Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

固體裡那或多或少的缺陷,和奈米元件——《物理雙月刊》

物理雙月刊_96
・2017/09/02 ・1793字 ・閱讀時間約 3 分鐘 ・SR值 537 ・八年級

在所有的固體裡,都存在著或多或少的缺陷。

有些缺陷來自於晶格空穴,這些空穴與鄰近原子之間可能形成「二能級系統(two-level systems, TLSs)」,使得一顆/一團原子在空間緊鄰、能量又相近的二個位置∕晶格組態之間來回躍動,構成一種「動態結構缺陷(dynamical structural defects)」,簡稱「動態缺陷(dynamic defects)」,如下圖(A)所示。

 

原子二能級系統與晶粒二能級系統示意圖。圖/作者提供

二能級系統的概念早在 1972 年就由 P. W. Anderson(1977 年諾貝爾物理學獎得主)與 W. A. Phillips 等人分別提出,用於解釋非晶態材料的低溫比熱與熱傳導的奇特行為。這種動態缺陷的自發性反覆來回躍動(fluctuations 或 repeated switches),對奈米尺度元件的效能會造成惡性影響。例如,造成超導量子位元的量子糾纏態破壞,降低量子同調時間;造成奈米機電(NEMS)元件能量耗散,降低其品質因子(quality factor),進而影響量子極限量測的能力;和造成低頻雜訊(1/f noise),影響奈米電子元件的性能等。

幾十年來的研究證實,動態缺陷大多源於單顆原子在空間中的躍動,稱為「原子二能級系統(atomic TLSs)」。至於材料中的奈米尺度晶粒(nanocrystalline grain)——包含上千、甚至上萬顆原子——是否也能如原子二能級系統般,在二個晶格組態之間來回躍動,則是科學文獻中的一個長久未解之謎。上圖(B)表示我們稱之為「晶粒二能級系統(granular TLSs)」的理論模型,二個介穩晶格組態被位能障 V分隔,晶粒可以藉由熱激發(高溫時)或是量子穿隧(低溫時)在二個位能阱之間不斷反覆變換位置。

從缺陷到奈米元件

就基礎研究層面而言,如某些特殊磁性材料中,電子自旋會形成晶格般的有序排列結構(skyrmions),此結構的邊界,最近被發現乃是由材料中原子晶格的晶粒邊界所衍生。因此,材料中的晶粒如果產生躍動行為,將導致這類自旋排列邊界的擾動,從而影響 skyrmion 的動力學性質。就技術應用層面而言,工業上對量產與大面積材料的強烈需求,使得市面元件大多呈多晶體(polycrystalline)結構。如大面積化學氣相沉積的石墨烯,薄膜矽奈米線生物感測器等都是。倘使奈米尺度晶粒產生躍動,將嚴重影響這類元件的精密效能。因此,晶粒二能級系統具有重大和即時的產學研發意義。

-----廣告,請繼續往下閱讀-----

最近,我們在室溫下觀測到二氧化釕(RuO2)金屬奈米線中奈米晶粒的自發性整體來回躍動行為。高解析穿透式電子顯微鏡的影像顯示,二氧化釕奈米線內部含有許多奈米尺度晶粒,如下圖中(A) G到 G黃框所標示。二氧化釕中的氧缺陷(空穴),則會形成原子二能級系統,很可能大量處於晶粒邊界,因此造成晶粒之間的鍵結減弱,從而產生晶粒轉/滑動現象。

RuO2 奈米線的高解析穿透式電子顯微鏡影像,和電性量測裝置圖。圖/作者提供

上圖中(B)顯示由電子束微影技術製作的奈米線元件。我們使用調變–解調方法,將前置放大器的輸入雜訊降到最低。下圖顯示奈米線電阻隨著時間在幾個固定值(由 ρ到 ρ四條紅色虛線標示)之間來回變動。這些跳動值遠大於電子的熱雜訊,也遠大於由原子二能級系統造成的電阻變化。詳細計算和分析顯示,這些電阻跳動來自於晶粒二能級系統的整體躍動(collective motion)行為,躍動晶粒的大小與電子顯微鏡的觀測結果一致。進一步的分析可以算出奈米晶粒的遲豫時間(relaxation time),和晶粒邊界的鍵結強度(VB)——這些微觀參數無法從其他實驗方法獲得。晶粒邊界的鍵結強度是決定奈米元件機械強度的一個重要因素。

RuO2 奈米線電阻率隨時間擾動的數據。圖/作者提供

半導體工業對微小化的迫切需求,使得元件間導線的寬度不斷縮減,電流密度從而增大,造成原子因電流撞擊而移動,即「電致遷移(electromigration)」現象。電致遷移最終會導致元件之間斷路,使得積體電路的「可靠性(reliability)」成為一個嚴峻課題。我們的高精度電性測量方法能用於研究電致遷移現象,有助於次 10 奈米元件連接線材料的開發。

  • 這項研究由交通大學物理所葉勝玄博士後研究員、張文耀碩士生(已畢業)和林志忠教授合作完成,發表於 2017 年 6 月 23 日《Science Advances》期刊。
  • 本文感謝葉勝玄博士、林志忠教授(交通大學物理研究所)撰稿。林志忠老師網頁

 

 

本文摘自《物理雙月刊》39 卷 8 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。