10/19 ・1957字 ・閱讀時間約 4 分鐘

在這個充滿光與生命的宇宙中,我們的存在其實與一種看不見的力量密切相關,那就是量子力學。沒有量子力學,太陽將不會發光,地球上的生命將無法誕生,甚至整個宇宙的運行規則都會截然不同。這些微觀層次的奧秘深深影響了我們日常生活的方方面面。

其中,量子穿隧效應是一個看似違背直覺但至關重要的現象,從太陽的核融合反應到基因的突變,這種效應無處不在,甚至還牽動著當今的高科技產業。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子穿隧效應?

我們可以將量子穿隧效應比作一個奇妙的穿牆術。想像一下,你身處一個被高牆包圍的城市,牆外是未知的世界。通常,如果你要越過這道牆,需要極大的力量來翻越它,或者用工具打破它。然而,在量子的世界裡,情況並不如此。

在微觀的量子力學世界中,粒子同時具有波的特性,這意味著它們並不完全受限於傳統物理的規則。當一個微觀粒子遇到能量障礙時,即使它沒有足夠的能量直接穿過障礙,卻仍有一定機率能出現在障礙的另一邊,這就是「量子穿隧效應」。粒子彷彿直接在牆上挖了一條隧道,然後穿越過去。

-----廣告,請繼續往下閱讀-----

這聽起來像魔法,但它背後有深刻的物理學道理。這個現象的發生取決於量子粒子的波動性質以及能量障礙的高度和寬度。如果障礙較矮且較窄,粒子穿隧的機率就較高;反之,障礙越高或越寬,穿隧的機率則會降低。

太陽發光:核融合與量子穿隧效應的結合

量子穿隧效應的存在,讓我們能夠理解恆星如何持續發光。以太陽為例,太陽內部的高溫環境為核融合反應提供了所需的能量。在這個過程中,氫原子核(質子)需要克服極大的電磁排斥力,才能彼此靠近,進而融合成為氦原子核。

然而,單靠溫度提供的能量並不足以讓所有質子進行核融合。根據科學家的計算,只有約10的 434 次方個質子中,才有一對具備足夠的能量進行核融合。這是一個極小的機率。如果沒有量子穿隧效應,這種反應幾乎不可能發生。

幸好,量子穿隧效應在這裡發揮了關鍵作用。由於量子粒子具有波動性,即便質子沒有足夠的能量直接跨越能量障礙,它們仍然能透過穿隧效應,以一定機率克服電磁排斥力,完成核融合反應。這就是為什麼太陽內部的核融合能夠源源不斷地發生,並且持續產生光與熱,讓地球成為適合生命生存的家園。

-----廣告,請繼續往下閱讀-----

量子穿隧效應與生命的演化

除了恆星的發光之外,量子穿隧效應還對生命的誕生和演化起到了關鍵作用。地球上物種的多樣性,很大一部分源於基因突變,而量子穿隧效應則幫助了這一過程。

DNA 分子是攜帶遺傳訊息的載體,但它的結構並不穩定,容易在外界因素影響下發生變異。然而,即使沒有外界因素的干擾,科學家發現 DNA 仍會自發性地發生「點突變」,這是一種單一核苷酸替換另一種核苷酸的突變形式。

量子穿隧效應讓氫原子隨時可能在 DNA 結構中進行位置轉換,從而導致鹼基對的錯位,這在 DNA 複製過程中,可能會引發突變。這些突變若保留下來,就會傳遞給下一代,最終豐富了基因與物種的多樣性。

量子穿隧幫助促進 DNA 突變,協助生命的演化與物種多樣性。圖/envato

半導體技術中的量子穿隧效應

除了在宇宙和生命中發揮作用,量子穿隧效應還影響著我們的日常生活,尤其在現代科技中。隨著半導體技術的發展,電子設備的體積不斷縮小,這也讓電子元件的性能面臨更大的挑戰。

-----廣告,請繼續往下閱讀-----

在微小的電子元件中,量子穿隧效應會導致電子穿過元件中的障礙,產生不必要的漏電流。這種現象對電晶體的性能帶來了負面影響,因此設計師們需要找到方法來減少穿隧效應的發生,以確保元件的穩定性。

雖然這是我們不希望見到的量子效應,但它再次證明了量子力學在我們生活中的深遠影響。設計更有效的半導體元件,必須考慮到量子穿隧效應,這讓科學家與工程師們需要不斷創新。

量子力學是我們宇宙的隱藏力量

量子穿隧效應看似深奧難懂,但它對宇宙的運作和生命的誕生至關重要。從太陽的核融合反應到基因突變,甚至現代科技中的半導體設計,量子力學影響著我們生活的方方面面。

在這個充滿未知的微觀世界裡,量子現象帶來的影響是我們難以想像的。正是這些看似不可思議的現象,塑造了我們的宇宙,讓生命得以誕生,科技得以發展。當我們仰望星空時,別忘了,那閃耀的光芒,背後藏著的是量子力學的奇妙力量。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。