0

1
0

文字

分享

0
1
0

AI能做什麼事?從工人智慧到人工智慧,如何期待又不怕受傷害?——機器學習月/人工智慧跨域領袖營

研之有物│中央研究院_96
・2017/12/23 ・4456字 ・閱讀時間約 9 分鐘 ・SR值 525 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

中研院人工智慧系列活動

當有些人喊著 AI 會殺人,有些人搶先用 AI 來做聰明的事,甚至是救人一命!本文取自中央研究院「機器學習月」與「人工智慧跨域領袖營」活動內容,聊聊各領域最新的 AI 發展與應用。

用 AI 救人:觀察細微脈博

「余憶童稚時,能張目對日,明察秋毫。見藐小微物,必細察其紋理,故時有物外之趣。」若你曾在國文課本讀到這段,可曾驚嘆沈復的好眼力?

現在你可以拍拍沈復的肩膀說「以 AI 細視,汝更覺呀然驚恐」。因為人工智慧的影像處理技術宛如一副神奇眼鏡,能看到肉眼察覺不到的細微變化,例如:當血液隨脈博通過臉部,造成的膚色變化。

心跳訊號放大 100 倍的手機拍攝影像,可以看見當血液被打上來通過臉部,皮膚顏色明顯變紅(右圖)。影片/Revealing Invisible Changes In The World

這個影像放大技術反之,也能藉由偵測臉部皮膚顏色變化的頻率,回推心跳速率。對於新手爸媽而言,常見的焦慮是「總想確認寶寶還在呼吸嗎」,因為嬰兒熟睡時一吸一吐的胸部起伏相當細微,從外觀難以分辨。

發展這個影像放大技術的團隊,發現也能從嬰兒睡覺的影像推估心跳速率,數值準確度可與醫療監測器相比,有機會應用於家庭日常的呼吸監測,預防嬰兒猝死症 (SIDS)

脈博訊號放大 150 倍的影像,可以透過血液流經臉部的膚色變化頻率,推估嬰兒脈博的速率。影片/Revealing Invisible Changes In The World

大眾看新聞時,經常好奇螢幕中人說話是否屬實,例如當立委說出「一生監督你一人」時,政府官員是否有動情。表情可以透過臉部肌肉控制,而脈搏跳動加快、引起血液流經臉部的膚色變化,透過這個訊號放大技術解析,就藏不住心跳了。

用 AI 聚集靈感:社會物理學

俗話說:「三個臭皮匠,勝過一個諸葛亮」,但如果臭皮匠高達成千上萬名呢?

透過社群網絡,串起成千上萬名臭皮匠互相交流資訊、溝通意念,並透過資料科學依此預測未來的行為、找出問題的對策,可說是「社會物理學 (Social Physics) 」的奧義。而提倡社會物理學這門新科學之人,是被《富比世》雜誌譽為「全球 7 大權威資料科學家之一」的 Alex “Sandy” Pentland 教授。

來自美國麻省理工學院的 Alex “Sandy” Pentland 教授,在機器學習月演講中向大家提問:「在這裡有多少人認為自己是獨立的個體?」圖/中研院資訊所

儘管 YouTube 出身的 HowHow 堪稱「邊緣人中的霸主」,而生活中也有許多人在群體中感到孤立,但 Alex “Sandy” Pentland 教授指出,無論在虛擬社群和真實社會中,沒有人是獨立切割的。

每個人都是社會的一部分,共享資料、共享資訊,這時意念彷彿化為一條時間長河、流動著,每個人涉身其中,從彼此的經驗想法中學習,最終成就我們自己的習慣和興趣。

而這些可共享、可分析的資料從何而來?就在人們身邊各處──包含通話紀錄、信用卡交易、 GPS 定位紀錄等等,像是糖果屋童話中撒下的「數位麵包屑」,表達著你的生活行蹤與選擇偏好,而差別是不會被森林裡的動物吃掉。

數位麵包屑最常見的應用:根據駕駛人手機提供的 GPS 數據,逐分鐘更新交通順暢(綠色)或壅塞(紅色)情況。圖/Google 地圖

數位麵包屑與臉書(Facebook)貼文大不相同,臉書貼文是人們選擇性過濾、編輯的資訊。比起人們自己說自己做了什麼,日常的數位麵包屑反而更能反映個人真實情況。

年齡、性別沒辦法精準表達你是誰,更重要的是你去了哪裡、做了什麼。

Steve Jobs 曾說:「所謂的創造力,只是將事物聯繫起來」,而社會物理學基於貝氏網路 (Bayesian network)發展,透過數位麵包屑將不同情況聯繫起來,找出「情況 A 」和「相關情況」之間的機率關係。

例如,透過數位麵包屑,知道有糖尿病風險的人何時在哪吃飯、或是不善理財的人在哪消費,即時對個人做出提醒,或蒐集數據改善健康或金融政策。圖/iStock

Alex “Sandy” Pentland 教授再舉例,若在地圖看到 GPS 人流移動到了城郊某一地帶就停止,傳達的資訊是:當大多數人停止前往該區,代表該區容易有犯罪活動。並另以北京的資料指出,若當地的交通網絡完善、社群流動越密集,未來三年該區的經濟成長機率也偏高。這些社群行動觀察,有助於城市規劃與犯罪防治,而且運用的資料無須涉及記名資訊。

社群範圍也能縮小到公司。 Alex “Sandy” Pentland 團隊與美國銀行(Bank of America)的電話客服中心合作,實驗若客服員之間有越多的想法交流,是否能降低每通客服電話的處理時間。分析結果發現,比起客服員逐一單獨休息,讓整個客服團隊一起休息更好,因為有助增進團隊間的交談、交流工作竅門,讓處理客服電話的平均時間大幅降低。

從工人智慧到人工智慧,期待又怕受傷害

不是每個戀曲,都有美好回憶。而 Google 臺灣董事總經理簡立峰,在人工智慧跨域領袖營中提到,不是每個問題都適合用 AI 解決。圖/張語辰

適合發展 AI 的是「有特定知識」、「行為可預測」的領域,並且應善用「原本就有的資料」,例如臺灣累積豐富的醫學影像,這些影像透過機器學習就能轉換為知識,而非從頭開發網站,去蒐集新的使用者資料。

在 Google 有幾萬名工程師在進行幾千項專案,各種領域都有人嘗試,甚至包含用影像辨識判斷正在飛行是不是母蚊,是的話就擊殺,藉此來斷絕蚊子成為疾病傳染源。簡立峰分享, Google 若進行 5000 項 AI 專案,最後證實有用的不到 10 項,實作後會發現論文演算法講得頭頭是道,但實作後好像不是這回事,許多參數調不出來。

然而,這些過程不是白費。 Google 從這些專案裡的工程師選出 50 位較富經驗者、組成顧問團,再引導大家嘗試各種 AI 專案,而前提是要建立開源文化,開放讓所有員工自由修改程式碼,應用在自己的專案中。

臺灣的組織化領導,讓軟體高手沒有發揮空間,就算有神字輩也只是當兵用。

許多人會好奇,為什麼 Google 軟體開發這麼厲害?簡立峰提到,臺灣生產「硬體」的組織結構,是將軍關在辦公室,帶領生產線的幾千名士兵,一起完成最後的產品。「軟體」的思維要倒過來,Google 採取「有將軍沒有兵」的模式,人人都是將軍,讓神人站上第一線寫程式,自己 debug 解決問題。

「 AI 是當紅的產業趨勢,但我的小孩不是讀這個領域的怎麼辦?」在演講中,一位中年父親提出許多家長會有的疑問。

「通常華人的傳統,生了兩個小孩,一個會讓他出去外面的世界闖,一個會留下來照顧老家……」簡立峰從社會文化與人之常情,比喻臺灣整體產業發展。

在 AI 時代,科學可以突破百分之八九十,但最後一哩路比想像中難度更高。哪裡熱門、大家都趨之若鶩,即使可能史上最大的失敗就在眼前。這是出去闖的孩子會面對的問題。簡立峰提到,臺灣可以參考以色列的產業策略,弱水三千只取一瓢飲,著重發展大市場需要的尖端技術,例如臺灣的鏡頭技術世界知名,就有更多優勢延伸發展電腦視覺領域。

從古至今,地圖視角會影響思維。簡立峰提到,若換個角度看臺灣,別忘了日本、南韓、新加坡、東南亞就在附近,許多 AI 合作機會就在臺灣旁邊。圖/Google 地圖

而若不在 AI 領域,留下來的孩子,則應跟臺灣土地有所連結,發展他國取代不了、有信賴感的產業:例如醫療、食品、農業,讓在外面闖的孩子無論什麼時候回家,都能感受到在地文化、安心踏實。

學界與產業離很遠?創造一個機會齊動腦!

2017 年政府宣示「臺灣 AI 元年」即刻開始,但要落實到業界尚有層層挑戰。為此,科技部與中研院舉辦五天四夜的密集研習,向國內外講師借智慧、聚集學員間的意念流,來討論各產業要懂哪些 AI 先備知識、遇到的問題如何解決。

來自各領域的 81 位專業人士(產業界佔 85%、醫界佔 11%、學界佔 4%),齊聚於人工智慧跨域領袖營。圖/張語辰

以臺灣醫療產業而言,優勢是已累積豐富的影像診斷資料,若在保護病人隱私的前提下開放資料,就有機會透過電腦視覺協助醫師診斷病情,或是監測嬰兒老人的睡眠呼吸中止情況。甚至在診間,當病人聽完診斷滿臉問號,這時一旁的鏡頭偵測到病人表情,就能提醒醫生要再多加說明、增進醫病關係。

製造業的學員則回饋,若企業自己架設機房、自己租用雲端伺服器,這種燒錢行為會降低轉型意願,希望政府能提供雲端運算資源的協助,例如國家實驗研究院高速網路與計算中心(國網中心)的 GPU 伺服器。

「在華爾街大量招募資料科學家的趨勢下,臺灣的 FinTech(金融科技)仍受限法規,綁手綁腳無法前進!」來自金融界的學員表示。希望能透過調整金融法規、個資法規,讓去識別化的財務資料成為可應用數據,藉以分析客戶的潛在風險、或預測未來交易。或者,開戶時結合電腦視覺技術,透過影像辨識開戶者是否有異常的心跳表現、說謊的可能性,及早阻止不當的金融交易。

最後,無論是想出去或留下來的孩子,以及學界產業界的人士,若有興趣進一步了解 AI 領域中各技術有何不同,下圖的「資料科學學習地圖」將能作為指引。

初次進入 AI 領域,需從核心課程出發,再依興趣或需求轉往「資料探勘」、「網路爬蟲」、「進階應用」方向。圖/臺灣資料科學協會

儘管 AI 之路讓人既期待又怕受傷害,但如同電影《三個傻瓜》所言:「請把手放在心上說『一切都好』,我們的心太容易害怕,你得哄騙它。不管天大問題,告訴你的心『一切都好』,那會讓你有勇氣去面對問題。」

延伸閱讀:迎接人工智慧時代,你我都該上的 30堂必修課

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
255 篇文章 ・ 2351 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
有圖沒真相!?GAN 人工智慧系統的發展與未來——《AI 製造商沒說的祕密》
時報出版_96
・2023/01/31 ・4731字 ・閱讀時間約 9 分鐘

醉後成為 GAN 之父

2013年秋天,伊恩.古德費洛(Ian Goodfellow)與大學實驗室夥伴在酒吧舉行歡送派對。大家就座,開始猛灌精釀啤酒。酒過三巡,古德費洛已有些微醺,這群研究員開始爭論什麼才是製造能夠自我創造相片寫實影像的機器之最佳途徑。

他們知道可以訓練一套神經網路來辨識影像,然後逆向操作,使其產生影像。但它只能產生一些精細、有如相片的影像,這樣的結果實在難以令人信服。

不過古德費洛的夥伴們有一個主意。他們可以對神經網路產生的影像進行統計分析──辨識特定像素的頻率、亮度,以及與其他像素間的關係。

然後將這些分析結果與真正的相片進行比對,這樣就可以顯示神經網路哪裡出錯了。問題是他們不知道該如何將這些資料編碼輸入他們的系統之中──這可能需要數十億的統計次數。

古德費洛提出一個完全不同的解決之道。他解釋,他們應該做的是建立一套能夠向另一套神經網路學習的神經網路。第一套神經網路製造影像,企圖欺騙第二套神經網路認為這是真的。第二套會指出第一套的錯誤,第一套於是繼續嘗試欺騙,就這樣周而復始。他表示,如果這兩套相互對抗的神經網路對峙得夠久,他們就能製作出寫實的影像。

但是古德費洛的夥伴們並不認同。他們說這主意甚至比他們的還爛。同時,若非他已有些醉了,古德費洛可能也有同感。

「要訓練一套神經網路已經夠難了,」清醒時的古德費洛可能會這麼說,「你不可能在正在學習演算法的神經網路中訓練另一套神經網路。」不過他在當時完全相信可以做到。

當天晚上他返回公寓,他摸黑坐在床邊的桌前,仍然有些微醺,筆記型電腦螢幕的光反射在他臉上。「我的朋友是錯的!」他不斷告訴自己,同時用其他計畫的舊編碼來拼湊他所說的兩套對抗的神經網路,並且開始以數百張相片來訓練這套新裝置。

幾個小時後,它開始顯現他所預期的效能。生成的影像很小,和一片指甲一樣,而且還有一些模糊。不過它們看來就和相片一樣。他後來表示,他完全是運氣來了。

「如果它不成功,我可能就會放棄了。」他後來在發表此一概念的論文中將它稱作「生成對抗網路」(generative adversarial networks,GANs)。自此之後,他成為全球人工智慧研究圈口中的「GAN之父」。

生成對抗網路的蓬勃發展

2014年夏天,他正式加入谷歌,當時他已在積極推廣GAN,強調這有助於加速人工智慧的研發。他在說明概念時,往往會以理查.費曼為例。費曼曾在教室黑板上寫道:「我創造不出來的東西,我就不了解。」

古德費洛相信費曼此一名言除了人類之外,也可以適用於機器:人工智慧創造不出來的東西,它就不了解。他們指出,創造,能夠幫助機器了解周遭的世界。

GAN使人工智慧互相訓練與學習。圖/envatoelements

「如果人工智慧可以用逼真的細節去想像世界──能夠學習如何想像逼真的影像與逼真的聲音──這樣可以鼓勵人工智慧學習現實存在的世界結構,」古德費洛說道,「它能幫助人工智慧了解所看到的影像與所聽到的聲音。」如同語音、影像辨識與機器翻譯,GAN代表深度學習又向前邁進一大步。或者,至少深度學習的研究人員是這麼認為。

臉書人工智慧研究中心主任楊立昆(Yann LeCun)在2016年盛讚GAN「是深度學習近二十年來最酷的概念」。古德費洛的成就激發出許多圍繞其概念的計畫,有的是加以改進,有的是據此進一步發展,有的則是發起挑戰。

懷俄明大學的研究人員建造一套系統,能夠產生細小但是完美的影像,包括昆蟲、教堂、火山、餐廳、峽谷與宴會廳。輝達(NVIDIA)的一個研究團隊則是建造一套神經網路,可以將一幅顯示炎炎夏日的相片影像轉變成死氣沉沉的冬日。

加州大學柏克萊分校的研究小組則設計出一套系統,能夠將馬匹的影像轉變成斑馬,把莫內的畫變成梵谷的畫。這些都是科技界與學界最受人矚目與最有趣味的研發計畫。

可是,就在這時,世界發生劇變。2016年11月,唐納.川普贏得美國總統大選。美國生活與國際政局隨之出現天翻地覆的變化,人工智慧也難以倖免。幾乎是立即出現的衝擊,政府開始打壓移民引發人才流動的憂慮。

美國排外政策造成 AI 產業衝擊

在美國就讀的國際學生已在減少之中,如今更是大幅銳減,對外國人才依賴甚重的美國科學與數學界也因此開始受創。「我們是開槍打自己的腦袋,」西雅圖著名的艾倫人工智慧研究所(Allen Institute for Artificial Intelligence)的執行長說,「我們不是打在腳上,是腦袋。」

一些大企業已在擴張他們的海外研發作業。臉書分別在蒙特婁與楊立昆的家鄉巴黎設立實驗室。川普政府移民政策所帶來的威脅在2017年4月就已顯現,距離他上任不過三個月。

與此同時,「深度學習運動之父」傑弗瑞.辛頓(Geoffrey Hinton)幫助成立向量人工智慧研究所(Vector Institute for Artificial Intelligence)。這是多倫多的一所研發育成機構,設立資金達一億三千萬美元,其中包括美國科技巨擘如谷歌與輝達的挹注。

此外,加拿大總理賈斯汀.杜魯道(Justin Trudeau)也承諾以九千三百萬美元來扶持在多倫多、蒙特婁與愛德蒙頓的人工智慧研發中心。年輕的研究員莎拉.薩波爾(Sara Sabour)是辛頓一位關鍵性的合作夥伴,她的事業歷程足以說明人工智慧圈內的國際色彩是多麼容易受到政治影響。

2013年,在伊朗的謝里夫理工大學(Sharif University of Technology)完成電腦科學的學業之後,薩波爾申請到華盛頓大學深造,攻讀電腦視覺與其他方面的人工智慧,校方接受了她的申請。但是美國政府卻拒絕給予簽證,顯然是因為她在伊朗長大與就學的關係,而且她所要攻讀的領域,電腦視覺,也是潛在的軍事與安全科技。第二年,她成功進入多倫多大學,之後追隨辛頓加入谷歌。

在此同時,川普政府持續阻擋移民進入美國。「現在看來是美國企業獲益,」亞當.席格(Adam Segal)說道,他是美國外交關係協會(Council on Foreign Relations)有關新興科技與國家安全的專家,「但是就長期來看,科技與就業機會都不會在美國實現。」

2016年川普當選美國總統,開始打壓外國移民。圖,/wikipedia

人工智慧等技術讓製造假訊息變得更容易

但是人才的遷移還不是川普入主白宮所造成的最大變化。自選舉一結束,國內媒體就開始質疑網上假訊息對選舉結果的影響,引發社會大眾對「假新聞」的憂慮。

起初祖克柏試圖消除這樣的關切,他在選舉的幾天後於矽谷的一個公開場合,輕描淡寫地表示,選民受假新聞左右是一個「相當瘋狂的想法」。但是許多記者、立法者、名嘴與公民都不予苟同。

事實上此一問題在選舉期間十分猖獗,尤其在臉書的社交網路,有數以萬計,甚至可能是百萬計的網民,分享一些虛假編造的故事,這些故事的標題例如「涉嫌希拉蕊電郵洩密案的聯邦調查局人員被發現死亡,顯為謀殺後自殺」或是「教宗方濟各支持川普競選總統震驚世界」。

臉書後來揭露有一家與克里姆林宮關係甚密的俄羅斯公司,花了超過十萬美元向470個假帳戶與頁面買網路廣告,散播有關種族、槍枝管制、同性戀權利與移民等方面的假訊息,此一事件使得公眾更感關切。

與此同時,社會大眾的憂慮也投射到GAN與其他相關的科技上,使它們以完全不同於過去的面貌成為世人焦點:這些科技看來是產生假新聞的管道。

人工智慧讓假新聞更容易。圖/envatoelements

然而人工智慧科學家當時的研究卻完全是在助長這種看法。華盛頓大學的一支團隊,利用神經網路製作出一段冒用歐巴馬說話的影片。中國一家新創企業的工程師則利用相同的科技讓川普說中文。

其實偽造的影像並不是新玩意兒。自照相術發明以來,人們就開始利用技術來偽造相片。不過由於新式的深度學習可以自我學習這些工作──或者至少部分的工作──它們使得這樣的編輯變得更容易。

政治人物與活動、民族國家、社會運動人士、不滿分子往後不需要僱用大批人手來製造與散播假圖片和假影片,他們只要建造一套神經網路就能自動完成這些工作。

在美國總統大選期間,人工智慧的圖像操作潛能距離完全發揮仍有幾個月的時間。當時GAN只能產生如指甲大小的圖像,而要將字句置入政治人物的口中仍需要罕有的專業技能,更別說其他一些費力的工作了。

不過,在川普勝選一週年時,輝達在芬蘭實驗室的一支團隊開發出新款GAN,稱作「漸進式GAN」,可以利用對抗式的神經網路製造出實際尺寸的圖像,包括植物、馬匹、巴士與自行車,而且幾可亂真。

圖像不再能代表證據

不過這項科技最受矚目的是它能夠製造人臉。在分析數千張名人照片後,輝達這套系統可以製造出看來像是某位名人,但其實並不是的人臉圖像──一張看來像是珍妮佛.安妮斯頓(Jennifer Aniston)或席琳娜.戈梅茲(Selena Gomez)的臉孔,而實際上並非真人。這些被製造出來的臉孔看來都像真人,有他們自己的皺紋、毛孔、暗影,甚至個性。

「這項科技的進步速度太快,」菲利浦.艾索拉(Phillip Isola)說道,他是幫助開發此類科技的麻省理工學院教授,「剛開始時是這樣的,『好吧,這是一項有趣的學術性問題,你不可能用來製造假新聞,它只能產生一些略顯模糊的東西。』結果卻演變成『噢,你真的可以製作出像照片一樣逼真的臉孔。』」

在輝達宣布此一新科技的幾天後,古德費洛在波士頓一間小會議室發表演說,演說的幾分鐘前,一位記者問他該科技的意義何在。他指出他知道其實任何人都早已可以用 Photoshop 來製造假圖像,不過他也強調,重點是使得這項工作更為容易。「我們是促使已經具有可能性的事情加速實現。」他說道。

他解釋,隨著這些方法的改進,「有圖有真相」的時代也將結束。

「從歷史來看,這其實有些僥倖,我們能夠依賴影片作為事情曾經發生過的證據,」他說道,「我們過去常常是根據誰說的、誰有動機這麼說、誰有可信度、誰又沒有可信度,來看一件事情。現在看來我們又要回到那個時代。」

可是中間會有一段很艱難的過渡期。「遺憾的是現今世人不太會批判性思考。同時大家對於誰有可信度與誰沒有可信度都比較傾向於從族群意識去思考。」這也代表至少會有一段調整期。

「人工智慧為我們打開了許多我們不曾打開的門。我們都不知道在門的另一邊會有什麼東西,」他說道,「然而在此一科技方面,卻更像是人工智慧關閉了我們這一代人已經習慣打開的門。」

人們若不具有批判性思考的能力,就會容易被假圖像欺騙。圖/envatoelements

調整期幾乎是立即展開,某人自稱為「深度偽造」(Deepfakes),開始將一些名人的頭像剪接至色情影片中,然後再上傳至網路。這個匿名的惡作劇者後來把能搞出這些花樣的應用程式公開,這類影片立刻大量出現在討論板、社交網路與如 YouTube 的影音網站。

如 Pornhub、Reddit 與推特等平台趕忙禁止這種行為,但是此一操作與相關概念已滲透進入主流媒體。「深度偽造」也變成一個專有名詞,意指任何以人工智慧偽造,並在線上散播的影片。

——本文摘自《AI製造商沒說的祕密: 企業巨頭的搶才大戰如何改寫我們的世界?》,2022 年 8 月,時報出版,未經同意請勿轉載。

時報出版_96
154 篇文章 ・ 29 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

2
0

文字

分享

0
2
0
數據塑造生活與社會,讓人既放心但又不安?——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/28 ・2760字 ・閱讀時間約 5 分鐘

數位世界已經改變了我們日常生活的體驗,一個人從早到晚都會接受到大量數據,受益於大量數據,也貢獻大量數據。這些數據龐大的程度,和消化資訊的方式已經太過繁多,人類心智根本無法處理。

與數位科技建立夥伴關係

所以人會本能地或潛意識地倚賴軟體來處理、組織、篩選出必要或有用的資訊,也就是根據用戶過去的偏好或目前的流行,來挑選要瀏覽的新項目、要看的電影、要播放的音樂。自動策劃的體驗很輕鬆容易,又能讓人滿足,人們只會在沒有自動化服務,例如閱讀別人臉書塗鴉牆上的貼文,或是用別人的網飛帳號看電影時,才會注意到這服務的存在。

有人工智慧協助的網路平臺加速整合,並加深了個人與數位科技間的連結。人工智慧經過設計和訓練,能直覺地解決人類的問題、掌握人類的目標,原本只有人類心智才能管理的各種選擇,現在能由網路平臺來引導、詮釋和記錄(儘管效率比較差)。

日常生活中很少察覺到對自動策劃的依賴。圖/Pexels

網路平臺收集資訊和體驗來完成這些任務,任何一個人的大腦在壽命期限內都不可能容納如此大量的資訊和體驗,所以網路平臺能產出看起來非常恰當的答案和建議。例如,採購員不管再怎麼投入工作,在挑選冬季長靴的時候,也不可能從全國成千上萬的類似商品、近期天氣預測、季節因素、回顧過去的搜尋記錄、調查物流模式之後,才決定最佳的採購項目,但人工智慧可以完整評估上述所有因素。

因此,由人工智慧驅動的網路平臺經常和我們每個人互動,但我們在歷史上從未和其他產品、服務或機器這樣互動過。當我們個人在和人工智慧互動的時候,人工智慧會適應個人用戶的偏好(網際網路瀏覽記錄、搜尋記錄、旅遊史、收入水準、社交連結),開始形成一種隱形的夥伴關係。

個人用戶逐漸依賴這樣的平臺來完成一串功能,但這些功能過去可能由郵政、百貨公司,或是接待禮賓、懺悔自白的人和朋友,或是企業、政府或其他人類一起來完成。

網路平臺和用戶之間是既親密又遠距的聯繫。圖/Envato Elements

個人、網路平臺和平臺用戶之間的關係,是一種親密關係與遠距聯繫的新穎組合。人工智慧網路平臺審查大量的用戶數據,其中大部分是個人數據(如位置、聯絡資訊、朋友圈、同事圈、金融與健康資訊);網路會把人工智慧當成嚮導,或讓人工智慧來安排個人化體驗。

人工智慧如此精準、正確,是因為人工智慧有能力可以根據數億段類似的關係,以及上兆次空間(用戶群的地理範圍)與時間(集合了過去的使用)的互動來回顧和反應。網路平臺用戶與人工智慧形成了緊密的互動,並互相學習。

網路平臺的人工智慧使用邏輯,在很多方面對人類來說都難以理解。例如,運用人工智慧的網路平臺在評估圖片、貼文或搜尋時,人類可能無法明確地理解人工智慧會在特定情境下如何運作。谷歌的工程師知道他們的搜尋功能若有人工智慧,就會有清楚的搜尋結果;若沒有人工智慧,搜尋結果就不會那麼清楚,但工程師沒辦法解釋為什麼某些結果的排序比較高。

要評鑑人工智慧的優劣,看的是結果實用不實用,不是看過程。這代表我們的輕重緩急已經和早期不一樣了,以前每個機械的步驟或思考的過程都會由人類來體驗(想法、對話、管理流程),或讓人類可以暫停、檢查、重複。

人工智慧陪伴現代人的生活

例如,在許多工業化地區,旅行的過程已經不需要「找方向」了。以前這過程需要人力,要先打電話給我們要拜訪的對象,查看紙本地圖,然後常常在加油站或便利商店停下來,確認我們的方向對不對。現在,透過手機應用程式,旅行的過程可以更有效率。

透過導航,為旅途帶來不少便利。圖/Pexels

這些應用程式不但可以根據他們「所知」的交通記錄來評估可能的路線與每條路線所花費的時間,還可以考量到當天的交通事故、可能造成延誤的特殊狀況(駕駛過程中的延誤)和其他跡象(其他用戶的搜尋),來避免和別人走同一條路。

從看地圖到線上導航,這轉變如此方便,很少人會停下來想想這種變化有多大的革命性意義,又會帶來什麼後果。個人用戶、社會與網路平臺和營運商建立了新關係,並信任網路平臺與演算法可以產生準確的結果,獲得了便利,成為數據集的一部分,而這數據集又在持續進化(至少會在大家使用應用程式的時候追蹤個人的位置)。

在某種意義上,使用這種服務的人並不是獨自駕駛,而是系統的一部分。在系統內,人類和機器智慧一起協作,引導一群人透過各自的路線聚集在一起。

持續陪伴型的人工智慧會愈來愈普及,醫療保健、物流、零售、金融、通訊、媒體、運輸和娛樂等產業持續發展,我們的日常生活體驗透過網路平臺一直在變化。

網路平台協助我們完成各種事項。圖/Pexels

當用戶找人工智慧網路平臺來協助他們完成任務的時候,因為網路平臺可以收集、提煉資訊,所以用戶得到了益處,上個世代完全沒有這種經驗。這種平臺追求新穎模式的規模、力量、功能,讓個人用戶獲得前所未有的便利和能力;同時,這些用戶進入一種前所未有的人機對話中。

運用人工智慧的網路平臺有能力可以用我們無法清楚理解,甚至無法明確定義或表示的方式來形塑人類的活動,這裡有一個很重要的問題:這種人工智慧的目標功能是什麼?由誰設計?在哪些監管參數範圍裡?

類似問題的答案會繼續塑造未來的生活與未來的社會:誰在操作?誰在定義這些流程的限制?這些人對於社會規範和制度會有什麼影響?有人可以存取人工智慧的感知嗎?有的話,這人是誰?

如果沒有人類可以完全理解或查看數據,或檢視每個步驟,也就是說假設人類的角色只負責設計、監控和設定人工智慧的參數,那麼對人工智慧的限制應該要讓我們放心?還是讓我們不安?還是既放心又不安?

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

聯經出版_96
27 篇文章 ・ 16 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。