Loading [MathJax]/extensions/tex2jax.js

4

0
0

文字

分享

4
0
0

機械有機體讓生物發電機成真

milkdoggy
・2012/03/15 ・2108字 ・閱讀時間約 4 分鐘 ・SR值 545 ・八年級
相關標籤: 機械有機體 (1)

-----廣告,請繼續往下閱讀-----

Cyborg in Ghost in the Shell

我們經常可以在科幻作品當中見到結合了機械與生物的機械有機體 (Cybernetic organism, Cyborg),這些生物靠著內置機械的身體,達到了常人所無法辦到的事,如絕倫的武力或腦力,像是攻殼機動隊中能單手擊破戰車裝甲的草薙素子,或是Capcom遊戲生化突擊隊 (Bionic Commando) 中,靠著Bionic Arm飛簷走壁的Spencer。

但撇開幻想世界不說,在我們世界中的cyborgs,究竟有著怎樣的發展呢? Nature News 有一篇文章整理了近年來幾位科學家對於cyborgs實做的成果,但這些cyborgs可不是飛天遁地用來打擊壞蛋的生化人,而是為了民生用途而製造出來,就是電池。以下文章翻譯自Nature News之文章: Cyborg snails power up

———————————————————————————————————————–

在葉夫金尼.卡茲教授 (Dr. Evgeny Katz ) 的實驗室中,有十幾隻褐花園蝸牛在塞滿苔料的塑膠缸中爬行,這樣的景象看起來再正常不過了,但在牠們的身體中卻隱藏著不為人知的超能力:牠們能發電!

-----廣告,請繼續往下閱讀-----
Snails have joined the growing ranks of animals whose own metabolism can be used to generate electricity.

卡茲教授和他克拉克森大學 (Clarkson University) 的團隊,在每隻蝸牛的身體裡面都植入了小型的生質能源電池,這些電池能從蝸牛體液中的葡萄糖和氧萃取出電能,過去半年以來,這些小東西從大嚼特嚼紅蘿蔔的過程中透過外接電路持續提供電力。卡茲教授說”這些小動物是不二的人選,牠們的行為單純,成天只要吃吃喝喝還有爬來爬去就好,然後我們負責讓牠們吃得高興及別讓牠們死翹翹”

自產電力的機械有機體 (Self-powered cyborgs)

卡茲教授所創造的蝸牛只是目前眾多被賦予「發電性」的生物之一1,一月在美國化學學會學刊 (Journal of the American Chemical Society) 所刊登來自於凱西西儲大學 (Case Western Reserve University) 丹尼爾史克森教授 (Dr. Daniel Scherson) 的研究,就是有關於在活的蟑螂身上植入微型生能電池2;另一組人馬則是由山謬辛格博士 (Dr. Sameer Singhal) 所領軍由CFDRC (CFD Research Corporation) 的生醫能源技術部門與加州大學柏克萊分校合作的團隊,這個團隊則是以甲蟲作為對象植入生能電池;這些昆蟲能夠在同時承受外接電極並產生電能的狀態下存活超過兩個禮拜。

這些科學家投入心力就為了能成功創造出昆蟲 (或蝸牛) 機械有機體;這種機械生體的概念吸引了美國國防部投入資金來資助他們的研究;過去十年以來,科學家們創造出了各種搭配有微型電路及無線電天線的昆蟲和爬行動物,作為環境偵測的資訊收集者或用作軍事用途3

-----廣告,請繼續往下閱讀-----

但對於長時間的任務而言,電池先天上的體積及續電性問題使其應用窒礙重重-這也是引起了卡茲教授將腦筋動到了蝸牛本身代謝產生的能量; 生能電池能提供持續數個月微弱但穩定的電力。來自猶他州大學的雪莉麥提爾教授 (Dr. Shelley Minteer) 說「卡茲教授的研究之所以讓人印象深刻,在於他的方法提供了一個長時間穩定的供電潛力」。

小小生物 小小功率

來自新墨西哥大學新興能源技術中心 (Center for Emerging Energy Technologies) 的普拉門博士 (Dr. Plamen Atanassov) 指出,雖然大型的生能電池可以驅動手機或其他類似的裝置,但不得不讓人懷疑才幾釐米大小的電池,是否能驅動一些複雜的動作-例如遠端遙控飛行。生能電池能提供多少電能,取決於電極的大小,以及它們從生物血液中萃取糖與氧的速率 (在蝸牛裡面就不是血液了,而是功能性類似的血淋巴液)。

以卡茲教授的蝸牛為例,一開始雖然能提供超過7.45微瓦的電力,但經過45分鐘後,功率下降了80%左右。為了能夠持續的汲取電力,卡茲教授不得不將電力的汲取向下減弱到0.16微瓦。

-----廣告,請繼續往下閱讀-----

史克森博士則表示他有機會從他的蟑螂發電機上汲取到超過一百微瓦的電力 (他使用海藻糖餵養蟑螂,海藻糖是一種由葡萄糖構成的特殊糖類)。辛格博士也從他的甲蟲實驗中提出了類似的成果。史克森指出電力其實不需要無時無刻的被汲取出來,而是可以儲存於電容器中並以脈衝的形式釋放;他表示現在可以透過這種方式從他的蟑螂身上產生和探測到無線電訊號。

人類也能植入電池嗎?

來自法國約瑟夫傅立葉大學 (Joseph Fourier University) 的菲利浦辛奎茵博士 (Dr. Philippe Cinquin) 對生能電池的利用則有不同的方向-他將其植入老鼠體內。他們在2010年所做的研究4揭示了未來人類在使用生能電池上的可能性,例如以我們血液為電力驅動來源的心律調節器。

辛奎茵博士指出,若想要發展出人體內的生能電池構造,其作為一個植入體必須不能被免疫系統排斥;他的團隊現在已經成立一家專門發展人工尿道括約肌的公司,這種人造裝置需要300~500微瓦的電力,電力來源可能就是來自體內的葡萄糖燃料。當然,現今的電池有很多這類的應用方式,但是小型的生能電池卻能為這種醫療裝置提供更方便、更永續的供電方式。

-----廣告,請繼續往下閱讀-----

來自德州大學奧斯汀分校 (University of Texas at Austin) 的亞當海勒博士 (Dr. Adam Heller) 從2003年起就埋首研究如何從葡萄中製造電力5,他指出生能電池對於低功率低耗能的應用將非常適合,例如刺激單條神經元。

在此同時,卡茲教授表示接下來將要嘗試比蝸牛還要大的生物,因為大型生物的代謝量能提供更多的電力。他的下一步:生化龍蝦!

 

新聞來源:

Cyborg snails power up

-----廣告,請繼續往下閱讀-----

相關文獻:

  1. Halámková, L., Halámek, J., Bocharova, V., Szczupak, A., Alfonta, L., & Katz, E. J. Am. Chem. Soc.http://dx.doi.org/10.1021/ja211714w (2012).
  2. Rasmussen, M., Ritzmann, R. E., Lee, F., Pollack, A.J. & Scherson, D. J. Am. Chem. Soc. 134,1458–1460 (2012)
  3. Sato, H., Cohen, D. & Maharbiz, M. M. in CMOS Biomicrosystems: Where Electrons Meet Biology (ed. K. Iniewski) http://dx.doi.org/10.1002/9781118016497.ch12 (John Wiley and Sons, 2011).
  4. Cinquin, P. et al. PLoS One 5, e10476 (2010).
  5. Mano, N., Mao, F. & Heller, A. J. Am. Chem. Soc. 125, 6588–6594 (2003).
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 4
milkdoggy
8 篇文章 ・ 1 位粉絲
以科學、哲學與電玩為精神食糧,曾任學術期刊《Taiwania》、科普雜誌《BBC知識》編輯,現任天下文化科學叢書編輯。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。