0

0
2

文字

分享

0
0
2

現居台北不一定是台北人對吧?古昆蟲點出生物地理學的盲點

蕭昀_96
・2017/12/01 ・3411字 ・閱讀時間約 7 分鐘 ・SR值 570 ・九年級

-----廣告,請繼續往下閱讀-----

昆蟲是地球上多樣性最高的家族,且至今每年仍有為數相當可觀的新物種蟲蟲被發表。現生的族裔們都如此讓人眼花撩亂了,究竟為何還要研究看起來像壓壞了的標本的化石昆蟲呢?難道是吃飽太閒嗎?

這就不得不談到「生物地理學」(Biogeography)。生物地理學是一門研究生物在時間和空間上分布的學科,探討的是生物在地球表面的分布情況及形成原因,其研究方向有兩個維度:一為探索造成現今生物分布的生態環境因子的生態生物地理學(Ecological Biogeography),另一個則為關心大尺度時空下生物分布及其演化歷史的歷史生物地理學(Historical Biogeography)。

而昆蟲作為不論是物種數或族群量最多樣的類群,自然擁有相當複雜的地理分布格局,例如有些昆蟲僅僅分布在特定地區、有些呈現不連續的間斷分布、有些為泛世界廣布,而其背後原因和演化歷史也就大異其趣並令人玩味了。

小小昆蟲身上的大大的故事

昆蟲擁有極高的物種多樣性,是地球上物種數最高的類群,昆蟲的地理分布格局及其成因也是科學家們高度興趣關注的議題之一,透過親緣譜系分析和分歧時間定年技術的引入,我們得以發掘許多引人入勝的演化故事。舉例來說,臺灣的寬尾鳳蝶Papilio maraho (Shiraki & Sonan, 1934))就被發現與東亞的蝴蝶類群毫無血緣關係,而是屬於北美的蝴蝶區系,其先祖於中新世時經白令陸橋播遷至亞洲,其後因氣候暖化而海平面上升、進而造成陸橋陷落,所以便有族群遺留在亞洲,最終種化誕生出寬尾鳳蝶 [1]。

寬尾鳳蝶(Papilio maraho)。圖/wikipedia

又或者在大安地列斯群島上有一群外形特別的螳螂,這些螳螂在形態上與新熱帶區舊世界區系的物種均有所相似,導致無法輕易地看出來他們所屬的歸群和可能的地理起源。而透過生物演化歷史的重建,研究人員得以發現這些螳螂源自單一祖先、且屬於舊世界螳螂區系:牠們約於一億七百萬年前起源(此時為岡瓦納大陸分裂期間),這個支系從非洲-印馬區域擴散至大安地列斯群島,其後舊世界的親戚就滅絕了。

-----廣告,請繼續往下閱讀-----

至於這些螳螂在大安地列斯群島上與來自新熱帶區的螳螂們外形上的相似,則是肇因於趨同演化(convergent evolution)--不具親緣關係的生物們因應相同或相似的生態環境需要,而產生近似的外表特徵(圖一)。[2]

圖一、Gonatista 屬的螳螂主要分布於大安地列斯群島,圖為 Gonatista grisea。圖/by YaroslavKuznetsov@wikipedia commons。

現今的物種分布格局肇因過去歷史事件的直接影響,有可能是地質事件導致的隔離分化(vicariance)、長距離傳播(long-distance dispersal)和分布區域的局部滅絕(localized extinction),就後者來說,一度廣布的物種類群因為演化歷史中發生了區域性滅絕而導致現存後裔呈現不連續間斷分布,若在不知情的狀況下,僅用現存物種進行研究分析,那麼最終結果肯定差之千里。

可是瑞凡,我們回不去了⋯⋯由於我們沒有時光機 (QAQ),不可能直接目睹過去發生的演化史實。幸虧化石證據提供一個良好的時空框架,讓我們得以對生物類群的分布格局有較好的認識(圖二、三),而古昆蟲學(paleoentomology)就是專門以昆蟲化石做為研究材料的昆蟲學學門。

古昆蟲學除了是解釋昆蟲的起源演化、生態習性及重建親緣譜系不可或缺的一環,更對探索遠古地理環境、氣候、生物演化和古昆蟲地理分布格局成因有著重要的參考價值。Barden & Ware 今年甫發表在國際期刊《昆蟲系統學和多樣性》(Insect Systematics and Diversity)的論文則回顧了數個經典的案例,來闡述化石昆蟲的研究成果究竟能夠給予我們在探討昆蟲的地理分布格局方面有如何的新視野 [3]?

-----廣告,請繼續往下閱讀-----
圖二、琥珀為古代植物所分泌的樹脂包覆周圍生物,後經地底長時埋藏而形成的珍貴化石,是探索遠古生物相的重要研究材料。圖/作者提供。
圖三、昆蟲的印痕化石看起來往往像壓壞了的標本,圖為眼長扁蟲,又稱眼甲、澳洲長扁蟲 (Ommatidae),從中生代化石紀錄可知其為全球廣布且擁有很高的物種多樣性,然而現今僅剩存於澳洲與南美。圖/by 徐振輔。

澳白蟻是只存在於澳洲的白蟻特有種嗎?

澳白蟻科(Mastotermitidae)是原始的白蟻類群,本科僅含一屬一種為達爾文澳白蟻(Mastotermes darwinensis),僅分布在澳大利亞北部熱帶地區和紐西蘭,主要危害樹木和建築物的木結構,也是可以被人傳播的種類,例如紐西蘭的族群就被認為是入侵種。

從現生澳白蟻科的天然分布區域來看,它似乎是澳大利亞與其他大陸長久隔離下獨立演化出的特有類群。然而透過化石證據顯示:澳白蟻屬的物種一度廣泛分布於古北區、熱帶非洲和新熱帶區(圖四),因此當今澳白蟻的特有分布現象應是由於其他分布區域的家族成員滅絕所誤導的假象。

圖四、A. 澳白蟻屬的現生物種:達爾文澳白蟻(Mastotermes darwinensis);B. 琥珀中的澳白蟻屬物種;C. 所有化石澳白蟻的發現地點,顯示這個類群在過去曾一度廣布全球。圖 / Barden, P., Ware, J.L. (2017) Relevant Relicts: The Impact of Fossil Distributions on Biogeographic Reconstruction. Insect Systematics and Diversity 1(1): 73-80.

獨立演化自新世界北區的矮竹節蟲?

矮竹節蟲屬(Timema)為矮竹節蟲科(Timematidae)下的唯一屬別(圖五),僅分布於美國西岸和墨西哥北部。基於其北美特有分布,按照一般邏輯,這個類群會被認為是獨立演化自新北區的特有類群,然而在俄羅斯加里寧格勒所採集的波羅的海琥珀中所發現的矮竹節蟲科物種(始新世,年代約 3400 ~ 3700 萬年前)則翻新了我們對本科物種分布範圍的知識,也提醒我們在處理此類議題上應該加謹慎。

圖五、僅分布在美國西岸和墨西哥的矮竹節蟲屬成員,圖為 Timema poppensis。圖/by Moritz Muschick (University of Sheffield)@BMC Ecology image competition: the winning images 和 wikipedia commons

化石紀錄對於探討蟻科地理分布格局的影響

相較於其他昆蟲類群,螞蟻的化石紀錄相當豐富,提供我們對於蟻科生物地理學有更進一步的洞見,舉例來說,針琉璃蟻亞科 (Aneuretinae)僅有一分布於斯里蘭卡現生種——俗稱斯里蘭卡孑遺蟻的西蒙氏針琉璃蟻 (Aneuretus simoni)(圖六),然而化石紀錄則指出其歷史分布尚包括俄羅斯東部、美國、英國懷特島和波羅的海。

-----廣告,請繼續往下閱讀-----
圖六、針琉璃蟻亞科僅有一個現存種:斯里蘭卡孑遺蟻(Aneuretus simoni)分布在斯里蘭卡。圖 / by April Nobile@www.AntWeb.org 和 wikipedia commons

Barden & Ware 在這篇論文中則進一步以標準化的方法,去測試這些滅絕類群的歷史分布對於重建其歷史生物地理學的效應。實驗結果發現:這些化石紀錄的加入,果然會影響最終的結果判讀,特別在古北區西側的區域 (主要為歐洲),這應是由於有大量的波羅的海琥珀化石被發現的緣故;若以分類群來看,以家蟻亞科 (Myrmicinae)受到主要的影響。另外,僅管現生的種類僅分布於舊世界赤道帶,在蟻亞科(Formicinae)的編織蟻屬(Oecophylla)更被發現可能起源於現今的歐洲,不過這部份則有賴後續更多研究證實。

澳蜻蛉科真的是岡瓦納分布的類群嗎?

蜻蛉目 (包含蜻蜓和豆娘)擁有良好的飛行能力,在不均翅亞目(也就是蜻蜓)這個類群中,當今的澳蜻蛉科(Synthemistidae)成員分布於澳洲、南美、歐洲和印馬區,主要的成員特有分布於澳洲(圖七),以成員的分布來說,大體呈現岡瓦納分布的模式,然而化石紀錄則顯示這個類群的歷史分布更為廣闊。

圖七、澳蜻蛉科大致呈現岡瓦納分布,圖為 Choristhemis flavoterminata。圖/by John Tann from Sydney, Australia@wikipedia commons

而在 Barden & Ware 的這篇研究論文中,亦進一步分析這些化石資訊對於重建歷史生物地理學的影響,同樣也跟前述的狀況類似--也就是化石單元的加入直接影響了類群分布範圍的重建。此外根據分析結果,現生僅有一個種類分布於非洲的 Neophya rutherfordi 被認為可能是孑遺類群,而非獨立演化自非洲的特有物種。

對於化石物種的研究以及其分布資訊無疑會在生物地理研究上扮演一定的角色,透過以上案例回顧和淺述,你是否已經能體會到研究昆蟲化石不是昆蟲學家吃飽太閒了呢?

-----廣告,請繼續往下閱讀-----

參考文獻

  1. Wu L.-W., Yen S.-H., Lees D.C., Lu C.-C., Yang P.-S., Hsu Y.-F. (2015) Phylogeny and Historical Biogeography of Asian Pterourus Butterflies (Lepidoptera: Papilionidae): A Case of Intercontinental Dispersal from North America to East Asia. PLoS ONE 10 (10): e0140933.
  2. Svenson G.J., Rodrigues H.M. 2017 A Cretaceous-aged Palaeotropical dispersal established an endemic lineage of Caribbean praying mantises.Proceedings of the Royal Society B 284: 20171280.
  3. Barden, P., Ware, J.L. (2017) Relevant Relicts: The Impact of Fossil Distributions on Biogeographic Reconstruction. Insect Systematics and Diversity 1(1): 73-80
-----廣告,請繼續往下閱讀-----
文章難易度
蕭昀_96
22 篇文章 ・ 17 位粉絲
澳洲國立大學生物學研究院博士,在澳洲聯邦科學與工業研究組織國立昆蟲標本館完成博士研究,目前是國立臺灣大學生態學與演化生物學研究所博士後研究員,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
台灣有恐龍嗎?化石學家帶你探索島嶼的古老秘密——《好久・不見》
麥田出版_96
・2024/11/02 ・2579字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

台灣的地理位置與化石形成

台灣也有化石嗎?台灣也有恐龍嗎?

世界地圖攤開一看,台灣陸地上的面積看來是不大,但其面對的太平洋,不只在我的想像中、在我多年搭著飛機到世界各地檢視相關的標本,試著拼湊出鯨魚們在數千萬年間演化歷程的經驗中,我知道也相信台灣的地底下,必定蘊涵著能跟我們講出帶有全球視野的化石標本。

同時,台灣除了被海洋包圍之外,那平均深度只有六、七十公尺深的台灣海峽,也清楚的意味著,當更新世的冰河時期讓海平面下降幅度來到或超過這個臨界點時,台灣就會成為歐亞大陸最東南邊的一角。

相信在台灣的不少人都常聽過,台灣在冰河時期會和中國大陸連在一起,但我在跟大家解釋這樣的環境變遷與古生物演化時,總是會特別強調我不想泛政治化,但世界地圖清楚的標示出台灣的地理位置應該是可以、也該要放在更大的版圖:歐亞大陸的板塊底下來討論,而不是只有限縮在與中國大陸連結的關係。

畢竟,當我們像是讚嘆著非洲地區的陸生大型哺乳動物,能在以年為單位的時間軸來進行長距離的移動時,基本上是用「萬年」以上的尺度來探討生物演化、移動的古生物學,處於歐亞大陸東岸的台灣上的大型脊椎動物,要橫跨歐亞大陸到西邊、或是反方向的來到台灣,大概都會是稀鬆平常的移動距離。

-----廣告,請繼續往下閱讀-----

建立起這樣的思維模式後,當然就是需要有最直接的化石證據來驗證這樣的想法,或深入討論其化石標本的背後,隱藏了怎樣的大尺度演化事件。

大型脊椎動物跨越歐亞大陸到台灣,在古生物學的長時尺度下是平常現象。圖/envato

早坂一郎的開創性研究與犀牛化石

二○一八年一月底從日本的筑波搬到台北後,一邊重新改造所接手的退休丘臺生教授的實驗室、一邊開始準備新學期的上課內容;除此之外,很重要、也是主要的工作內容,就是要開始到野外和各個單位的收藏庫裡尋找、檢視相關的化石標本,試著解讀其背後所帶有的古生物學、演化學上的意義。

有趣、但不令人意外的是,知道我開始要在台灣從事大型脊椎動物化石研究的人,第一個反應通常都會是:台灣也有化石嗎?台灣也有恐龍嗎?這樣之類的疑問。

要回答台灣有沒有化石紀錄的出現,我在日本的工作經驗,和剛好不小心娶了日本太太,讓我能從搬到日本工作前還不會五十音的狀態,到現在能有一定用日文溝通和閱讀日文文獻的基礎能力,幫了很大的忙。

-----廣告,請繼續往下閱讀-----

因為,台灣的古生物研究歷史,基本上就是從日治時期展開並奠下根基。也因此,有一定的日文能力和在日本古生物學界中遊走的經驗,確實是對於一些細微的狀況,更能推敲或掌握。

舉例來說,我目前所服務的台灣大學於一九二八年創立時的前身:日治時期的台北帝國大學,一開始創校時就加入的早坂一郎教授,可以說就是在研究台灣大型脊椎動物化石的先驅,也就不意外為什麼一九八四年在台灣所發現、並被命名為一個新亞種的犀牛化石,會以早坂為名(犀牛的故事書寫在第四話)。

延伸閱讀:從放牛學生到震驚世界:左鎮犀牛化石背後的傳奇——《好久・不見》

台灣有化石的出沒,對生物多樣性、生命演化等議題有些敏感度的人來說,大概不會太意外。但台灣有沒有令許多人為之瘋狂的恐龍,聽起來就是一個棘手許多的疑問。

或許出乎大多數人的意外,台灣不只有貨真價實的恐龍,還有台灣才有的特有種恐龍!

-----廣告,請繼續往下閱讀-----

一九九三年上映的《侏羅紀公園》(Jurassic Park),可以說是徹底的激發了全世界對於恐龍的狂熱與追逐。即使到了二○二四年的今天,恐龍的形象,對於大多數的人來說,似乎就是古生物學研究的全部了。

《侏羅紀公園》激發全球恐龍熱潮,至今在大眾心中恐龍仍象徵著古生物學。圖/wikimedia

但恐龍有如此的代表性,可不是只有形象般的讓人摸不著邊際,而是有全世界各地的古生物學家用一生的精力,和政府、私人所挹注的大量資源,來試著一點一滴揭開恐龍那引人入勝的演化歷程。

舉一個比較可以讓大多數人理解到我們對於恐龍知識是如何持續的累積、建構起來的例子:我正在書寫這段文字的當下是二○二○年的五月中旬,這年從一月一日到這個時間點,已經有二十種,先前完全未知、生存於中生代的恐龍們被古生物學家發現,並且正式的命名為新物種、發表在國際間相關的古生物學研究期刊中—平均不到一個禮拜,全世界就又會多了一種中生代的恐龍在我們的知識體系中!

台灣的鳥類恐龍故事:恐龍演化新視角

藉由這樣的研究能量,我們現在不只清楚的知道所有現生鳥類都是貨真價實的恐龍,連我上課在談論恐龍演化所使用的教科書,所提到恐龍定義裡的其中一個主角,即有我們幾乎每天都會見到面的麻雀:

-----廣告,請繼續往下閱讀-----

恐龍包含了滅絕的三角龍和現生的麻雀最近的共同祖先,以及從這共同祖先開始的所有後代,都是恐龍。沒有被包含在三角龍和麻雀最近的共同祖先裡的後代,都不是恐龍。

大部分隨口問我台灣到底有沒有恐龍的人,我基本上都很難有足夠的時間用上述簡短的內容來說明,因為可以感覺得出來,大部分的人,真的都只是隨口問問,大概也沒有打算真的想要了解恐龍、或是古生物學的研究工作到底是怎麼一回事,背後又有什麼重要的意涵。所以我一般都只會簡短的回應著像是,台灣當然有恐龍,因為所有的鳥類都是恐龍,不只如此,我們每天也都在吃著貨真價實的恐龍肉!

——本文摘自《好久・不見:露脊鯨、劍齒虎、古菱齒象、鱷魚公主、鳥類恐龍⋯⋯跟著「古生物偵探」重返遠古台灣,尋訪神祕化石,訴說在地生命的演化故事》,2024 年 9 月,麥田出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

麥田出版_96
27 篇文章 ・ 15 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。