Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

真.星際過客:首次發現太陽系外的星際天體「黑麻麻」‘Oumuamua!

歐柏昇
・2018/02/22 ・4307字 ・閱讀時間約 8 分鐘 ・SR值 540 ・八年級

科學家首度目擊來自太陽系外的不速之客!
什麼?太陽系遭到外星人闖空門了嗎?請保持冷靜,讓我們娓娓道來。

要介紹這位不速之客,就從它的名字談起好了。我國法律規定,每個人只有三次改名機會,而成年之前只能改一次。而天上的星體可沒有這個限制了,但是一般根本不會隨便改名。這個奇怪的天體,在發現後一個月內,就換了三次名字。

改名的事情,我們就先賣個關子,現在先告訴你它的綽號。泛星計畫(Pan-STARRS)幫它取了一個很可愛的綽號:‘Oumuamua。這個字來自夏威夷語,意思是「第一個來自遠方的信使」。中文翻譯有趣了,中國大陸翻譯為「奧陌陌」,而臺灣天文同好想到了臺語的諧音,就把它暱稱為「黑麻麻」[1]。在這篇文章中,我們就姑且稱它為「黑麻麻」吧!

藝術家繪製的「黑麻麻」(1I/2017 U1)想像圖。圖/ESO/M. Kornmesser

泛星計畫:難道不是彗星嗎?

「黑麻麻」的發現是在 2017 年 10 月 19 日,夏威夷大學的天文學家羅伯特.韋雷克(Robert Weryk)利用泛星計畫的 1.8 米望遠鏡,搜尋近地小天體,而發現這個快速移動的詭異天體。起初根據軌道型態,這個天體被歸類為彗星,名稱訂作 C/2017 U1(C字號代表長週期彗星)──這是「黑麻麻」的第一個名字。

很快地,科學家發現它並不是彗星。10 月 22 日,加法夏望遠鏡(Canada–France–Hawaii telescope; CFHT)的觀測發現,這個小天體的特徵,與彗星非常不同。它比較像是一個小行星。

-----廣告,請繼續往下閱讀-----

彗星與小行星有什麼不同?主要的差異是它們的組成物質,彗星是冰和塵埃構成,小行星則是岩石構成。彗星靠近太陽的時候,身上的冰會揮發,塵埃也會跟著散至周圍,使我們可以看到一團光暈,稱為「彗髮」。

彗髮是觀測上用來認定彗星活動的重要線索。當帶有揮發性水、冰成分的天體向著太陽靠近時,太陽輻射能量的強度將隨著距離減少而逐漸上升,在不同的太陽距離下會驅動特定化學分子的揮發,而使他們顯現出彗髮、彗尾結構,這個開與關的邊界距離我們稱之為雪線(snowline)。比較常被討論到的雪線有 12 天文單位的一氧化碳、二氧化碳,以及 5 天文單位的水 。[2]

加法夏望遠鏡的觀測,以及甚大望遠鏡(Very Large Telescope; VLT)和南雙子望遠鏡(Gemini South Telescope)後續幾天的觀測,都一再顯示,C/2017 U1 並沒有沒有彗髮。也就是說,它根本不是彗星!世界時 10 月 25 日凌晨才剛登記為 C 開頭的名稱,當天晚上立刻改掉,改稱為 A/2017 U1 [3],A字號代表小行星。

甚大望遠鏡、南雙子望遠鏡觀測「黑麻麻」(1I/2017 U1)的多張影像疊和,藍圈中的白點就是「黑麻麻」,研究人員發現它周圍沒有彗髮。圖/ESO/K. Meech et al.

它不是歸人,是個過客──首度探測到的星際天體

彗星改認定為小行星,還不足以讓「黑麻麻」有舉足輕重的意義。真正精采的是,它竟然來自太陽系外,是闖入太陽系的不速之客!

過去人們從來沒有看過任何一個「亂入」太陽系的星際天體,不過科學家早已預言,我們有一天會看到。著名的行星科學家艾倫.斯特恩(Alan Stern)在1997年曾說過:「我們知道星際彗星存在,只不過天文學家還沒看過任何一個。」當時他也說明,將來科學家能夠找到星際彗星[4]。

為什麼科學家老早就料到,會有「黑麻麻」這樣的天體闖入太陽系呢?

-----廣告,請繼續往下閱讀-----

事情是這樣的。太陽系行星形成的過程中,有很多微行星遺留下來,成為彗星、小行星這樣的小天體。但也有許多微行星沒有在太陽系內生存下來──它們走到木星這樣的巨大行星旁邊,就像是小蝦米遇到大鯨魚,被木星的重力甩一巴掌,甩飛到太陽系外。別人的太陽系也會有同樣的事情發生,有些微行星被巨大的行星甩出來。這些被別人甩出來的東西,流浪在星際間,有可能某天就流浪來到我們家門口了。

「黑麻麻」(1I/2017 U1)的運行軌道。圖/NASA/JPL-Caltech

「黑麻麻」發現之後,研究人員經過初步的分析,就懷疑它是來自太陽系外的天體。10 月 22 日,結合了加法夏望遠鏡的觀測結果,才終於證實「黑麻麻」的軌道是雙曲線,而不是封閉的橢圓。也就是說,「黑麻麻」的軌道並無被太陽的重力束縛,它根本不是繞著太陽公轉的天體!

許多望遠鏡搶在「黑麻麻」離去之前觀測,於是科學家能夠精密地重建出「黑麻麻」的運行軌道。原來,這個小天體在 2017 年 9 月 2 日從太陽系盤面上方穿入水星軌道內,9 月 9 日最接近太陽,10 月 14 日行經地球軌道下方。太陽系的天體大都分布在接近同一盤面上,外來的闖入者軌道才如此怪異,這下又形跡敗露了!

「黑麻麻」的軌道速度實在太快,以秒速 26 公里的相對速度進入太陽系,太陽的重力根本不足以減慢它到能夠捕捉在太陽系內運轉。顯然,這位神秘嘉賓無意留宿在太陽系中,因緣際會來了一趟,與我們萍水相逢罷了。它不甘做太陽的奴僕,一生只接近太陽這一次,未來將與我們漸行漸遠。

-----廣告,請繼續往下閱讀-----

也許它正吟誦著這首詩呢:「我達達的馬蹄是美麗的錯誤,我不是歸人,是個過客……」。

  • 「黑麻麻」(1I/2017 U1)的運行軌道。

11月6日,國際天文聯合會(IAU)為「黑麻麻」正名,在接到申請後不到24小時,就同意為它專設一個新的天體分類── I,代表星際天體(interstellar object)[5]。於是,「黑麻麻」再度改名,成為 1I/2017 U1,開頭的 1 就表示它是此分類的第一號了。‘Oumuamua這個稱號也被正式認可,可寫為 1I/2017 U1 (‘Oumuamua)

奇形怪狀的不速之客,是外星人派來的間諜?

「黑麻麻」不僅行蹤詭異,它的長相也非常怪異。

科學家根據甚大望遠鏡、南雙子望遠鏡觀測到的光度變化曲線,了解「黑麻麻」的特徵。若小行星不停在自轉,有時某一面對著我們,有時則是另一面對著我們,如果整體表面材質夠均勻,比較大面積的那個面對準我們的時候,看起來就會比較亮。

左圖是「黑麻麻」(1I/2017 U1)自轉的模擬,右圖是光度變化的曲線。大面積的面對著我們的時候,光度達到高點。圖/維基百科(nagualdesign創作)

研究發現,「黑麻麻」大約 7 至 8 小時自轉一圈。出乎意料的是,它的光度變化,高點和低點竟然落差 10 倍!這表示大的面和小的面,面積可能有高達10倍之差異。也就是說,「黑麻麻」的形狀就像是一根長棍,長寬比可能高達 10:1,或者至少5:1 或 6:1。各項研究推測數據不一,但大約是長幾百公尺,寬、高各幾十公尺。

-----廣告,請繼續往下閱讀-----

在太陽系裡,人們幾乎沒見過「黑麻麻」這樣奇形怪狀的天體。事實上,這種奇怪的形狀,本身的力學結構很難維持。你可以設想,一根棍子容易斷成兩截,但是一顆球不太容易,但「黑麻麻」怎麼會是以棍狀的模樣遊走到我們的太陽系中呢?

藝術家繪製的「黑麻麻」(1I/2017 U1)想像圖。「黑麻麻」的形狀是長柱狀,這種形狀在太陽系天體中非常罕見。圖/ESO/M. Kornmesser

為什麼第一個看到的星際天體,就長得這麼怪呢?開始有陰謀論出現了,有人懷疑,搞不好是外星人派來的探測器!不過,專門搜尋外星訊號的突破聆聽計畫(Breakthrough Listen),12 月 13 日利用美國維吉尼亞州的綠堤望遠鏡(Green Bank Telescope),來偵測「黑麻麻」是否有出自科技裝置發出的電波訊號。結果如何呢?沒有鬧上新聞頭條,你大概也猜得到,結果是沒有任何可疑訊號。

雖然不是外星人派來的間諜,但我們還是很想知道,「黑麻麻」到底是從哪裡來的。根據軌道的方向,它可能是從織女星的方向來的。不過,以每秒 26 公里的速度推算,它仍然要走 30 萬年才能從織女星來到太陽系──而三十萬年前,織女星根本不在現在的那個位置。所以,來自織女星也不合理。

有趣的是,「黑麻麻」每秒 26 公里的移動速度,很接近太陽相對於銀河系周圍物質的移動速度。這又是一個證據,「黑麻麻」是星際中的天體。不過,它的速度並不與太陽系附近任何一個已知的恆星系統一致。至今「黑麻麻」已經漸行漸遠,科學家仍無法確認它從哪裡來。

-----廣告,請繼續往下閱讀-----

「黑麻麻」走了,留下更多關於太陽系外的疑問

而經過科學家持續的研究之後,情況又更複雜了:2017 年 12 月艾倫.費茲蒙(Alan Fitzsimmons)等人在《自然天文》(Nature Astronomy)期刊發表的論文指出,不排除「黑麻麻」是星際彗星的可能性。他們說明,有些彗星在長期暴露於宇宙射線之後,可以發展出一個「保護層」。彗星的冰,只要在保護層下藏得夠深,就不會揮發出氣體、散出塵埃的活動跡象。

不過,這只能說是有此一說了,目前大多數學者仍傾向於認為「黑麻麻」是個星際小行星。

第一個目擊到的訪客是星際小行星,而非星際彗星,其實出乎科學家原先的意料。目前所知太陽系外層「歐特雲」的小天體,多半是彗星,而彗星與小行星的比例估計是 200:1 到 10000:1。逃脫到太陽系外的小天體,來源理論上要與歐特雲類似,以彗星為主。別人的太陽系,假如構造與我們的太陽系相似,則逃出來的星際天體,也該是以彗星為主。

太陽系外層的歐特雲示意圖。圖/維基百科(Jedimaster創作)

沒想到,第一次就來了一個星際小行星。「黑麻麻」的到來,留下了疑問:別人的太陽系,究竟跟我們的太陽系有無不同呢?

夏威夷語的 ‘Oumuamua,意思第一個遠方來的信使。把它稱作第一個,言下之意就是期待找到第二個、第三個了。「黑麻麻」這位長相怪異的星際訪客,已經讓人類見識到宇宙比想像中更有趣,而現在它已經逃之夭夭,我們就放眼未來吧!

-----廣告,請繼續往下閱讀-----

好消息是大型綜合巡天望遠鏡(Large Synoptic Survey Telescope; LSST)預計在 2019 年完工,這套直徑八米等級的巡天望遠鏡,讓我們有機會搜尋到更多更小更暗的星際天體。若能觀測到更多星際天體,人們將掌握更多來自別人的太陽系的訊息。這就像尋獲漂流到我們家門口的神秘訊息,或許能揭開它的來源地的神祕面紗。

我們從來不可能只活在象牙塔裡。地球並不孤立在太陽系中,常有意外的訪客,幻化為美麗的流星。也有過門不入的危險分子,科學家把它們登記在近地小行星的名單上。現在我們知道,太陽系也不是孤立在銀河系中,也有意外的訪客,從我們身邊飛掠而過。

我們不知道下一個不速之客什麼時候到來,也不知道它會給我們什麼意外的驚喜。面對外頭的世界,只能永遠保持警覺,也永遠保持開闊的心胸。

  • 本文特別感謝鄭宇棋博士審訂

附註

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度
歐柏昇
13 篇文章 ・ 6 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
2

文字

分享

0
7
2
水是從哪裡來的?改寫宇宙謎團:科學家揭露地球水源的真正來源!——《你的身體怎麼來的?》
商周出版_96
・2025/01/25 ・2808字 ・閱讀時間約 5 分鐘

彗星送水論?地球的水是從哪來?

想知道古地球如何得到水的行星科學家將矛頭指向大泥球。似乎數十億年前曾有彗星雨落下,為我們帶來大量的水。

但,彗星又來自何方?

科學家長期認為彗星誕生於比火星更遠的寒冷區域。一九九〇年代,學者更進一步認定大部分彗星已經被日益成長的行星吸收。然而荷蘭天文學家揚.歐特(Jan Oort)提出不同見解,主張可以有數以兆計的彗星在太陽系邊緣存活,它們距離行星太遠所以沒被重力拉扯,最終圍繞太陽系形成巨大球形外殼,現在將該區域稱為歐特雲。歐特雲的大量彗星可以填滿地球海洋,問題是它們太遠,是地日距離的數千倍,實在不大可能到得了。

揚·歐特認為彗星圍繞太陽系形成遠距離的歐特雲,雖然數量足夠填滿地球的海洋,但距離遠到不易抵達地球。圖 / unplash

於是又有研究者懷疑部分彗星在太陽系較內側存活,或許是土星軌道外,這樣也比歐特雲近了一千倍。然而僅僅停留在臆測,因為想要在那麼遠的地方找到直徑不過數十英里或更小的彗星太困難,大家沒有傻到去做這種嘗試。

-----廣告,請繼續往下閱讀-----

唯二例外是年輕的麻省理工學院教授戴夫.朱維特(Dave Jewitt)和他的研究生盧珍(Jane Luu)。裘伊特頭頂高聳,笑容可掬,性格充滿英國式幽默,父母是倫敦的工廠工人和電話操作員。童年時偶然在夜空看見流星勾起他對天文學的迷戀。

從天文學觀測到重水比例:揭開水的宇宙密碼

一九八五年,他突發奇想將新的數位型光感測器 CCD(譯按:感光耦合元件)連接到望遠鏡,藉此在太陽系遙遠角落尋找彗星這種小天體。朱維特認為我們看不見不代表不存在,但研究需要資金,只可惜多數人都不相信,所以計畫案一次一次被拒絕。三十多年後,回憶起當初遭受的輕蔑他依舊義憤填膺。「最常得到的回答是『無法證明計畫裡的測量實際可行』,」他說:「我的天,這是什麼蠢邏輯?整個計畫的意義就是去做一些以前沒做過的嘗試。就算最後真的不可行又怎麼樣呢,重點不就是得試試看嗎?」批判他的人可能陷入了「現有工具檢測不到就代表不存在」的認知偏誤,習慣性地假設科學家尚未找到就代表目標處什麼也沒有。

朱維特和盧珍拒絕放棄,偷偷從其他研究案借用望遠鏡時間尋找數十億英里外可疑的微小物體。

很長時間毫無收穫。一年又一年,然後四年五年六年。直到一九九二年夏夜,他們在夏威夷大島茂納凱亞天文臺工作。那時候他們心灰意冷,覺得五年多光陰白費了,卻沒想到忽然發現了非常微弱的光點。察覺這個點微微移動時,朱維特還暗忖「不可能是真的」,但它確實存在。兩人找到的天體位於海王星外的軌道,後來進一步證實那邊還有數百萬顆彗星。該區域被命名為古柏帶,淵源是最早提出此概念的荷蘭天文學家30,他在一九五〇年代就探討了這個可能(諷刺的是他本人不相信)。

-----廣告,請繼續往下閱讀-----

科學家在古柏帶找到大量彗星,人體內的水看似已經確定來源。地球形成後不久,彗星從古柏帶,或許一部分從更遠的歐特雲抵達,送來覆蓋這顆行星表面的水。彗星堪稱飛行的冰山,攜帶的水量確實足以填滿地球海洋。理論很快得到多數人接納及傳播,謎題終於得到解答。

科學家認為古柏帶與歐特雲彗星攜帶的水,可能就是地球水源的來源。圖 / unplash

小行星的貢獻:來自太空岩石的生命之源

真的嗎?一九九五年,波瀾再起。亞利桑那州鳳凰城附近一場觀星派對上,輪到混凝土供應公司零件經理湯瑪斯.博普(Thomas Bopp)借用朋友的望遠鏡,他留意到視野角落有個模糊光點。同一天晚上,新墨西哥州克勞德克羅夫特村天文學家艾倫.海爾在家中發現同樣物體。這顆新發現的彗星,是有史以來見過最亮的,命名為稱為海爾─博普彗星。

翌年,戴夫.朱維特隨學者團隊返回茂納凱亞觀測站,這次以強大的電波望遠鏡觀測海爾─博普彗星。他們在海拔一萬四千英尺(約四千兩百六十七公尺)的稀薄空氣中每十三至十六小時輪班一次測量夜間光譜,試圖比較彗星中一種罕見的水形式比例是否與地球海洋相符。

或許有些人還不知道其實水分子有不同形式。大部分水由氫原子組成,核心只有一個質子。但還有別種水存在,由於重量多出一成所以稱為重水,其氫原子是同位素,核心除質子外還包含一個中子。重水很罕見,在地球海洋中每六千四百個水分子只有一個是重水。因此,茂納凱亞團隊準備測量海爾─博普彗星時原本很有信心會找到相同比例的重水,畢竟地球的水應該來自彗星。

-----廣告,請繼續往下閱讀-----

然而觀測結果並非如此。海爾─博普彗星重水含量是地球海洋兩倍。這就麻煩了,先前天文學家在哈雷彗星發現類似的高比例重水,當初只視為異常案例,然而後來在百武二號彗星又測量到相同數據。三次觀測結果一致成為難以忽視的證據,顯示彗星並不吻合地球海洋的水分子組成。

「天文學家對海爾─博普的觀測結果作何反應?」我問。

「嚇壞了。」朱維特的意思是指數據背後的涵義:「有點像新時代運動31的意識覺醒之類。」他笑了笑又說:「好像不該說這種話才對。」但顯而易見,學界頗受震撼,一夕間又不能靠融化彗星形成海洋了。雖然惠普爾沒說錯,彗星確實充滿水,但海洋來自太陽系其他地方。具體究竟是哪兒?

朱維特和其他許多學者一樣,注意力轉向飄浮在太空中的巨大岩石,即所謂小行星。

-----廣告,請繼續往下閱讀-----

從石頭榨水,乍聽很無稽,但事實上有些岩石確實可以。如果加熱隕石,也就是從小行星落到地球的碎片,困在晶體結構內的水分子就能變成水蒸氣。多年前科學家已經知道小行星含水,這些岩石含水量差異很大。多數靠近太陽形成的小行星幾乎不含水,但在火星之外冰冷區域形成者水分含量則可高達百分之十三。

朱維特等人的想法是:如果撞擊地球的小行星夠大就會帶來豐沛的水。此外,天文學家還知道火星木星之間軌道上有一大群小行星,並將該區域稱為小行星帶。而且,小行星中重水與彗星不同,吻合地球海洋和人體。各種線索指向我們這兒的水應該來自宇宙岩石。

感覺好像結案了,但其實小行星帶距離地球三億英里遠。從那種距離要一桿進洞得有多高明的技術?有足夠數量的小行星算準角度飛向地球以水覆蓋地表,這個現象發生機率有多高?人類又如何進一步理解?

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。