0

1
1

文字

分享

0
1
1

人人都不能拿起雷神之鎚,因為它是來自中子星的超導材料!?

余海峯 David
・2018/01/02 ・2613字 ・閱讀時間約 5 分鐘 ・SR值 535 ・七年級

根據北歐神話,雷神索爾(Thor)擁有一把名叫妙爾尼爾(Mjölnir,也稱雷神之鎚)的鎚子。在美國 Marvel 漫畫和電影之中,地球上只有索爾能夠拿起妙爾尼爾(不過後來各式各樣的人,像是幻視和美國隊長都可以拿起來或是讓他們動一下。),並且能夠放出強勁的閃電攻擊。

雷神索爾(2011)@IMDB

古代神話當然沒有給予任何科學解釋。根據 Neil degrasse Tyson 的猜測,妙爾尼爾可能是以中子星的物質製成的。中子星究竟是什麼?為何能夠賦與妙爾尼爾這麼神奇的力量?

  • 編按:根據Marvel Comics的設定,妙爾尼爾是用「uru金屬」所製成、它是由鐵匠Etri用一顆垂死之星的中央所鍛造而成的。因此 Neil Tyson推測妙爾尼爾如果是用中子星物質所製成,它的重量的確重到「凡人」無法拿起啊。
    資料來源:
    FINALLY, SCIENCE EXPLAINS WHY NO ONE CAN LIFT THOR’S HAMMER
soure:IMDb

那麼,神秘的中子星是怎麼誕生的呢?

創造妙爾尼爾的起源,是個關於恆星誕生和死亡的故事。很久很久以前,在非常廣大的宇宙空間裡面,有一片非常巨大的星際塵埃雲。這片星雲裡的物質來自宇宙大爆炸之後產生的原子,其中絕大部份都是氫。

行星際塵雲(英語:Interplanetary dust cloud)是瀰漫在太陽系的行星空間與其它行星系空間的宇宙塵(漂浮在太空中的小顆粒)。圖/ assignmentpoint

星雲內某個區域氫原子比較密集,而這個區域的重力比較強;隨時間過去,區域附近的氫原子慢慢地互相越靠越近,逐漸形成一顆原恆星。最後,附近以光年計的氫原子都落入這個原恆星之中。原恆星越來越巨大、溫度與密度越來越高,直到有一刻,氫原子核因為互相太過靠近而熔合在一起成為氦原子核。核熔合會放出強烈的能量,恆星就這樣誕生了。

這顆恆星的質量是太陽的幾倍至幾十倍,經過幾千萬到幾億年,這顆巨大的恆星裡面的氦又會結合成碳、氧、矽等等比較重的原子。直到開始熔合成鐵之時,由於鐵不會再熔合,恆星逐漸失去核熔合放出的能量所造成的壓力。沒有壓力抵抗重力,恆星就會變得不穩定。最後,它的核熔合燃料會消耗坮盡,完全失去來自內部的壓力,開始向內坍縮。

當恆星外殼坍縮到撞上核心時,物質會被反彈開去。這次反彈非同小可,極大量物質以非常接近光速被拋向外太空。這就是威力大得足以使整個星系百億顆恆星的光統統比下去的爆炸——超新星爆發。

  • 超新星是某些恆星在演化接近末期時經歷的一種劇烈爆炸,而在這段藝術家製作的縮時影片中集合了許多遙遠的星系,偶爾可以看見超新星,而且每顆爆炸的恆星,其亮度都短暫的超越了其所在星系的亮度。(影片來源:wikipedia

很多物質會被超新星爆發拋向外太空,在這過程中又會結合成更多比鐵更重的元素。被超新星爆發拋出的原子,就會成為下一代恆星和行星的原材料。構成我們的太陽系的物質都是來自於這樣的超新星殘骸。太陽系中所有行星、地球上所有物質、生物,都來自超新星爆發;所以,我們都是名符其實的宇宙星塵(超浪漫的啊)。

但妙爾尼爾也會讓地球變成中子星?!

恆星核心未必會被超新星爆發炸得完全粉碎。如果剩下的物質太多,沒有任何力量能夠抗衡重力坍縮,它就會變成黑洞,是通向時空終點的不歸路。然而,如果殘留下來的核心質量介乎約0.6至2倍大陽質量的話,原子核裡的質子就會和電子合併成為中子,中子與中子之間產生的壓力足夠抵抗重力坍縮。一顆中子星就此誕生了。

中子星的模型。圖/Robert Schulze @wikipedia

中子星非常細小,尺寸大約等於一個紐約市。想像把整個太陽塞進這麼細小的空間裡,就能夠大致想像中子星的密度有多高。在地球上,每茶匙物質只有幾克重;而在密度極高的中子星上,每茶匙物質卻可重達幾億公噸。

如果妙爾尼爾是由中子星物質所造成的話,地球上的人類沒有一個能拿得起,也是合情合理的。然而,妙爾尼爾明顯被輸入了超越現代科學所能理解的法術,否則妙爾尼爾應該會直接衝破地殼,沉到地球核心,更遑論索爾能把妙爾尼爾掛在牆上、放在桌上了。

被放在桌上的妙爾尼爾。source:Youtube

這樣的話,地球上的一切物質亦會跟著坍縮落到由妙爾尼爾之上,變成一顆中子星。

妙爾尼爾其實是科學家夢寐以求的室溫超導體?!

普通物質在導電的時候,電子會在原子之間流動,過程中會因為有電阻而流失能量,如果沒有持續輸入能源,電流就會停止。上世紀以來,科學家陸續發現了很多物質在極低溫度下,其電阻值會變成零,稱之為超導體。超導體裡的電流能夠在不消耗能量的情況下流動,如果能夠找到在室溫中也能保持超導特性的物質,將是科學家和工程師夢寐以求的材料啊。

超流體是一種物質狀態,特點是完全缺乏黏性。如果將超流體放置於環狀的容器中,由於沒有摩擦力,它可以永無止盡地流動。圖/ Aarchiba@wikipedia

在中子星裡的中子,由於彼此非常靠近,就會出現一些量子力學效應。其中一個神奇的特性,就是中子會變成所謂的超流體,能夠自由地在中子星裡流動。中子星之中亦存在著一些未有變成中子的原子核,由於原子核裡的質子帶有電荷,中子星裡的物質其實是處於超流、超導狀態!

以中子星物質製成的妙爾尼爾,應該也有著超導特性吧。這也就能解釋為什麼索爾能量使用妙爾尼爾放出強大的閃電,在電影《復仇者聯盟》中索爾曾用這一招消滅了不少來自外太空侵略兵團。看來,雷神索爾的落雷攻擊比基路亞和比卡超的更強啊,不愧為北歐神話的戰神!不過,這麼厲害的武器,索爾應該不會把它交給科學家研究吧。

雷神索爾:諸神黃昏(2017)@IMDB

很可惜妙爾尼爾已經在《雷神索爾:諸神黃昏》之中被破壞了,不論是科學家和索爾都要好好繼續努力啊!

  • 眾人把玩妙爾尼爾的片段。
文章難易度
余海峯 David
18 篇文章 ・ 18 位粉絲
天體物理學家。工作包括科研、教學和科學普及。德國馬克斯・普朗克地外物理研究所博士畢業。現任香港大學理學院助理講師。現為《立場科哲》科學顧問、《物理雙月刊》副總編輯及專欄作者、《泛科學》專欄作者。合著有《星海璇璣》。

0

3
1

文字

分享

0
3
1
天文學家發現至今最年輕、威力相當於「一萬個螃蟹」的中子星
全國大學天文社聯盟
・2022/07/31 ・3383字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

  • 文/語星葉

2018 年,在特大天線陣巡天計畫(VLA Sky Survey, VLASS)的資料中,一個來自遙遠星系的不尋常電波源,吸引了天文學家的注意。經過四年的觀察與分析,他們認為這個未知電波源,最可能是來自一個非常年輕且威力強大的中子星。

圖一、畫家筆下的脈衝星,中央黃色部分為脈衝星與周遭雲氣交互作用產生的脈衝星風星雲,外圍球對稱的絲狀結構則為超新星爆炸殘骸。圖/Melissa Weiss, NRAO/AUI/NSF

這個電波源在二十年前,在特大天線陣的第一個巡天計畫「FIRST」資料中尚不存在,代表這是個「瞬變天體(Transient)」,即在人類的時間尺度中,可觀察到明顯變化的天體——別忘了,人類的千年歷史,在宇宙時間尺度下都只是一瞬。

在當今望遠鏡技術的快速推進下,瞬變天體其實並不罕見。每天都有許多新的瞬變天體被望遠鏡捕捉。然而,至今仍有許多瞬變天體覆著未知的面紗,例如 21 世紀新發現、被稱作「快速電波爆(Fast radio burst, FRB,圖二)」的瞬變天體,便是今日天文物理學的熱門主題。

科學家對其極高光度、極短時距的成因和來源都還沒有定論。不過,這個新發現的電波源未來有望為我們帶來解答!

圖二、2006 年,人類發現的第一個快速電波爆訊號。這個訊號時距僅 0.005 秒,強度卻是最小可偵測訊號的 100 倍(見右上角小圖)。不同頻率的訊號有顯著的位移,代表這個訊號來自銀河之外的遙遠星際。圖/Lorimer et al. 2007

天文學家認為,這次的未知電波源,最可能是來自一顆脈衝星(Pulsar,圖一)、甚至可能同時是一顆磁星(Magnetar,圖六),與周遭氣體交互作用所產生的星雲亮光。脈衝星和磁星都是中子星的一種,至於它們分別是什麼,以及為何會有這些不同的名稱,則要回顧一下中子星的發現史。

圖三、位於美國新墨西哥州的特大天線陣(Very Large Array, VLA)為一套擁有 27 支天線的電波望遠鏡。圖/NRAO/AUI/NSF

理論推演中子星、觀測發現脈衝星,證明中子星的存在

在 1933 年的美國物理年會上,也就是查兌克宣布發現中子後一年,兩個不相干的理論團隊雙雙提出,因恆星塌縮後反彈而形成的「超新星」爆發,會促使中心區域坍縮形成「中子星」,即體積極小、非常緻密,由中子擠在一起形成的天體。這無疑是一重大突破,在此之前,天文學界還不清楚超新星跟新星(Nova)是來自不同的物理機制,而「中子星」更是沒人提過的概念。

此後,超新星的概念快速普及,觀測上古往今來的超新星也如雨後春筍般被識別與發現。然而,中子星的概念,還要等到三十多年後脈衝星的發現,才被廣為接受。[3]

1967 年,一位年僅 24 歲的劍橋大學研究生約瑟琳.貝爾.伯奈爾(Jocelyn Bell Burnell,圖四)和她的指導教授安東尼.休伊什(Antony Hewish),在無線電望遠鏡資料中,發現了一種會以極短的週期快速閃爍的未知無線電波源,她們稱之為「脈衝星」。然而究竟是什麼原因產生這樣的訊號?他們沒有頭緒。

一開始,休伊什甚至認為可能是收到了來自遠方智慧生命的訊號,還暱稱為「小綠人(Little green man,20 世紀電影中外星人時常是綠色皮膚)」。因為他難以想像這樣短促而準確的週期性訊號,不是生命體、而是自然現象產生的。[4]

圖四、1967 年,時任劍橋大學研究生的約瑟琳眼尖地發現了週期性出現在電波影像的未知訊號。圖攝於當年 6 月。圖/Roger W Haworth

此時,被猜疑了三十多年的中子星概念再次登場,而且馬到成功,完美地解釋了這種短週期出現的電波訊號。原來脈衝星是高速旋轉的中子星,其高轉速及強磁場會在中子星的兩極產生高能帶電粒子,從而發射出無線電波波段的輻射。於是兩極的電波束便隨著中子星的高速自轉,如燈塔般週期性的指向地球,被電波望遠鏡所接收,這便是脈衝星的由來(見圖五)。電波脈衝星的自轉週期只有 0.1~10 秒,如此極端的物理性質,也只有中子星可以滿足了。

圖五、脈衝星的兩極高能帶電粒子會發射強電波束,隨著脈衝星高速自轉而規律地指向地球,被電波望遠鏡接收,此即脈衝星訊號的成因。

至於磁星,一種擁有超強磁場的中子星,其發現就更加戲劇性了。

發現磁星

1979 年是磁星粉墨登場的一年。時年 3 月 5 日,先是蘇聯的金星 11 號和 12 號兩顆人造衛星被不明的伽瑪射線給擊中,其搭載的光子計數器瞬間就被「打爆」,超越計數器所能計量的數額,接著這波伽瑪射線接連爆擊了 NASA 的繞太陽衛星和繞金星衛星的伽瑪射線接收器,而後通過地球(還好我們的地球大氣層會把伽瑪射線隔絕在外),襲擊數個繞地衛星後揚長而去。

當年天文學家接收到數個類似的伽瑪射線閃光,其中最亮的閃光(也就是 3 月 5 日那波)在 0.2 秒內釋放了相當於太陽燃燒 1000 年的能量!

這些閃光還具有週期性,在約一週內反覆出現並逐漸消失,有的甚至幾個月或幾年後還會再度出現。經過數十年的研究,如今天文學家認為這些訊號同樣來自中子星,但這類中子星的磁場比一般中子星強上數百到數萬倍,因此被冠以「磁星」之名。

圖六、繪筆下的磁星。圖/ESO/L. Calçada

威力相當於「一萬個螃蟹」的脈衝星風星雲

回到正題,天文學家分析 2018 年特大天線陣接收到的新電波源後發現,這個電波源來自約 4 億光年遠的一個矮星系,且坐落在許多大質量恆星之間,因此極可能是大質量恆星爆發後的殘骸。

超新星爆發之際,剛形成的中子星擁有超強磁場、極高速的自旋,但仍被爆炸所拋出的恆星碎片層層包裹而不可見。需待這層外殼緩緩擴張、物質密度降低以後,中子星所發出的光才得以「撥雲見日」,進入我們眼中。

與此同時,中子星強烈的磁場會拉扯外圍的帶電粒子,使其高速撞擊周遭星際物質,從而發出強烈的電磁輻射、形成圍繞中子星的明亮星雲,稱之為脈衝星風星雲(Pulsar wind nebula, PWN)。最有名的脈衝星風星雲——蟹狀星雲(Crab nebula,圖七)距離我們僅數千光年,因此我們對它有深入的觀察。

根據分析,這個電波源隨時間的光度變化和已知的脈衝星風星雲相似,因此研究人員認為最有可能的解釋,便是一個前所未見的超明亮脈衝星風星雲。

圖七、蟹狀星雲中心的中子星(圖片中央的橘紅色亮星)及周圍的脈衝星風星雲。藍色為錢卓望遠鏡拍攝的 X 射線、紅色為哈伯望遠鏡捕捉的可見光。圖/NASA

這個 20 年內便突破超新星爆炸煙塵的脈衝星,不僅是人類已知年紀最輕的中子星,更是一個威力強大的中子星。其發出的 X 光強度高達「一萬螃蟹」——不是筆者亂用,「螃蟹(Crab)」真的是一個天文學單位!

就像天文學家也常用「太陽質量」作為天體質量的單位,或是用「天文單位」衡量距離,一個「螃蟹」指的是一個蟹狀星雲發出的 X 射線強度。一個天體發出的 X 射線有幾個螃蟹,就是其亮度是蟹狀星雲幾倍的意思。之所以選擇蟹狀星雲作為標準,是因為在這個領域,它實在太近、太經典了。

言歸正傳,天文學家認為這顆脈衝星不僅是隻超級螃蟹,可能還是顆磁星——其磁場是人類目前所能製造的最強磁場的數億倍!由於磁星被認為可能是快速電波爆的來源,因此可以預期接下來這個年輕的候選磁星,將被天文學家們用望遠鏡細細關照,於其中能探究多少蛛絲馬跡,又有多少新發現尚待挖掘,讓我們引頸期待。

參考資料

  1. Astronomers Find Evidence for Most Powerful Pulsar in Distant Galaxy – National Radio Astronomy Observatory
  2. Dong, Dillon ; Hallinan, Gregg (2022). arXiv e-prints. 
  3. Baade and Zwicky: “Super-novae,” neutron stars, and cosmic rays
  4. Cosmic Search Vol. 1, No. 1 – Little Green Men, White Dwarfs or Pulsars?
  5. Kouveliotou, C.; Duncan, R. C.; Thompson, C. (February 2003). “Magnetars“. Scientific American.
全國大學天文社聯盟
6 篇文章 ・ 12 位粉絲

0

9
0

文字

分享

0
9
0
2020 重要天文事件回顧
臺北天文館_96
・2021/03/01 ・4340字 ・閱讀時間約 9 分鐘 ・SR值 548 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

塵埃可能是參宿四變暗的罪魁禍首

參宿四是全天第九亮星,也是獵戶座第二亮星。圖/轉自《臺北星空》

去年年底,天文學家發現參宿四的亮度異常降低,這現象還被某些人解釋為這顆紅超巨星已幾乎沒有核燃料,即將發生超新星爆炸。不過,華盛頓大學和羅威爾天文台的天文學家認為,參宿四更可能只是正在發生其他紅超巨星也會發生的事情:拋出的外層大氣遮住了一些往地球的光線。

天文學家在二月進行的觀測數據中,發現參宿四表面平均溫度比 2004 年的測量低了 50 至 100 度,這個結果使他們更加確定其答案必為星際塵埃,若是對流胞上升至表面冷卻的話,那降幅會更為明顯。

科學家宣稱在隕石中發現了外星蛋白質

血石素的結構。圖/arXiv

繼默奇森隕石發現胺基酸以來,在 1990 年的一塊隕石中,隱藏了更具突破性的進展,蛋白質一般是由多個胺基酸組成的,同時也是地球上幾乎所有生物體中的必要組成成分,從細胞核膜到遺傳物質 DNA 都有蛋白質的身影。在這被稱為「Acfer 086」的隕石所含有的蛋白質,被稱為血石素 (Hemolithin) ,是一種新的命名,旨在描述其具有一半血紅素 (Hemoglobin) 及一半卵磷脂 (Lecithin) 的分子結構,科學家發現的這種新蛋白質,成分中含有鐵和鋰,且氘與氫的比例與地球上的不同,基本上可以確認絕非地球上的物質。儘管研究團隊認為這是最有可能的解釋,但是他們也指出其發現的複合性分子可能不是蛋白質,而只是一種聚合物,所以現在下結論仍為之過早,但是種種跡象顯示「它」是蛋白質的機率相當高。

宇宙最早的物質可能潛藏於中子星的核心

藝術家對於中子星剖面的想像圖。圖/轉自《臺北星空》

中子星是恆星死亡後的核心塌縮而形成,中子星的質量上限約在兩個太陽質量,更大的質量將會形成黑洞,然而最近天文學家發現了少數超過這個上限的中子星。

研究團隊計算了中子星物質的狀態方程式,計算的結果描述了中子星的可能結構。結合最近 LIGO 和 VIRGO 的重力波觀測結果,更進一步揭露了許多中子星內部的訊息。根據他們的研究,這些死亡恆星的中心可能可以找到由夸克形成的核心,其含量甚至可能佔核心組成的一半以上,未來更多的中子星觀測資料將可提升或改善這項研究結果的正確性。

銀河系中也許有至少 36 個外星高等智慧文明存在

除非人類能想到如何建造無線電擴音器,並在接下來的 17,000 年都保持人類的生存及技術實力,否則無法與任何外星文明聯絡。圖/轉自《臺北星空》

繼德瑞克方程式後,人類就一直持續在搜尋地外高等智慧文明,但長時間以來一無所獲,新的研究認為該方程式的後面幾項參數,不確定值太多,使得整個方程式的實用性降低,研究人員建立了一套新的參數及計算標準,稱為天文生物學哥白尼極限,在六種嚴格的限制條件下,得到的外星文明數量約為 36個。

若將此 36 個外星文明平均打散在銀河系中,可以得到每個文明的平均距離至少有 17,000 光年,而人類自有無線電訊號以來,也才 125 年,亦即最遠的傳播僅達125 光年,此外,無線電波在傳遞過程中也會逐漸變弱,因此,除非我們能想到如何建造無線電擴音器,並在接下來的 17,000 年都保持人類的生存及技術實力,否則我們仍無法與任何外星文明聯絡。

首次發現奇怪的冥府行星

冥府行星示意圖。圖/轉自《臺北星空》

天文學家發現一顆非常奇怪的系外行星 TOI-849b ,它位於 730 光年遠,母恆星TOI-849 與太陽非常相似。 TOI-849b 僅比海王星小一點,但質量卻是海王星的兩倍多,因此密度與地球差不多!如此高密度顯示它是岩質行星,但大小卻遠高於岩質行星的上限。這意味著它可能是非常罕見的冥府行星(Chthonia),即是大氣層已被剝離的氣體行星核心。

天文學家認為這種極靠近恆星的氣體行星,會被高熱剝離大氣,如 Gliese 3470 b 被觀測正以高速失去其大氣層。但這不足以解決 TOI-849b 大氣全部損失的原因,還有大天體碰撞等事件的可能性。另一可能原因是 TOI-849b 開始形成氣體行星時,沒有足夠的物質成為大氣。又或者是它在行星系統演化後期時形成,抑或是在原行星盤的間隙中形成的,使得沒有足夠的材料來增加大氣。研究小組計劃將繼續觀測,以確定 TOI-849b 是否還剩下任何大氣。

天文學家在本超星系團旁發現了新的長城結構

紅色區塊屬於南極長城。圖/轉自《臺北星空》

宇宙的結構並不是由隨機分佈的星系所組成,而是互纏互繞、具有藕斷絲連的特性,受到萬有引力的影響,較為靠近的星系組合成一個星系群或星系團,或隸屬於一個超星系團,這些藕斷絲連的網狀結構,又被稱為大尺度纖維狀結構,其中最大的一條被稱為武仙-北冕座長城,全長跨越 97 億光年,是目前已知最巨大的結構。新發現的纖維狀結構橫跨南極天空,至少長達 13.7 億光年,發現者將其命名為「南極長城」(South Pole Wall) ,而且南極長城的特別之處在於它離銀河系非常近,簡直就像是在我們的後院而已,僅有5億光年遠,(我們所在的結構稱為拉尼亞凱亞超星系團,直徑達5.2億光年,所以5億光年確實就像是後院的存在)換句話說,它是離我們最近的長城結構。

迄今為止質量最大的合併事件證實了中介質量黑洞的存在

一對黑洞的合併產生新重力波的觀測事件,證實了中介質量黑洞的存在。圖/轉自《臺北星空》

在 70 億光年外,一對碰撞的黑洞產生了新的重力波,在 2019 年 5 月 21 日由 LIGO 和 VIRGO 雙重認證得知,這次的重力波事件是黑洞天文學中最受囑目的發現之一,因為該天體質量介於恆星級黑洞及超大質量黑洞之間,正是天文學家急欲尋找的中介質量黑洞,且我科技部及清華大學研究團隊亦參與其中。本次的重力波訊號與往常的訊號相比非常短,但經過艱困的比對分析後,科學家得知這是分別由 66 倍太陽質量及 85 倍太陽質量的黑洞合併而成,產物為一個約 142 倍太陽質量的黑洞,這是自發現重力波以來迄今為止最大質量的重力波源。

中介質量黑洞是黑洞系列的一個謎團,我們常發現的是恆星質量黑洞及超大質量黑洞,但是藉由重力波的觀測, GW190521 成為對於中介質量黑洞的第一次決定性的直接觀測。超大質量黑洞的形成過程仍是個謎,長久以來,科學家不清楚它們是由恆星大量坍縮聚集而成,抑或是透過一種尚未被發現的方式產生的,所以科學家一直在尋找中介質量黑洞,來填補介於兩者差異甚大的質量空隙,如今,科學家終於有證據可以證明中介質量黑洞確實存在。

歐西里斯號成功登陸貝努收集樣本

OSIRIS-REx 收集樣本示意圖。圖/轉自《臺北星空》

OSIRIS-REx 任務耗資 8 億美元,在 2016 年 9 月發射, 2018 年 12 月 3 日抵達500 公尺大的貝努近地小行星。經過一年多環繞研究後,團隊選擇了一個名為夜鶯(Nightingale)的小隕石坑為降落地點,因為該點表面物質的顆粒較細,且相對新鮮沒經過長期暴露於太空環境而變質。但夜鶯周圍也充滿危險,其中包括要經過一個兩層樓高,綽號厄運山(Mt. Doom)的巨石,而隕石坑內也有其他障礙物,因此太空船的目標是一個寬 8 公尺相對平坦無石塊的區域, OSIRIS-Rex 任務距離達3億公里之遙,相當不容易。臺灣本地時間 10 月 21 日 6 時 12 分歐西里斯號(OSIRISRex)號降落到近地小行星貝努(Bennu)表面,目標是從貝努表面收集至少 60 克的灰塵和碎石,預計 2023 年 9 月 24 日將樣品送回地球,以研究太陽系的起源與生命相關有機物和水的來源。中間還有一段插曲:一些岩石碎塊阻擋導致收集器無法完全閉合,使得在探測器的三公尺機械手臂末端的收集器內的小行星表面碎片樣本,一直在緩慢漏失到太空中,好在後來已經克服此狀況,且收集來的樣本也遠高於當初設定的最低目標。

阿雷西博望遠鏡的輝煌與終結

曾完成多項偉大天文學研究的阿雷西博天文臺,因結構損壞而除役。圖/轉自《臺北星空》

該望遠鏡於 1963 年落成啟用,阿雷西博天文臺開始運作之後,做出的科學貢獻不勝枚舉。 1964 年天文學家藉由雷達脈衝發現水星的自轉週期為 59 天,有別於原先認為的 88 天;1968 年提供了蟹狀星雲脈衝星(Crab Pulsar, PSRB0531+21,自轉週期33毫秒)存在的確切證據,也是第一顆被確認為跟超新星殘骸有關的中子星。 1974 年,天文學家法蘭克德瑞克及卡爾薩根設計了知名的阿雷西博訊息,內容包含人類的 DNA 結構,和太陽系的介紹等等,以強力的電磁波從阿雷西博天文台發送向距離地球 25000 光年的球狀星團 M13。雖然無法期待在不久的將來能收到回覆,卻是人類主動接觸外星文明的重要嘗試。 1989 年趁著小行星(4769)Castalia 經過,阿雷西博望遠鏡首次利用其功能描繪出小行星的 3D 圖像,迄今已研究過數百個近地小行星。今年的 12 月 1 日的一聲巨響,支撐平台的纜線應聲斷裂,整個接收平台、900 噸重的心臟與一個纜線塔硬生生撞入下方的碟型天線。雖然造成多大破壞還在評估,但照片與影片仍然震驚所有人,阿雷西博望遠鏡結束其 57 年傳奇的一生

嫦娥五號返回艙帶回月壤, 40 年以來的新鮮貨

中國嫦娥五號於去年年底返航,完成人類 40 年來首次收集月球樣本的任務。圖/轉自《臺北星空》

歷經 23 天的飛行,攜帶著月壤的中國嫦娥五號返回艙於 12 月 17 日凌晨 1 時 59 分安全返回地球,這是 40 年來首次收集月球樣本的任務。其返回艙在中國北部內蒙古四子王旗著陸場著陸。內蒙古地區夜間達攝氏零下 30 度,對於地面工作人員的準備是一大考驗。

嫦娥五號於 12 月 1 日登陸月球,並於兩天後開始返航,中國航天局也在月球上,升起了中國五星旗幟。此次任務是自 1976 年蘇聯「月球 24 號」任務以來的首次嘗試,使中國成為繼美國和蘇聯之後,第三個從月球上取回樣本的國家。飛船的任務是在「風暴洋」的區域收集兩公斤 (4.5磅) 的物質,該區域是一片廣闊的、此前尚未被探索過的熔岩平原。

中國的科學家們希望藉由採集回來的樣本了解月球的起源、形成以及月球表面的火山活動,並期望在 2022 年以前建立一個載人太空站,並最終將中國人送往月球。

臺北天文館_96
482 篇文章 ・ 27 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
1

文字

分享

0
0
1
星星電力公司:觀察恆星的核融合反應,了解恆星的生老病死——《蔚為奇談!宇宙人的天文百科》
三民書局_96
・2019/12/20 ・3803字 ・閱讀時間約 7 分鐘 ・SR值 546 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

  • 文/國立清華大學天文研究所教授 潘國全

「天若有情天亦老。」

──李賀,《金銅仙人辭漢歌》

恆星之所以取名為恆星,是因為古時人們相信恆星永恆不變,象徵著完美與無限。然而事實上並沒有什麼東西是永恆不變與完美的,恆星也如同人一般有著生老病死,只是恆星的一生可能橫跨數百萬到數百億年1,遠多於你我的壽命,更長於人類的文明。

太陽是離我們最近的一顆恆星,目前的年紀約為 46 億年,天文學家預測它大概還可以再持續發光 50 億年以上。這麼長的時間,天文學家如何瞭解太陽是怎麼演化的呢?其他的星星與太陽到底有何不同?到底是什麼能量讓太陽能夠發光?為什麼有些星星看起來是不同的顏色?

對於太陽,我們可以假設太陽系的地球與其他行星、小行星是在類似的時間形成,所以研究地球內部的結構、隕石的成分等都可以間接幫助我們瞭解太陽,但這樣的研究方式卻沒辦法運用到其他恆星。

距離我們最近的恆星——太陽(Credits: NASA/SDO)圖/三民提供

我們可以用統計的方式來瞭解星星。假想你在觀察某一所小學學生的身高分布,雖然學生之間有高矮胖瘦等差異,但在不同年級的教室裡,可能會發現年級與學生的身高呈現正相關分布。

整體來看,愈高年級的學生身高愈高,所以你不必等小學一年級的學生升到六年級,就可以推斷六年級學生的平均身高比一年級學生高。觀察星星也是如此,而星星的命名中也有類似的意味,好比說矮星(dwarf,又有侏儒的意思)與巨星(giant,巨人)。

那星星的學校在哪裡呢?事實上,大部分的星星並不孤單,有很多「雙星」或「三星」的系統,更有一種組成叫做「星團」,是由數百到數百萬顆星星所組成的。星團裡的星星,每顆都有不同的質量,但卻在相近的時間一起誕生,而不同質量的星星有著不同的演化過程和壽命。

顯示恆星演化過程的「赫羅圖」

丹麥天文學家赫茲普龍 (Ejnar Hertzsprung) 與美國天文學家羅素 (Henry N. Russell) 分別提出把恆星的光譜類型與光度2畫在一起的關係圖,後來命名為赫羅圖

天文學家發現這樣的關係圖對瞭解恆星演化非常有幫助:恆星的光譜類型同時代表著恆星的表面等效溫度,恆星愈藍代表溫度愈高(正所謂爐火純青,藍色的火焰比黃色的火焰高溫)。如果我們對不同的星團畫赫羅圖,可以發現不同年齡的恆星在赫羅圖上有不同的分布。

赫羅圖是恆星的星等(或亮度)對光譜類型(或等效溫度)的關係圖,可以用來顯示恆星演化的過程。(Credits: ESO) 圖/三民提供

天文學家發現大部分的年輕恆星都分布在圖中的對角線—那條稱作主序星 (main sequence stars) 的地帶,而質量愈大的恆星位在愈靠近圖中左上的部分(高亮度、高溫度),且演化得愈快(壽命短);質量愈小的恆星則愈紅、愈暗淡,位在赫羅圖右下方。

究竟是什麼讓太陽可以維持目前的亮度這麼多年呢?太陽的亮度約為 3.8×1026 瓦特,每秒鐘所放出的能量比全人類整年所消耗的能量(約為 2×1013 瓦特)還多。那麼高的能量到底是怎麼來的呢?

當物理學家發現核反應以及愛因斯坦的  \( E= mc^{2} \)  後,馬上就意識到太陽的能量是來自氫的核融合反應,而氫又是宇宙中最常見的一種元素,因此可以推斷恆星最開始的光芒都來自於氫的核融合反應,只是不同質量的恆星因為壓力與溫度不同,氫的核融合有不同的反應速率,導致它們演化的速度不同。

不同元素的核融合所需溫度
反應溫度 (K)
氘核融合 ~ 106
鋰核融合 ~ (2~3)×106
氫核融合 ~ (1~4)×107
氦核融合 ~ (1~2)×108
碳核融合 ~ (6~8)×108
氖核融合 ~ (1.2~1.4)×109
氧核融合 ~ (1.5~2.2)×109
矽核融合 ~ (3~4)×109

而氫燃燒完後,不同質量的恆星也因為重力造成的壓力不同而有完全不同的命運。概略來說,恆星依其質量可以分成三個種類:極低質量恆星低質量恆星,以及大質量恆星

極低質量恆星

在極低質量恆星之中,質量介於約 10~80 倍木星質量3之間的恆星又稱為棕矮星 (brown dwarf);質量小於這個範圍則稱為次棕矮星 (sub­brown dwarf);稍大一點則稱為紅矮星 (red dwarf)。

太陽與紅矮星、棕矮星、木星之間的比較。圖/wikimedia

與太陽和一般的主序星不同,棕矮星因為重力微弱,核心內部的溫度和壓力不足以點燃氫的核融合反應,因此內部主要是氘在進行核融合反應,只能發出非常微弱的光芒。次棕矮星的質量更小,連氘的核融合反應都無法點燃,有些天文學家甚至還在爭論次棕矮星與行星(譬如木星)之間如何劃分。

紅矮星的質量大約介於 0.08~0.5 倍太陽質量,而且表面溫度低於 4,000 K。紅矮星的質量小,溫度低,暗淡不易觀測,但數量龐大。目前估計銀河系中約有六、七成的星星屬於紅矮星。紅矮星的光和熱主要來自氫融合成氦4

目前恆星演化模型認為紅矮星是完全對流的,也就是核心產生的氦會對流至表面,使星球所有的成分均勻混合,延長反應時間。因此,理論上紅矮星的壽命非常長,目前普遍相信宇宙中所有的紅矮星都還沒有演化到下一個階段。如果紅矮星的氫燃燒完畢,將演化為一種目前仍未觀測到,純為理論預測的恆星—藍矮星 (blue dwarf)。

低質量恆星

低質量恆星的質量大約介於 0.5~8 倍太陽質量之間。

演化初期,低質量恆星主要是靠氫融合成氦的核反應;質量較小的恆星主要是透過質子—質子連鎖反應;而質量較大的恆星主要則靠碳氮氧融合循環 (CNO cycle) 來產生氦。在核心燃燒氫的這個階段稱為主序星,太陽目前就處在主序星階段,其內部溫度高達攝氏千萬度。

數十億年後,恆星核心內的氫將逐漸用盡,轉變以氦為主,而核心外圍則有一層氫燃燒的球層。此時內部的溫度仍不足以點燃氦的核反應,在赫羅圖上的演化階段從主序星帶慢慢往上方偏移,進入次巨星 (subgiant) 階段,它們與主序星有類似的光譜類型,但較為明亮。

這個階段主要是燃燒氦核外面的氫層。由於恆星內部的核反應停止,核融合產生的能量無法對抗重力的坍縮,因此內部的氦核會漸漸轉變為量子簡併的狀態,核心慢慢縮小,溫度和密度則漸漸增加(溫度約為一億度),但外層反而漸漸冷卻膨脹而轉變為紅巨星 (red giant)。

生生不息的恆星演化生命循環 (Credits: star formation: NASA/JPL­Caltech/UCLA; proto­star: NASA/ESA/the Hubble Heritage Team (STScI/AURA)/IPHAS; sun, red dwarf, supernova explosion & neutron star: NASA; planetary nebula: ESO/VISTA/J. Emerson; red supergiant & black hole: NASA/Ames/STSCl/G. Bacon) 圖/三民提供

當核心內部的溫度最終達到足以點燃氦的核融合反應,使氦核心不再是簡併狀態而快速膨脹,此即氦閃 (helium flash)。核心的氦透過三氦過程 (triple­alpha process)融合成碳,效率比氫的核反應高非常多。這時核心內部達到新的平衡,在赫羅圖上從紅巨星階段往左邊平行移動,稱為水平分支 (horizontal branch)。

如同氫一般,最終核心的氦也將用盡,進入漸近巨星分支 (asymptotic giant branch),此時恆星內部將再度變回簡併狀態而成為一顆白矮星 (white dwarf),而外層由於劇烈的恆星風不斷將物質吹出,形成行星狀星雲 (planetary nebula)。低質量恆星的重力不足以使內部再度點燃碳的核反應。

大質量恆星

大於 8 倍太陽質量的大質量恆星,由於重力很強大,內部的氫燃燒完就只剩外層在燃燒,其溫度足以點燃氦的核反應,所以不會產生簡併狀態的核心,甚至可以一路燃燒下去,演化為超巨星 (supergiant)。

蟹狀星雲是一顆恆星爆炸粉碎成為超新星之後的殘骸。圖/wikimedia

演化到最後,恆星內部會形成一個簡併的鐵核心,外圍則如洋蔥般依序圍繞著矽、氧、氖、碳、氦與最外圍的氫。比鐵輕的元素可以透過核融合放出能量,但是鐵非常穩定,如果要融合出超過鐵的元素反而需要給予能量,因此大質量恆星的核融合反應只會達到鐵。

簡併的鐵核是有質量上限的,當重力超過簡併壓力所能負擔的極限,核心會發生坍縮,形成超新星。而在超新星爆炸後,依其質量與內部結構的不同分布可能留下一顆中子星黑洞

總有一天地球會被吞食?

圖/pixabay

不管是低質量恆星產生的行星狀星雲,或是大質量恆星產生的超新星殘骸,最終回歸宇宙中的雲氣會再度形成第二代的恆星,生生不息地循環下去。我們的太陽也註定在約 5 億年後慢慢演化成紅巨星,其體積將會膨脹,除了吞食水星和金星,甚至可能會把地球也吞沒,屆時人類必定要離開地球(如果那時人類還存在)。

在進入紅巨星的階段之前,太陽演化至次巨星時,強烈的亮度會使地球升溫,溫度就像目前的金星,使地球不適合生物居住。幾億年看似還有好久,我們或許還不需要太在意,但在宇宙的某個角落,或許有某個文明正在經歷不得不離開母星的命運也說不定呢!

註解:

  1. 宇宙目前的壽命也只有約 140 億年。
  2. 光度:luminosity,天體每秒從其表面所輻射出的總能量。
  3. 木星質量約為太陽質量的千分之一或地球質量的 320 倍。
  4. 透過質子—質子連鎖反應,protonproton chain。

——本文摘自泛科學 2019 年 12 月選書《蔚為奇談!宇宙人的天文百科》,2019 年 11 月,三民出版

三民書局_96
10 篇文章 ・ 9 位粉絲
創立於1953年,為了「傳播學術思想,延續文化發展」,60年來默默耕耘著書的園地。從早期的法政大學用書、三民文庫、古籍今注新譯叢書、《大辭典》,到各式英漢字典及兒童、青少年讀物,成立至今已出版了一萬多種優良圖書。不僅讀者佳評如潮,更贏得金鼎獎、小太陽獎、好書大家讀等諸多獎項的肯定。在見證半個世紀的社會與時代變遷後,三民書局已轉型為多元、綜合、全方位的出版機構。