0

0
0

文字

分享

0
0
0

哆啦 A 夢百寶袋的原理是甚麼?

余海峯 David
・2017/03/14 ・1607字 ・閱讀時間約 3 分鐘

擁有哆啦 A 夢的各種神奇法寶是我們小時候的夢想。根據 2006 年日本朝日電視台的統計,最受歡迎的法寶是隨意門、竹蜻蜓及時光機。

貪心的我最喜愛的道具,其實是長期貼在哆啦 A 夢肚子上的四度空間百寶袋。只要擁有它,什麼道具也可以得到了吧?如果從物理學的角度看這件法寶又會如何呢?現在讓我們來跳進百寶袋吧!(咦,空空如也的?!)

擁有四度空間百寶袋,是每個人的夢想!圖/IMDb

四度空間百寶袋與四維時空相對論

哆啦 A 夢的四度空間百寶袋肯定是出場次數最多的法寶,只要有哆啦 A 夢出場的集數,就必定會見到它(以我記憶,只有少數幾集哆啦 A 夢沒有出場)。然而,究竟什麼是「四度空間」?

想必大家早已察覺到我們生活在三度空間裡,即由長、寬、高構成互相垂直三個方向的空間。物理學和幾何學之中,我們習慣叫方向做「維度」。除此之外,我們找不到第四個與長、寬、高同時垂直的第四個維度,因此物理學家就稱我們活在「三維空間」或「三度空間」之中。

不過,除了空間之外,我們的宇宙之中還有時間。現代物理的基礎、愛因斯坦發表的相對論,把時間納入維度之列。三維空間和一維時間結合,我們稱之為「四維時空」。而這個「四維時空」其實就是指我們身處的宇宙。因此,我們本來就已經活在「四度時空」裡了啊!

哆啦 A 夢百寶袋裡有另一個宇宙?!

百寶袋伸手過去就是一個宇宙?圖/CC0 Public Domain @ pixabay

那麼「四度空間」是否表示哆啦 A 夢百寶袋裡多了一個維度,所以能夠在小小的口袋裡放進許多道具?四度空間百寶袋的日文是「四次元ポケット」,直譯作「四維口袋」。如果四維指的是三維空間加一維時空的話,那麼百寶袋裡就是跟我們身處的宇宙差不多的地方了。

為什麼只說差不多而非一樣呢?其實四維時空只是我們這個宇宙的一個特徵。四維時空遵守的物理定律才是構成我們所見到的這個宇宙的必要條件。我們宇宙的時空結構遵守廣義相對論的規則而演化,在細小尺度上亦遵守量子力學的規則。可以說,有了三維空間和一維時間,而且遵守廣義相對論和量子力學的宇宙,才可能與我們的宇宙相似。

哆啦 A 夢的作者藤子.F.不二雄並沒有說明過百寶袋裡的空間有沒有時間流逝。不過,哆啦 A 夢說過,百寶袋裡的法寶需要定期維修,因此可假設百寶袋裡的時間並非靜止的。原來,四度空間百寶袋載著的不單止是各種神奇的法寶道具,也載著一整個宇宙啊!

後備百寶袋是個蟲洞入口?

哆啦 A 夢還有一個後備百寶袋,放在他的枕頭底下。當百寶袋失靈或遺失時,可以使用後備百寶袋合取道具,不過最常見的就是被大雄偷來使用……

後備百寶袋用蟲洞相連,東西很容易被大雄偷拿。圖/擷取自 Youtube

後備百寶袋與哆啦 A 夢肚子上的四度空間百寶袋是相連的,即是它們的入口都通往同一個空間。因此,其實兩個百寶袋比較像是用來製造通往存放法寶的宇宙通道。廣義相對論亦允許宇宙間的連接通道,物理學家稱之為蟲洞

蟲洞往往是科幻電影的題材,但其實理論上相對論是允許蟲洞存在的。蟲洞屬理論物理學的研究題材,不過現實並未有任何蟲洞的觀測證據,因此所有蟲洞的性質暫時知道只在理論上可行。

漫畫中的物理學

蟲洞常被描述成時空中的捷徑。大長篇其中一集,哆啦 A 夢曾用一張紙向大雄解釋蟲洞的原理(以下劇透~)。想像白紙就是我們的宇宙。哆啦 A 夢在紙上兩端各標示 A 點和 B 點,問大雄由 A 點去 B 點最短的路線。大雄的答案是用筆把兩點連接起來的直線就是最短路線。哆啦 A 夢卻把紙對接,兩點就接通了。

這一幕,雖未必是我以後選修物理的原因,但至少點燃了我心中的求知慾。「這很有趣!我想理解更多!」希望我這個〈動漫物理學〉專欄,能夠以有趣的方法,帶領各位思考科學。

文章難易度
余海峯 David
16 篇文章 ・ 14 位粉絲
天體物理學家。工作包括科研、教學和科學普及。德國馬克斯・普朗克地外物理研究所博士畢業。現任香港大學理學院助理講師。現為《立場科哲》科學顧問、《物理雙月刊》副總編輯及專欄作者、《泛科學》專欄作者。合著有《星海璇璣》。

0

8
0

文字

分享

0
8
0

地震規模越大,晃得越厲害?

鳥苷三磷酸 (PanSci Promo)_96
・2021/09/16 ・3706字 ・閱讀時間約 7 分鐘

本文由 交通部氣象局 委託,泛科學企劃執行。

某天,阿雲跟阿寶分享了一個通訊軟體上看到的資訊:

阿雲:「欸,你知道最近有個傳言說,花蓮有 7.7 級地震,如果發生的話台北會有 5.0 級的震度耶!」

阿寶:「蛤?那個傳言也太怪了吧,應該是把規模和震度搞混了!」

震度:量度地表搖晃的單位

確實常常有人把地震的規模跟震度搞混,實際上,因為規模指的是地震釋放的能量大小,所以當一個地震發生時,它的規模值已經決定了,只是會因為測量或計算的方式不同,會有些許的數字差異,而一般規模計算會到小數點後第一位,故常會有小數點在裡面。然而震度指的意思是地表搖晃的程度,度量表示方式通常都是以「分級」為主,比如國外常見、分了 12 級震度的麥卡利震度階,就是用 12 種不同分級來描述,而中央氣象局目前所使用的震度則共分十級,原先是從 0 級到 7 級,而自 2020 年起,在 5 級與 6 級又增了強、弱之分,也就是震度由小而大為 0-1-2-3-4-5弱-5強-6弱-6強-7 等分級,所以在表示上我們以整數 + 級或是強、弱等寫法,就可以區分規模和震度,不被混淆了!

而為什麼專家常需要強調震度和規模不一樣?那是因為震度的大小,是受到許多因素的影響。地震發生後,造成地表搖晃的主要原因是「地震波」傳來了大量能量,規模越大的地震,代表的就是地震釋放的能量越大,就像是你把擴音的音量不斷提高時,會有更大的聲音傳出一般。所以當其他的因素固定時,確實會因為規模越大、震度越大。

可是,地震波的能量在傳播過程中也會慢慢衰減,就像在演唱會的搖滾區時,在擴音器旁往往感覺聲音震耳欲聾,但隔了二、三十公尺之外,音量就會變得比較適中,但到了會場外,又會變得不是那麼清楚一樣。所以無論是地震的震源太深、或是震央離我們太遙遠,地震波的能量都會隨著距離衰減,一般來說震度都會變得比較小。

「所以,只要把那個謠言的台北規模 5.0 改為震度 5 弱,說法就比較合理了嗎?」阿雲說。

「可是,影響震度的因素還有很多,像是我們腳下的岩石性質,也是影響震度的重要因素。」阿寶說。

場址效應:像布丁一樣的軟弱岩層放大震波

原本我們都會覺得,如果地震釋放能量的方式就像是聲音或是爆炸一般,照理說等震度圖(地表的震度大小分布圖)上會呈現同心圓分布,但因為地質條件的差異,分布上會稍微不規則一些,只能大致看出震度會隨著離震央越遠而越小。地震學上有一個專有名詞叫做「埸址效應」,指的就是因為某些特殊的地質條件下,反而讓距離震央較遠的地方但震度被放大的地質條件。其中最常見的就是「軟弱岩層」和「盆地」兩種條件,而且這兩種還常常伴隨在一起出現,像是 1985 年的墨西哥城大地震,便是一個著名的例子。

影片:「場址效應」是什麼? 布丁演給你看

墨西哥城在人們開始在這邊發展之前,是個湖泊,湖泊中常有鬆軟的沉積物,而當湖泊乾掉之後,便成了易於居住與發展的盆地。雖然 1985 年發生的地震規模達 8.0,但震央距離墨西哥城中心有 400 公里,照理說這樣的距離足以讓地震波大幅衰減,而地震波傳到盆地外圍時,造成的加速度(PGA)大約只有 35gal,在臺灣大約是 4 級的震度,然而在盆地內的測站,卻觀測到 170gal 的 PGA 值,加速度放大了將近五倍,換算成震度,也可能多了一至二級的程度,也造成了相當程度的災情。盆地裡的沉積物,就像是裝在容器裡的布丁一樣,受到搖晃時,會有更加「Q 彈」的晃動!

1985 年墨西哥城大地震的等震度圖。圖/wikipedia

因此,在臺灣,雖然臺北都會區並沒有比其他區有更多更活躍的斷層,但地震風險仍不容小覷,因為臺北也正是一個過去曾為湖泊的盆地都市,仍有一定程度的地震風險,也需要小心來自稍遠的地震,除了建築需要有更強靭的抗震能力,強震警報能提供數秒至數十秒的預警,也多少讓人們能即時避災。

斷層的方向與震源破裂的瞬間,也決定了等震度圖的模樣

阿雲似懂非懂的接著問:「可是啊,為什麼有的時候大地震的等震度圖長得很奇怪,而且有些時候震度最大的地方都離震央好遠呢!也太巧合了吧?」

「這並不是巧合,因為震央下方的震源,指的其實是地震發生的起始點,並不是地震能量釋放最大的地方啊!」阿寶繼續解釋著。

「蛤!為什麼啊?」阿雲抓抓頭,一邊思考著。

地震是因為地下岩層破裂產生斷層滑動而造成的,雖然不是每個地震都會造成地表破裂,但目前科學家大多認為,地震的破裂只是藏在地底下,沒有延伸到地表而已,而且從地震的震度,也可以看出地底下斷層滑移的特性。

斷層在滑動時,主要的滑動和地震波傳出的地方,會集中在斷層面上某些特定的「地栓」(Asperity)之上,這些地栓又被認為「錯動集中區」,而通常透過傳統的地震定位求出來的震源,其實只是這些地栓中,最早開始錯動的地方。但實際上,整個斷層錯動最大的地方,往往都不會在那一開始錯動的地方,就像是我們跑步時,跑得最快的瞬間,不會發生在起跑的瞬間,而是在起跑後一小段的過程中,而錯動量最大的區域,才會是能量釋放最大的地方。而或許是小地震的地栓範圍小,震央幾乎就在最大滑移區的附近,因此也看不太出來,通常規模越大,震源的破裂行為會隨著時間傳遞,此效應才會越明顯。

震源與震央位置示意圖。圖/中央氣象局

那麼斷層上的地栓位置能否確認?這仍是科學上的難題,但近年來科學進展已經能讓我們透過地震波逆推斷層上的錯動集中區,至少可以透過地震波逆推斷層破裂滑移的型式,得以用來比對斷層破裂方向對震度分布的影響。以 2016 年臺南—美濃地震為例,最大錯動量的地區並不在震央所在的美濃附近,而是稍微偏西北方的臺南地區,也就是因為從地震資料逆推後,發現斷層在破裂時是向西北方向破裂。而更近一點的 2018 年花蓮地震,錯動量大、災害多的地方,也是與斷層破裂方向一致的西南方。

一張含有 地圖 的圖片  自動產生的描述
2016 年臺南美濃地震的等震度圖。圖/中央氣象局

透過更多的分析,現在也逐漸發現破裂方向性對於大地震震度分布的影響確實是重要議題。而雖然我們無法在地震發生之前就預知地栓的位置,但仍可從各種觀測資料作為基礎,針對目前已知的活動斷層進行模擬,就能做出「地震情境模擬」,並且由模擬結果找出可能有高危害度的地區,就能考慮對這些地區早先一步加強耐震或防災的準備工作。

多知道一點風險和危害度,多一份準備以減低災害

但是,直到目前為止,我們仍無法確知斷層何時會錯動、錯動是大是小。科學能給我們的解答,只能先評估出斷層未來的活動性中,哪個稍微大一些(機會小的不代表不會發生),或者像是斷層帶附近、特殊地質特性的場址附近,或許更要小心被意外「放大」的震度。而更重要的是,當地震來臨前,先確保自己的住家、公司或任何你所在的地方是安全還是危險,在室內要小心高處掉落物、在路上要小心掉落的招牌花盆壁磚、在鐵路捷運上要注意緊急煞車對你產生的慣性效應…多一些及早思考與演練,目的就是為了防範不知何時突然出現的大地震,在不恐慌的情況下保持適當警戒,會是對你我都很重要的防震守則!

【參考文獻】

鳥苷三磷酸 (PanSci Promo)_96
4 篇文章 ・ 7 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策