0

7
9

文字

分享

0
7
9

「量子力學」如何天翻地覆的改變我們對世界的理解?

活躍星系核_96
・2018/04/12 ・8398字 ・閱讀時間約 17 分鐘 ・SR值 595 ・九年級

  • 文 / Brian

對「理解世界」造成天翻地覆改變的量子物理

圖/TheDigitalArtist @Pixabay

在量子力學以後,我們對於世界的理解從原先的本體論(ontology)變成了認識論(epistemic)。

讓我們先來回顧一下歷史,這一切要從馬赫(Ernst Mach,1838/2/18-1916/2/19)講起,他認為科學的目的本來就不是探尋甚麼真理,科學只是想要找到一種「最經濟的思想」。例如當我們想要描述自由落體時,一個方法是收集大量的自由落體實驗數據,從而發現這些數據間的一致性;我們也可以採取另一個方法,找尋背後的物理定律,像是速度的變化是常數。

對於馬赫而言,第二種方法更好只是因為它更「經濟」,只需寫出一條式子就解釋了很多同類的現象,但對於「認識」這個世界如何運行而言,兩種方法是等價的。科學是用最少的腦力來解釋最多可能的事實,我們認為某條物理定律是有價值的並非因為它是「對的」、是「真理」,僅僅是因為它可以很簡潔的解釋我們觀察到的事實

馬赫的這種哲學觀念影響了 20 世紀許多科學家,包括愛因斯坦、海森堡、包立、費曼……,注意這裡沒有列出玻爾,這是因為玻爾有另一種哲學思想。愛因斯坦終其一生都不能接受量子力學的不確定或非實在性,我現在覺得有這種想法非常合理,肯定沒有人能徹底明白量子力學究竟是怎麼回事,大家都只是記下了數學怎麼操作然後就開始做研究,對於背後的規律都避而不談。

-----廣告,請繼續往下閱讀-----

玻爾曾說:「如果你沒有被量子力學所困惑,那就代表你根本沒有徹底了解它。」1

費曼也認為:「我幾乎可以說沒有人能了解量子力學。」2

我們通常都傾向於相信存在一個實質的外在世界,它本來就存在那裡,當我們說想要「描述」這個世界時,其實已經默認說有個世界等著我們去描述。這種想法並不能被證實,我們只是「相信」了這件事,愛因斯坦認為:「相信有個獨立於感知主體的外在世界是所有自然科學的基礎。」3自古以來科學家們都認為這個外在世界有一些實質的狀態等待我們去發掘,而科學的目的則是完善那些告訴我們世界如何組成和演化的知識。儘管科學的方法需要觀察和測量來達到此目的,但我們相信這些被描述的物理「實在」是獨立於操作手段而存在的。

正如愛因斯坦所說:「物理學就是在嘗試從概念上理解現實,且它獨立於被觀察的事物。」4

然而量子力學不允許有獨立於觀測存在的物理實在。

一切的「存在」與「樣貌」都取決於「可測量與否」?

1927 年第五次索爾維會議參與者,攝於國際索爾維物理研究所。 第一排:歐文·朗繆耳、馬克斯·普朗克、瑪麗·居禮、亨德里克·勞侖茲、阿爾伯特·愛因斯坦、保羅·朗之萬、查爾斯·古耶、查爾斯·威爾森、歐文·理查森 第二排:彼得·德拜、馬丁·努森、威廉·勞倫斯·布拉格、亨德里克·克雷默、保羅·狄拉克、阿瑟·康普頓、路易·德布羅意、馬克斯·玻恩、尼爾斯·波耳 第三排:奧古斯特·皮卡爾德、亨里奧特、保羅·埃倫費斯特、愛德華·赫爾岑、西奧費·頓德爾、埃爾溫·薛丁格、維夏菲爾特、沃爾夫岡·包立、維爾納·海森堡、拉爾夫·福勒、萊昂·布里淵。圖/摄影:Benjamin Couprie @wiki

愛因斯坦曾和年輕時的海森堡有過一次對談,愛因斯坦提到:「原則上由觀察到的數值來建立一個理論是不對的。實際上往往相反,反而是你用的理論決定你能觀察到甚麼。」5這個想法一直在海森堡的心中,後來更導致他提出不確定性原理。海森堡說:「在原子尺度時,物理學家只該考慮可測量量。」6他認為在量子尺度時,我們只能考慮能被測量的量。這是甚麼意思呢?

當量子還在建立階段時,古典的物理學家都質問他們:「你看你們的理論一點都不好,因為它不能回答粒子的實際位置是甚麼、或是在干涉實驗中粒子究竟穿過了哪個孔,或諸如此類的問題。」

-----廣告,請繼續往下閱讀-----

海森堡卻說:「我不需要回答這類問題,因為你無法由實驗的方法問這個問題。」7

我們不需要回答這種問題,因為每個在物理中使用的概念都需要有個可操作的定義,除非我們可以指出它要怎麼被測量,否則我們不允許談論某個概念。

玻爾的互補原理

爾後玻爾提出了互補原理,他認為不能用單獨一種概念來完備地描述整體量子現象,為了完備地描述整體量子現象,必須將分別描述波動性粒子性的概念都囊括在內。這兩種概念可以視為同一個硬幣的兩面。互補的兩件事情(例如波粒二象性或位置動量不確定性)無法被同時觀察到,不可能在某一時刻看到波動和粒子兩種性質,所以當我們想要描述量子行為時,必須同時考慮波動和粒子兩種觀點,不可能用單一種概念來描述整個量子現象。

因此在這個基礎上,他認為人們原先無法解釋電子干涉圖樣中出現既有粒子又有波的現象,只是互補的兩面,而這兩種概念都不能被捨棄,波動和粒子兩種描述都是必要的,它們適用於不同的條件,兩種概念是互補而非互斥的。

他說:「由不同實驗條件下得到的結果無法被單一圖像包含,他們必須被認為是互補的,因為只有總體的現象能夠徹底探討關於這些對象的可能信息。」8

我們必須放棄以往只用單一模型來描述物理概念的這種想法,玻爾認為海森堡發現的不確定原理是更深刻的互補原理的一種表現。玻爾甚至把互補原理和東方的「陰/陽」聯繫起來,還在自己的墓碑上刻了一個太極符號,他體悟到一項真諦:沒有一種角度可以窮盡真實,不同的觀點可能都有價值,卻是互相排斥的。

-----廣告,請繼續往下閱讀-----

玻爾的墓上甚至有一個互補的陰陽的符號。 圖 By Kim Bach [CC BY-SA 4.0 ], from Wikimedia Commonswiki
在量子力學建立後,物理學家對於世界的認識有了革命性的改變,以往視為理所當然的物理實在現在出問題了,因為從互補原理可以得知用不同的儀器觀測同一物體竟然會出現不同的現象。我們只能透過儀器來認識這個世界,而由不同的儀器所看到的世界也是不同的。

玻爾認為:「並不存在量子世界。只有一個抽象的量子物理描述。認為物理學的任務是弄清楚自然是怎麼回事是不對的。物理學只關注我們對自然的看法。」9

描述世界」這件事只是在融合我們經驗中的客觀事件,客觀的外在世界根本就不存在,一切實驗只是客觀世界在我們的主觀意識上的投影。愛因斯坦的本體論觀點認為科學的任務是要描述自然的「本質」;但玻爾的知識論觀點則認為科學的任務是描述我們「怎麼了解自然」,也就是所有可能的感知與實驗的綜合結果。這聽起來還是很抽象,我們以不確定原理為例,本體論觀點會告訴你:「一個電子不能同時『擁有』確切的位置和確切的動量。」而知識論觀點則會說:「不可能同時『知道』電子確切的位置和動量。」我不在乎有沒有,我只能說測不了,沒法設計某種實驗同時測到位置和動量。

我們能觀察到的世界是我們認知世界的「投影」?那什麼才是真實?或者根本沒有真實?圖/pixabay

玻爾和海森堡都同意物理研究的目的是促進我們對於觀察到的自然現象的了 解。那究竟甚麼是「了解」世界呢?海森堡依然受到馬赫的影響,他認為:「了解」代表找到一個數學方法,而只要按照這些方法就可以成功的預測實驗結果。但對玻爾而言,「了解」有更深刻的意義:它代表對於觀察到的現象的一種「描述」。

舉個例子,若有人問:電子是甚麼?我們應該回答電子甚麼也不是,更精確地說,除了被測量的時候,電子實際上並不存在;沒被測量時,電子只是一堆潛在可能性的疊加(我們對存在的定義就是能夠和你產生相互作用「像是暗物質是否存在」,但要想感受到作用就得做測量)。在測量前,電子有可能在甲處也有可能在乙處,而當真的進行了測量之後,電子只可能在甲處或在乙處被發現。玻爾否定本體論的闡述,在他看來,既然兩種互補的表述已經窮盡「我們能對自然的了解」,那就不需要再說更多了,現在我們不在乎本質為何,我們只在乎可不可測。

-----廣告,請繼續往下閱讀-----

以不確定原理為例,本體論的觀點是:

「在某一時刻,位置的不確定性越小,則動量的不確定性越大,反之亦然。」

而知識論的表述則更繁瑣:

「在某一時刻,如果對位置和動量『同時進行測量』,位置的不確定性越小,則動量的不確定性越大,反之亦然。」

從現在開始,我們不能再談論那些無法被測量的事情了,若想要談論某個概念,我們就必須先設計出一個實驗來測量它,否則此概念就沒有任何意義。如果有人想問某個定律背後的機制是什麼,像是原子內部是否有軌道,氫原子能級是否真的是電子在軌道間躍遷;或是電子的自旋是否真的是某種超光速的自轉所產生。我們只能回答這些問題毫無意義,如果你不能設計某種實驗來驗證這種猜測。沒有人可以給你任何更深刻的描述,我們不知道有任何更基本的機制可以拿來推導出這些結果。擔心某件在原則上不能被驗證的事情是「物理之外」(metaphysics ,中譯「形上學」)的管轄了。包立便說:

「和討論一個針尖上能坐多少個天使的遠古問題一樣,我們無需為某些我們根本無法知道的事情費腦筋。」10

一個針尖可以坐幾個天使?這真的值得好好思考…… 圖/pixabay

這世界是否可以用量子力學來描述?

玻爾回答:「當然不是!量子力學並沒有解釋自然,它描述了我們對自然的看法。」11

但海森堡則認為:「當然!量子力學告訴我們微觀世界是怎麼回事,它們原先是一些可能性,在測量後會變成實際的。」12

那究竟誰的想法更好?哥本哈根學派認為物理實在對於像「動量」或「位置」這種物理量,在測量它們之前並沒有確切的值。愛因斯坦會問在測量前的瞬間粒子是否有確切(雖然我們不知道)的位置,他甚至提出,對於這種問題我們只能回答:沒有、我們不知道、這問題沒有意義。

-----廣告,請繼續往下閱讀-----

這革命性的改變了人類對於世界的了解,曾經我們認為可以無限精確的探索世界,原子只是比較小的東西而已,遵循的物理規律跟宏觀物體一樣,但現在則發現用不同儀器所觀測到的世界也大不相同,客觀世界不再存在,主觀操作決定了我們能看到甚麼

讓物理學家困擾的塌縮不確定機率性

我們必須來談談測量和塌縮。在量子力學裏,量子態可以用波函數(wave function)來描述,概念有點像是震動的彈簧在不同的時間裡有不同的形狀;薛丁格方程式則用來計算波函數如何隨著時間而變化。波函數塌縮指的是,在量子力學體系中與外界發生某些作用(如測量或觀察)後,波函數會發生突變:由原先若干本徵態的疊加在測量後塌縮到單一本徵態。

波函數塌縮,也就是「量子態經過測量受影響其結果」這概念困擾了無數的物理學家。曾經有位史丹佛的年輕教授在量子力學課的頭兩周試圖探討測量問題,結果卻被系上資深的教授批評說:「你這麼做是有害的,學生們不需要了解量子力學的建立,這些都無用,只要讓他們會算就行了。」而朗道在他的書中試圖給測量一個數學定義(第一類測量和第二類測量),但依然避不開塌縮這個概念,雖然他整本書中都不曾出現「塌縮」這個詞,然而他指出「當量子客體和經典儀器相互作用後, 原先展開的完備集就只會剩下一項被讀出來,選中任何一項的機率是它的係數之模平方」,這其實就是在說測量後波函數會塌縮至某一本徵態。朗道已經算是比較良心了,至少願意談一下測量,更多的教科書直接把測量當作只可意會不可言談之事,而像是「退相干」(decoherence,另一個對於塌縮的解釋)這種較現代的概念更是絕口不提。

我們為何不喜歡塌縮,最直接的原因就是其中具有「機率」的概念,物理學家們一向認為我們只要掌握所有定律就能預知未來,像拉普拉斯就是一位決定論支持者,他提出:

-----廣告,請繼續往下閱讀-----

「我們可以把宇宙現在的狀態視為其過去的果以及未來的因。假若一位智者能知道在某一時刻所有促使自然運動的力和所有組構自然的物體的位置,假若他也能夠對這些數據進行分析,則在宇宙裡,從最大的物體到最小的粒子,它們的運動都包含在一條簡單公式裏。對於這位智者來說,沒有任何事物會是含糊的,並且未來只會像過去般出現在他眼前。」

愛因斯坦熟讀斯賓諾莎並深受他的哲學影響,斯賓諾莎在《倫理學》中對神的看法是,他認為神是決定論宇宙的一環,沒有任何事情是偶然發生的。愛因斯坦從斯賓諾莎思想的精神中發展出一套決定性本質的概念,認為萬物規律受到嚴格的法則所規範。

薛丁格由哈密頓建立的光學方法得到了德布羅伊物質波波函數,但薛丁格方程依然符合決定論,我們只要知道某一時刻的波函數,就可以推出未來任一時刻的波函數,如果你高興的話也可以往過去推。薛丁格一直認為這波函數是在描述物質波,但他卻無法解釋電子所分布的範圍竟會越來越大這種詭異現象。後來玻恩提出模平方是找到電子的機率。但這導致向來有明確因果關係的物理竟然跑出來不確定的機率,大部分科學家都對此無法接受,其中也包括薛丁格本人與愛因斯坦。

所以薛丁格才提出貓的思想實驗來反諷,按機率理論貓會處於既死又活的莫名狀態,而愛因斯坦也在當年十二月寫給玻恩的信中寫下著名的「上帝不擲骰子」。

把一隻貓、一個裝有氰化氫氣體的玻璃燒瓶和放射性物質放進封閉的盒子裏。當盒子內的監控器偵測到衰變粒子時,就會打破燒瓶,殺死這隻貓。根據量子力學的哥本哈根詮釋,在實驗進行一段時間後,貓會處於又活又死的疊加態。可是,假若實驗者觀察盒子內部,他會觀察到一隻活貓或一隻死貓,而不是同時處於活狀態與死狀態的貓。這事實引起一個謎題:到底量子疊加是在甚麼時候終止,並且塌縮成兩種可能狀態中的一種狀態? 圖/Dhatfield [CC BY-SA 3.0] via wikipedia

塌縮的機率性破壞了古典決定論,愛因斯坦始終認為這種不確定性只是因為量子力學不夠完備所致,還提出隱變量理論試圖解釋。

-----廣告,請繼續往下閱讀-----

「觀察者」的存在,影響了測量結果?這科學嗎?

溫伯格也質問:

「既然薛丁格方程能確定任何時刻的波函數。如果觀察者及其測量儀器本身都是由決定性的波函數所描述的,為什麼我們不能準確預測測量結果,而只能知道機率? 作為一個普遍的問題:如何建立量子與古典現實之間的對應關係?」13

還有「究竟是甚麼導致了塌縮?是人類的意識嗎?又如果我們只能透過測量來觀察這個世界?」

愛因斯坦就問:

「當我們不看月亮時,月亮是否還在那?」

當我們不看月亮時,月亮是否還在那? 如果森林中有棵樹倒了,沒有人在場聆聽,那麼會有聲響嗎? 圖/flo222 @Pixabay

舉個具體例子,如果森林中有棵樹倒了,沒有人在場聆聽,那麼會有聲響嗎?如果真實的森林中有一棵真實的樹倒下了,那麼即便沒有人在附近,聲音當然還是會出現。即使沒有人在場聽到,還是會有其他的蛛絲馬跡,聲響透過空氣會搖晃一些樹葉,我們只要夠仔細,就會發現荊棘劃過葉子而留下了割痕。若是問:是否有聲音的「感覺」呢?沒有。照理講,聲音的感覺是和認知連接在一起的, 我們不知道別的生物是否有知覺。

也有人說塌縮是經典客體(如觀察儀器、觀察者)和量子客體(被測量的量子)相互作用後的結果,此過程完全不需要一位實驗操作者存在。但如果有本質論的物理法則存在,一個經典客體哪來的魔力去塌縮波函數呢?宏觀和微觀的分割線又是甚麼?量子力學非常畸形,它在進行定義時竟然需要用到作為自身極限情形的經典儀器,頗有種剪不斷理還亂的感覺,不像相對論可以完全拋棄自身極限的牛頓體系獨立存在。

諾貝爾獎得主萊格特就說:「如果說塌縮是由有意識的觀察者所導致的會不會更好?」14其實量子力學初建立時,人們對測量理論的看法就有所分歧,玻爾認為測量是微觀系統和宏觀儀器相互作用的結果、海森堡認為測量是指留下一個永久的「紀錄」、維格納認為當一位有意識的觀察者介入後才完成了測量。

和經典的不同,量子中的「測量」此一行為是創造性的,它簡直創造了被測量的物理實在。約當(矩陣力學的三位創始人之一,因為加入納粹黨沒獲諾貝爾獎)就宣稱:

「觀測不僅會干擾被觀測量,而且產生了它!我們強迫電子出現在 特定的位置。一般來說,原先它既不在這也不在那,它尚未決定一個確切位置……每一次觀察不僅僅是一種干擾,而是一種尖銳的侵犯:『我們自己產生了測量結果。』」15

唯心主義者認為塌縮是由人類的意識所造成的,但貓狗或是昆蟲是否擁有意識,能否引發波函數的塌縮,他們卻不願意繼續探討。曾有物理學家問狄拉克塌縮是如何產生的,他回答:「自然會自己做出選擇。」那究竟大自然是怎麼做出選擇的呢?他又說:「當機率不再有干涉時。」這想法就是後來的量子退相干,退相干能夠解釋為什麼不會觀察到干涉現象,但是退相干能否解釋波函數塌縮的後果,這議題至今仍舊存在巨大爭議。退相干是一種標準量子力學效應,它不是一種量子力學詮釋,而是利用量子力學分析獲得的結果。

如霍金所說:「在魚缸裡的金魚感知到的『現實』並不真實,因為彎曲的表面會讓金魚眼中的『現實』世界變得扭曲。金魚看見的世界與我們所謂的『現實』不同,但我們怎麼能肯定它看到的就不如我們真實?就連我們自己終其一生,也在透過一塊扭曲的鏡片(望遠鏡)打量周遭的世界呢。」圖/pixabay

關於物理學,我們還不了解的是……

愛因斯坦認為有個客觀的物理實在,不同觀察者都從自己的角度看問題;而玻爾則認為對於想要研究的問題不同,觀察者會設計各種相異的實驗,而這些實驗創造了物理實在。最後貝爾不等式的實驗驗證為這場世紀辯論帶來終結,宣告玻爾是對的,測量的過程創造了一個特定的結果。粒子在對它進行測量之前沒有一個確定的位置,是測量的過程給出了一個具體數值,測量「創造」出了一個結果

這種挺像魔法的儀器「創造說」不太令人滿意,但是維格納的唯心論想法也有荒謬之處,以薛丁格的貓為例,是你「看的行為」看死了貓,而非毒藥,這變得非常荒謬,宏觀事件的線性組合會非常奇怪。現在人們普遍接受的說法是:測量的本質是某些宏觀體系受到了影響,在測量發生的時刻,宏觀體系與微觀體系相互作用,並留下一個永久記錄。宏觀體系不允許處於由不同態所構成的線性組合的態,當然宏觀和微觀之間並沒有明確的分割線,但是由退相干理論,在極短的時間內它就會回到普通的經典態。

最後以海森堡的一段話為量子力學作結:

「我們不能再獨立於觀察過程來談論粒子的行為。作為最後的結果,量子理論中的數學法則不再處理粒子本身,而是我們對於粒子的了解。也不能再客觀地詢問這些粒子是否在空間和時間上存在。科學不再是自然界的客觀觀察者,而是將自己視為人與自然之間相互作用的演員。分析、解釋、分類的科學方法已經意識到了它的局限性。方法和對象不能再分開。」16

這大概要說是哥本哈根學派的瑕疵,我們應該對測量的本質和波函數的塌縮有更深刻的理解。

註釋:

  1. If you are not confused by quantum mechanics, then you haven’t really understood it.
  2. I think I can safely say that nobody understands quantum mechanics.
  3. The belief in an external world independent of the perceiving subject is the basis of all natural science.
  4. Physics is an attempt conceptually to grasp reality as it is thought independently of its being observed.
  5. On principle it is quite wrong to try founding a theory on observable magnitudes alone. In reality the very opposite happens. It is the theory which decides what we can observe.
  6. Physicists must consider none but observable magnitudes while trying to solve the atomic puzzle.
  7. I do not need to answer such questions because you cannot ask such a question experimentally.
  8. Evidence obtained under different experimental conditions cannot be comprehended within a single picture, but must be regarded as complementary in the sense that only the totality of the phenomena exhausts the possible information about the objects.
  9. There is no quantum world. There is only an abstract quantum physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature.
  10. One should no more rack one’s brain about the problem of whether something one cannot know anything about exists all the same, than about the ancient question of how many angels are able to sit on the oint of a needle.
  11. Absolutely not! Quantum mechanics does not describe nature. It describes what we can say about nature.
  12. Yes, of course. Quantum mechanics tells us what atomic and subatomic particles are really like. They are fields of potentiality that become actual when measured.
  13. The Schrödinger wave equation determines the wave function at any later time. If observers and their measuring apparatus are themselves described by a deterministic wave function, why can we not predict precise results for measurements, but only probabilities? As a general question: How can one establish a correspondence between quantum and classical reality?
  14. Wouldn’t be better to propose that the collapse is produced by the mind/consciousness of the observer?
  15. Observations not only disturb what has to be measured, they produce it! We compel the electron to assume a definite position; previously it was, in general, neither here nor there; it had not yet made its decision for a definite position…. Every observation is not only a disturbance; it is an incisive encroachment
    into the field of observation: ‘we ourselves produce the results of measurement.’
  16. We can no longer speak of the behavior of the particle independently of the process of observation. As a final consequence, the natural laws formulated mathematically in quantum theory no longer deal with the elementary particles themselves but with our knowledge of them. Nor is it any longer possible to ask whether or not these particles exist in space and time objectively. Science no longer confronts nature as an objective observer, but sees itself as an actor in this interplay between man and nature. The scientific method of analyzing, explaining, and classifying has become conscious of its limitations. Method and object can no longer be separated.

參考資料:

  1. The Feynman Lectures on Physics Vol 3. by Richard Feynman, Robert B. Leighton, Matthew L. Sands. Addison Wesley
  2.  Nature Loves to Hide: Quantum Physics and Reality; A Western Perspective. by Shimon Malin. World Scientific Publishing Company
  3.  Is the moon there when nobody looks? Reality and the quantum theory. by ND Mermin – Physics Today. April 1985, 38 (4): 38–47. doi:10.1063/1.880968.
  4.  Epistemic and Ontic Quantum Realities. by Atmanspacher, Harald & Primas, Hans. (2005). AIP Conference Proceedings. 750. . 10.1063/1.1874557.
  5.  Quantum mechanics: non-relativistic theory. by L. D. Landau, E. M. Lifshitz. Butterworth-Heinemann
  6.  Introduction to Quantum Mechanics. by David J. Griffiths. Pearson Prentice Hall
文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

4
3

文字

分享

0
4
3
量子革命的開端——物質波的發現
PanSci_96
・2024/07/08 ・2311字 ・閱讀時間約 4 分鐘

德布羅意的物質波

在 20 世紀初期的物理學界,一個年輕人的大膽想法引發了一場徹底改變人類認知的革命浪潮。1924 年,德國物理學家路易.德布羅意在他的博士論文中提出了一個令人震驚的觀點:除了電磁波之外,構成物質的基本粒子,也應該具有波動的特性。

路易.德布羅意。圖/wikimedia

當時,德布羅意這一前衛想法招來了廣泛的質疑和不解,甚至差點畢不了業。畢竟,波動一直被視為光和其他電磁輻射的特徵,而粒子則被認為是一個個實體。說這兩者具有相同性質……無疑是有違傳統觀念的。然而,正是這樣一個大膽的假說,為量子力學理論的誕生開啟了嶄新的大門,也為物理學的發展鋪出一條革命之路。

幸運的是,德布羅意獲得了當代著名科學家阿爾伯特.愛因斯坦的支持。儘管愛因斯坦自己也未能完全理解德布羅意論文中隱含的物理真相,但他意識到其中蘊藏的巨大潛力。有了愛因斯坦的背書,德布羅意最終順利獲得了博士學位。

而在短短三年後,德布羅意的理論就得到了實驗的直接驗證。美國科學家克林頓.戴維森和勞倫斯.革末,以及英國物理學家喬治.普賴斯.湯姆森,分別進行了一系列關於電子繞射的實驗。

-----廣告,請繼續往下閱讀-----

顛覆想像的電子繞射實驗

他們發現,當電子束穿過特定障礙物時,其行為表現與光波繞射現象如出一轍。就如同光在穿過狹縫或小孔後,會在後方形成一系列明暗相間的繞射圖樣,電子也會產生類似的現象。這直接證實了德布羅意的理論:微觀粒子確實同時具有波動的特性。

電子繞射實驗範例。圖/wikimedia

電子繞射實驗的意義極為重大,不僅為德布羅意的理論提供了實驗上的佐證,更重要的是,它徹底顛覆了人類對粒子和波動本質的傳統認知。在經典物理學框架內,粒子和波曾被視為截然不同的兩種存在形式。但電子繞射實驗卻揭示了微觀粒子同時具有波動與粒子的雙重特性,給當時的科學家帶來了巨大的觀念衝擊。它突破了波動性質只與電磁波有關的傳統思維,訴說微觀世界與人類的日常經驗大相逕庭。

此外,值得一提的是,完成電子繞射實驗的英國物理學家喬治.普賴斯.湯姆森,也是最早發現電子存在的科學家——約瑟夫.約翰.湯姆森的兒子。

約瑟夫.約翰.湯姆森。圖/wikimedia
喬治.普賴斯.湯姆森。圖/wikimedia

1897 年,約瑟夫.約翰.湯姆森在研究陰極射線時首次觀測到了電子,確認了它是構成物質的基本微粒。經過三十年,他的兒子喬治不僅證實了電子同時也具有波的特性,更印證了德布羅意關於任何粒子都兼具波粒二象性的理論。父子倆在發現電子的「粒子」和「波」兩個層面上,都作出了不可磨滅的貢獻,見證了人類對物質本質認知的徹底演進。

-----廣告,請繼續往下閱讀-----

物質波的應用

物質波現象的發現不僅在理論層面意義非凡,在現實應用中也發揮著舉足輕重的作用。其中最著名的例子莫過於電子顯微鏡的問世。

光學顯微鏡利用的是可見光,因此放大倍率會受到使用光線的波長限制。一般的光學顯微鏡波長約略在數百奈米的範圍,頂多只能放大一千多倍,差不多就是我們用光學顯微鏡觀測的最大極限。

而電子顯微鏡,正是利用電子的物質波波長遠小於可見光波長的特性,以電子取代可見光波,讓電子顯微鏡突破傳統光學顯微鏡的分辨率極限。現在的電子顯微鏡,解析度約在 0.1 奈米左右,甚至還能夠看到原、分子,也已經成為科學研究不可或缺的工具。

電子顯微鏡的發明為生物學、材料科學、奈米技術等諸多領域的研究帶來了全新契機,推動了科學技術的飛速發展。可以說,物質波現象的發現不僅在理論層面上極具革命性意義,在現實應用上也是物理學家們的一大創舉。

-----廣告,請繼續往下閱讀-----
1980 年代的掃描式電子顯微鏡。圖/wikimedia

結語

物質波的發現標誌著量子力學理論的誕生,它徹底改變了人類對粒子和波動本質的認知。這場思維革命,對於人類認識世界的方式產生了深遠的影響,其餘波盪漾直到今天仍在延續。

事實上,物質波的發現並非量子力學革命的終點。德布羅意的物質波理論為量子力學奠定了基礎,而量子力學本身又為當代物理學乃至整個科學發展開啟了嶄新的大門。

隨著量子理論的不斷深入和發展,人類對微觀世界的理解越來越透徹,卻也越發察覺到一個令人費解的事實:我們熟悉的經典物理定律,在微觀領域幾乎完全失效。在這個奇特的量子世界中,物質不僅展現出波粒二象性,還呈現出一些令人錯愕的現象,比如量子糾纏、量子疊加等。 這些現象彷彿在諷刺人類對世界的認知有多麼淺薄,也引發了科學家對宇宙運行法則的激烈討論。

討論功能關閉中。

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。