0

0
0

文字

分享

0
0
0

羨慕別人吃不胖?祕密武器藏在腸道裡!

Dino
・2017/01/27 ・2916字 ・閱讀時間約 6 分鐘 ・SR值 583 ・九年級

  • 採訪/趙軒翎|泛科學內容編輯
  • 撰文/楊仕音

真的存在肥胖體質嗎?

「體質」一詞聽來玄虛,但有過減重經驗的人應該對個體差異相當有感——有些人吃再多也不易發胖,可有些肥胖體質的個體卻沒辦法這麼有口福了。

6054574928_cb2961b7c6_z
有些人怎麼吃都不會胖,不過有些人可能喝杯水就…。圖/By Thomas Hawk @ flickr, CC BY-NC 2.0

肥胖體質到底是什麼?無論是先天因素或後天因素所致,肥胖體質可以簡化成「生態系」一詞。提到「生態系」,絕大多數人首先聯想到的可能是地球上所有相依相存的生物和生存環境。其實,我們每個人身上隨時都攜帶著一座專屬生態系,而近來科學家目光的焦點——腸道生態系——與肥胖體質之間的關係密不可分。

腸道生態系是一座住滿各式各樣微生物的部落,稱為「腸道菌相」(gut microbiota)。台灣國家衛生研究院免疫醫學研究中心高承源助研究員團隊 [註 1],發現調控腸道菌相平衡的新機制,並且進一步證實特定腸道菌相能有效增加個體的代謝率和能量消耗,抑制因飲食引發的肥胖症。此研究成果已發表於國際知名期刊《自然微生物》(Nature Microbiology)。

lab_102016

如何確認基因功能?

過去的研究顯示,小鼠體內的遺傳基因 DUSP6 與飲食誘發型肥胖症(diet-induced obesity)所導致之脂肪肝和糖尿病等徵狀息息相關,因此研究團隊決定鎖定該基因,分析它的功能作用是否可以改變小鼠對飲食誘發型肥胖症的反應與腸道菌相組成。

然而,即使只是單一基因的表現與調控機制,在活體內由於受各種因子交互影響,追蹤起來比想像中的複雜許多,所以科學家採用的方式多半是「從缺陷中尋找線索」。換句話說,即是先將 DUSP6 基因剔除,再觀察缺少該基因的小鼠腸道生態系發生了什麼事。

研究團隊將 DUSP6 基因剔除小鼠與對照組的小鼠做比較,同時餵食兩組小鼠高脂肪飼料。圖/By crwr @ flickr, CC BY-NC-ND 2.0
圖/By crwr @ flickr, CC BY-NC-ND 2.0

第一步,研究團隊將 DUSP6 基因剔除小鼠與對照組的小鼠做比較,同時餵食兩組小鼠高脂肪飼料。結果發現 DUSP6 基因剔除小鼠雖然攝食量沒有減少,但血糖耐受度和胰島素敏感度增加 [註 2]、脂肪肝發生率低,更重要的是脂肪細胞還會恢復正常大小,進而抑制體重增加 [註 3:肥胖細胞的數量不會減少,但本身會縮小]。

看到這個結果,研究團隊覺得相當驚奇,因為這類基因剔除實驗,科學家通常預期有缺失基因的個體,健康狀態會變得比正常個體差,沒想到在這個實驗中卻發現,缺少 DUSP6 基因的小鼠不但沒有變胖,反而還能抑制肥胖。高承源博士表示,起初,團隊有些懷疑自己的研究結果,但就在一、二個月後,美國另一個研究團隊竟然發表了一篇文獻,他們所觀察到的現象與國衛院團隊相似。不僅如此,美國實驗團隊研究中所提到的 DUSP6 基因對於肝臟代謝相關機制的影響,正是原本國衛院團隊接下來打算探討的題目。「我們覺得這件事有好有壞,」高承源說,「好的是他們的論文增加了我們對研究結果的信心,但也表示我們得另尋研究方向了。」

便便中藏有腸道菌的秘密

DUSP6 基因剔除小鼠是透過什麼樣的機制,來讓同樣吃高脂肪飼料的小鼠,達到抑制體重增加的效果?這和我們一開始提到的腸道生態系有沒有關係呢?高承源博士的團隊接下來試著從腸道菌切入,而要取得 DUSP6 基因剔除小鼠的腸道菌,就得從牠的「便便」下手了。

沒有錯,便便中藏有生物的腸道菌密碼,要知道這些腸道菌對於肥胖有沒有影響,就得將這些腸道菌移植到另一隻小鼠身上,再仔細觀察牠的身體反應和變化。所以研究團隊將 DUSP6 基因剔除小鼠(以下簡稱移植鼠)的便便,移植至野生型小鼠(以下簡稱被移植鼠)身上。聽起來很可怕,但這也是為了讓你這小胖子別再胖下去實驗需求。結果發現,被移植鼠不僅能量消耗增加,並且與移植鼠一樣,具有抑制高脂飼料所造成的體重增加、脂肪細胞肥大、脂肪生成與脂肪肝等症狀的能力。

圖/國家衛生研究院電子報
圖/國家衛生研究院電子報

這代表 DUSP6 基因剔除小鼠的腸道菌中,藏有一些能抑制肥胖的秘密武器囉?

研究團隊進一步分析 DUSP6 基因剔除小鼠小腸組織內的 RNA 表現,發現 DUSP6 基因缺失會加強細胞緊密度相關的基因表現(gene expression);也就是,DUSP6 基因剔除小鼠可藉由增加細胞緊密度、降低腸道上皮細胞的通透性,來維持腸黏膜與腸道菌相間的平衡,並且避免細菌內毒素滲漏至血液循環、引起全身性慢性發炎。簡單來說,細胞間的連結愈緊密,上皮細胞的屏障效果就像座固若金湯的城堡,難以被外來病原攻陷,因此可保護原始健康腸道的菌相平衡不被破壞。此外,DUSP6 基因剔除小鼠還能逆轉因高油脂飼料擾亂的腸道基因群表達,降低高油脂飼料引致的 T 細胞發炎反應,藉穩定腸道免疫調節來維持有利於個體代謝之菌相,形成個體體內一個「吃不胖的腸道生態系」。

小鼠歸小鼠,那能不能抑制我的肥胖?

圖/Tony Alter@flickr
圖/Tony Alter@flickr

看到這裡大家最關心的應該是,那在人身上 DUSP6 基因剔除個體的腸道菌,究竟有沒有辦法幫助我們抑制肥胖啊?

高承源博士說,人身上確實也有 DUSP6 基因,但要了解人身上的作用機轉,實際上非常困難。科學家無法像製作基因剔除鼠一般任意的操弄人身上的基因,通常得透過醫院蒐集到相關案例或樣本來分析。臨床案例樣本分析在癌症研究上常用,可是癌症相關的疾病手術機會多,自然也有較多檢體,但肥胖(或是抑制肥胖)的檢體到底該去哪裡搜尋,就令人頭大了。

當然團隊也希望最終可將此機制,應用於人體肥胖及相關代謝疾病的治療和預防。目前研究人員正著手深入分析 DUSP6 基因剔除小鼠糞便中的腸道菌相,試圖篩選並培養出具有可幫忙人類抑制肥胖效果的腸道菌株。

從腸道生態系改變肥胖體質的未來或許離我們不遠,但在科學家實現這個美夢之前,面對農曆春節滿桌的大魚大肉,還是得多加節制;即使不是為了保持身材,也需留意因口腹之慾而帶來血糖、血脂飆高等健康風險。

註解

  1. 本次實驗研究團隊,包括國家衛生研究院免疫醫學研究中心高承源博士、阮振維博士、助理黃芝婷,於免疫醫學研究中心譚澤華主任提供之基因剔除小鼠及相關資源支持下,與美國 Sarah Statt 博士、清華大學詹鴻霖教授及博士生蔡伊葶、國衛院細胞與系統醫學研究所郭呈欽研究員、群體健康科學研究所廖玉潔研究員等人組成的跨領域團隊。
  2. 胰島素控制血糖平衡,促使肝臟、肌肉將血液中的葡萄糖轉化為肝醣儲存,所以當身體對胰島素變得不敏感時,需要分泌更多胰島素身體才會有反應,最後產生胰島素的細胞過度疲勞,便不再分泌胰島素,葡萄糖耐受度降低,血糖居高不下,最後轉為糖尿病。
  3. Spalding K.L., Arner E., Westermark P.O., Bernard S., Buchholz B.A., Bergmann O., Blomqvist L., Hoffstedt J., Näslund E., Britton T., Concha H., Hassan M., Rydén M., and Frisén J., Arner P. (2008) “Dynamics of fat cell turnover in humans.” Nature 453 (7196), 783-787.

原始研究

  • Ruan, J.W., Statt, S., Huang, C.T., Tsai, Y.T., Kuo, C.C., Chan, H.L., et al. (2016) “Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice.” Nature Microbiology (16220), 1-12.
文章難易度
Dino
10 篇文章 ・ 5 位粉絲
週間為科普人兼專利人,週末悄悄變身為素人畫家。 臺大動物學系學士、動物學研究所碩士畢,主修病毒遺傳。美國常春藤Dartmouth College工商管理學碩士畢。 譯有多本科普人文書籍與影片字幕,熱愛科普閱讀、寫作和從科學發想的藝術創作。獲頒吳大猷科學普及著作翻譯類獎。

0

2
0

文字

分享

0
2
0
肥胖是生活型態疾病,管理體重從改善習慣開始!
careonline_96
・2023/02/14 ・1995字 ・閱讀時間約 4 分鐘

肥胖可能造成哪些問題

從大家比較熟悉的心血管疾病,比如高血壓、糖尿病,都跟肥胖有關係;還有一些癌症,比如大腸癌跟乳癌,如果是肥胖者,罹癌風險會比較高。

可能也有一些肌肉骨骼關節的疾病,比如說退化性關節炎,肥胖者也比較容易受到這個困擾;另外還有像阻塞型睡眠呼吸中止症,也會讓肥胖者跟他的枕邊人,可能都會覺得不勝其擾。

肥胖的成因

包含一些生理上的問題,像是內分泌系統,比如腎上腺或者是甲狀腺功能失衡,這都有可能會影響到個案的新陳代謝,導致熱量累積造成肥胖。另外有些人可能是基因遺傳,家族性的肥胖,體脂肪比例可能都超高,非常難纏。

不過值得一提的是,WHO 已經將肥胖定義成生活型態疾病 lifestyle disease 之一,可以想見其實很多肥胖的朋友,都還是跟最根本生活型態有關係。可能來自他的飲食習慣、運動習慣,又或者是他的作息比較混亂,這些可能都是肥胖背後的原因;而且必須要強調的是,有可能在單一一名肥胖的個案身上,我們往往可以找到不只一個造成肥胖的原因,這些都值得抽絲剝繭去細究。

進行體重管理時,生活型態該如何調整

最直接跟肥胖相關的,一定還是不脫飲食跟運動,因為這兩個習慣,會跟熱量以及脂肪的累積最直接相關。作息、睡眠,比如睡眠時數不足,又或者是睡眠品質很差,也會影響我們體內賀爾蒙的變化,導致很難變瘦。

在這邊要強調的是,一旦我們決定要開始進行體重管理,最重要的是我們要建立正確的心態,既然已經有發現自己體重的問題,而且有想要做一點改變,應該要有一個大破大立,跨出舒適圈的精神,正視、檢視自己生活上習慣需要調整的地方。

在做體重管理、生活型態調整的時候,其實醫療團隊也有一定的角色。陪伴個案走一段路,協助他檢視自己生活中可能的一些限制、給他建議,並且在他遇到困難的時候,可以出手幫助,讓整個體重管理的過程,可以走的更穩定、更長遠,也更順暢。

何時會使用藥物介入

生活型態、生活習慣的調整是最重要的基礎,但有時候也會需要藥物來補足臨門一腳;尤其是在與個案討論之後,發現他的生活上能夠做的改變與調整,已經來到瓶頸,有一個限制,這時候藥物的角色就浮現上來,有可能是短暫使用,讓個案有信心再繼續走下去,也有可能是就讓他突破一個臨界點,到他從來沒有達到過的體重,讓他可以更有自信心地走下去。

臨床實務上,其實也有可能出現這樣的時機,在與個案很充分討論關於藥物的優缺點以及一些限制,比如用了一段時間之後,可能效果不彰,確定個案都了解這些條件之後,在一開始就用藥物與生活型態調整,雙軌並進。

幫助體重管理的藥物有哪些

以目前台灣的現況,有一個已經上市 20 多年歷史的口服藥,它的機轉叫做胰脂酶抑制劑;這樣的藥物,胰脂酶本來就存在於我們人體體內,會幫助我們去分解吃進去的食物、油脂,讓它變成人體比較好吸收的脂肪顆粒。

這個藥物的作用就是抑制胰脂酶,讓它不要發揮正常效用,以至於我們飲食當中攝取的油脂,就沒有辦法正常的分解,正常的被吸收,就可以隨著腸胃道排除。但也有一些副作用,比如排便的次數會增加,而且排的會是油便,可能會造成一些腹部不適,或者是生活上的一些困擾。

另一種藥物則是腸泌素促效劑,腸泌素其實也是人體本來就自然存在的一種腸道賀爾蒙,它的效用就很多才多藝,包括從腸道,從內分泌系統,甚至中樞神經系統,它都會有所作用。

  • 腸泌素能提供的幫助

腸泌素本來就存在於人體的腸道裡面,其作用可以影響我們的胰臟,去促進胰島素的分泌來調控血糖。

它還可以抑制胃的排空,增加飽足感,就比較不會覺得肚子餓,想要找東西吃;還可以影響大腦裡的飽覺中樞,直接從源頭去調控我們對於飢餓以及飽足感覺的臨界值。這樣的藥物對於一些自認為胃口很好,很難以控制食慾、食量的朋友們來說,有可能就是一個福祉。

careonline_96
422 篇文章 ・ 265 位粉絲
台灣最大醫療入口網站

0

1
0

文字

分享

0
1
0
久站或久坐,讓你靜脈曲張了嗎?了解靜脈曲張的成因與症狀
J. Yang_96
・2022/11/23 ・1529字 ・閱讀時間約 3 分鐘

靜脈曲張,英文為 Varicose vein,意即異常增大或腫脹的靜脈。

大家對於這個疾病應該不陌生,小時候就時常聽到老師們在辦公室閒談聊到長時間的站立,讓他們飽受靜脈曲張的困擾。鼓脹彎曲的靜脈如藤蔓般爬滿本該平滑的小腿,輕則影響美觀,重則甚至寸步難行。

靜脈曲張輕則影響美觀,重則甚至寸步難行。圖/pexels

變形的靜脈?

靜脈曲張到底是如何形成的?

讓我們先從根本認識起靜脈這個平常容易被忽略,實則肩負重責大任的無名英雄。下肢靜脈在解剖學上分為深層、淺層及如橋樑般穿梭期間的穿通枝,他們負責讓供完養分的血流順利回到心臟。

而靜脈曲張發生的位置是主要由大隱及小隱靜脈組成的淺層系統。大隱靜脈的走向由內踝沿著小腿內側一路直上至大腿內側,在鼠蹊部匯入股靜脈;小隱靜脈則由外踝繞至小腿正後方匯入膕靜脈。

故我們常見發生靜脈曲張的位置多沿著這些位子,尤其是內側鼠蹊及膝蓋後側,也就是大隱及小隱匯入深層靜脈之處(saphenofemoral junction & saphenopopliteal junction)。

健康的靜脈能夠形成以自身的內膜形成瓣膜,確保遠端的血液能夠抵抗重力,像閘門一樣讓通過的血液不會逆流。

然而,當瓣膜功能減弱時,本該回流的血液隨著重力累積在下肢靜脈,深層靜脈的血液透過穿通支逆流至淺層系統,長此以往則會造成靜脈高壓。

除此之外,淤積的血液也會帶來多種發炎因子,進一步導致管壁結構的變形。機械性及化學性的致病機轉共同作用,使平滑的靜脈開始鼓脹變形,形成我們熟知的靜脈曲張。

有些人的手可以看到明顯的靜脈。圖/pexels

檢測自己是不是高危險族群!

哪些人容易有靜脈曲張呢?老化是最重要的風險因子,其他如女性、多產、吸菸、肥胖者、受過外力創傷、工作需要長時間站立及已知家族遺傳都是應該特別注意的族群。

這個疾病對生活的影響可大可小,因為輕微的靜脈曲張來到醫院診治的病人多數是在意美觀上的影響,所以在大醫院的醫美中心看到心血管外科醫師也不足為奇,主要就是針對靜脈曲張的部分提供諮詢及治療。

靜脈曲張對生活的影響可大可小。圖/pexels

而隨著疾病的進展,程度不一的疼痛是最常見的主訴,可能伴隨著腫脹、搔癢、甚至隨著站立時間累積的沈重感。

「像大象一樣笨重的步伐。」上星期來開刀的病人這麼形容道。

「連吃飽飯想都跟家人去散步都沒有辦法。」

如果置之不理,最嚴重的情況甚至可能因為不良的血液循環導致下肢滯鬱性皮膚炎、潰瘍出血甚至,極少數的情況下,形成血栓堵塞血管。當看到皮膚出現暗沉、紅腫時,須及時至醫院接受檢查,排除其他病因並及早接受適當的治療。

臨床上根據症狀的嚴重度將靜脈曲張分為0到6級,如下表所示:

2S 以上建議接受醫療介入。表/作者提供

下一篇文章則詳細向大家說明靜脈曲張現行有哪些治療的選擇,並協助你們分析到底哪種治療方式最適合自己?

參考資料

  • Campbell B. Varicose veins and their management. BMJ. 2006;333(7562):287-292. doi:10.1136/bmj.333.7562.287
  • Courtney M. Townsend, Jr., MD, R. Daniel Beauchamp, MD, B. Mark Evers, MD, and Kenneth L. Mattox, MD (2021). Sabiston Textbook of Surgery (21st edition).
  • Lurie F, Passman M, Meisner M, et al. The 2020 update of the CEAP classification system and reporting standards [published correction appears in J Vasc Surg Venous Lymphat Disord. 2021 Jan;9(1):288]. J Vasc Surg Venous Lymphat Disord. 2020;8(3):342-352. doi:10.1016/j.jvsv.2019.12.075

J. Yang_96
4 篇文章 ・ 1 位粉絲
G2醫生!

1

1
3

文字

分享

1
1
3
歐洲人克服乳糖不耐,少拉肚子就是達爾文贏家?
寒波_96
・2022/09/16 ・3812字 ・閱讀時間約 7 分鐘

牛奶、羊奶等生乳中含有乳糖(lactose),可以被乳糖酶(lactase)分解。但是小朋友長大以後,乳糖酶基因便不再表現,失去消化乳糖的能力。幾千年前,世界各地卻出現多款基因突變,讓人能一輩子保有乳糖酶。2022 年一項針對歐洲的研究提出觀點:這項能力之所以受到天擇喜好,是因為能避免拉肚子!?

人類如今也發明去除乳糖的牛奶。圖/被拍電影耽誤的置入性行銷之神──Michael Bay 麥可貝

史上最強遺傳適應,演化過程出乎意料?

人類原本和眾多哺乳動物一樣,小時候依賴母乳餵食,長大後不再喝奶,乳糖酶也失去作用。但是隨著人類馴化牛、羊等動物,即使是成年人也常有機會吃奶。

另一方面,由於乳糖酶基因外頭的調控位置突變,使得許多歐洲、非洲人的酵素在成年後可以持續作用,稱為乳糖酶持續性(lactase persistence,簡稱 LP,也就是乳糖耐受),而且同樣效果的不同突變,至少獨立誕生過 5 次。

具有某方面優點,使得存在感增加的 DNA 變異,稱作遺傳適應(genetic adaptation)。已知的人類案例非常多,天擇的影響力有強有弱,LP 算是受到最強烈天擇力量的基因之一。

由此推敲,當人類開始養牛、養羊,又吃奶以後,同時衍生 LP 應該是順理成章的事?然而,一系列考古學、遺傳學、古代遺傳學的探索,卻徹底打破上述看似合理的推論。

首先,考古學調查發現人類在中東馴化牛、羊,吃奶的歷史至少有 9000 年,接著距今 7000 年前已經引進歐洲多處。再來,由遺骸中直接取得古代 DNA 得知,LP 遺傳變異要等到 4000 多年前才出現,而且超過 3000 年前都還很小眾,最近 2000 年內才大幅提升存在感。

顯而易見,人類開始吃奶的年代,比獲得成年後消化乳糖的能力,更早好幾千年。 2022 年新發表的研究透過更廣泛的取樣分析,再度確認這件事。

由陶器中取樣乳脂質的地點和年代。圖/參考資料 1

再度確認:吃奶比遺傳突變更早好幾千年

隨著技術進步,如今有好幾種方法判斷古代人會不會吃奶,像是分析牙結石中的乳蛋白、容器中的乳脂質等等。新研究偵測陶器中的乳脂質,包括以前發表 188 處,以及新取得 366 處,總共 554 處中東、歐洲的遺址中,得知 6899 件乳製品存在的紀錄。

吃奶的文化能追溯到中東,新石器時代擁有農業的人群,帶著他們的牛、羊一起移民歐洲,也將吃奶文化傳入歐洲。到了距今 7000 年前,歐洲各大地區已經出現乳製品。也許不見得會直接喝生乳,不過肯定存在起司等生乳加工的食品。

比較特殊的是巴爾幹半島,現在的希臘。那時居民會養牛,養羊,吃肉肉;但是分析超過 870 件陶器,完全見不到乳脂質的蹤影。此處或許更晚才建立起吃奶文化。

總之,7000 年前吃奶文化已經廣傳歐洲各地。相比之下,比對不同年代、地點的死人骨頭取樣,消化乳糖的 LP 遺傳變異最早在 4600 年前現蹤,比吃奶晚很多。

而且 LP 出現一段時間後,存在感依然非常低,距今 3000 到 5000 年前的青銅時代,LP 並沒有什麼過人之處。到此為止,LP 只能說是人類族群中的一款普通變異,還不能算是遺傳適應。

不同年代,歐洲各地的吃奶狀況。距今 7000 年前之際(5000 BC)吃奶已經相當普及。圖/參考資料 1

現代社會:能代謝乳糖沒有好處,不能代謝只有小小壞處

儘管比本來以為的晚很多,LP 遺傳變異在歐洲族群的比例,還是於最近 3000 年內明顯上升。它到底因為什麼優點才受到天擇青睞,歷來爭論不休,有人提出營養、維生素D 等假說,可是都缺乏決定性的證據。

搜集幾十萬人遺傳資訊的英國生物樣本庫(UK Biobank),近來被大量用於各色分析。這項研究從中探討 LP 的影響,分析對象中大部分人具有 LP,少數人沒有(論文用語是 lactase non-persistent,縮寫為 LNP,也就是乳糖不耐)。比對得知,LP 並不會影響喝奶、食用乳製品的行為。

直接喝奶才有乳糖代謝的問題,加工成起司等乳製品可以避免,但是「問題」也許不是真的問題。更進一步比對,LP 對於健康狀況也沒什麼影響。簡單說就是:對 33 萬位英國人的分析發現,LP 與否,無關緊要。

加上其餘資訊推論,現代社會在正常情況下,缺乏 LP 大概就是喝奶拉肚子,不是什麼嚴重的問題。例如隨著中國經濟發展,沒有 LP 的中國人大量喝奶,多數也沒怎麼樣。

這也符合台灣人的經驗,台灣人配備 LP 的比例不高,可是隨著飲食習慣改變,多數人也就是這樣喝奶。另外喝奶會改變人的腸道菌,影響消化狀況,也是一個影響因素。

普遍缺乏 LP 的台灣人,很多人也是生乳照樣喝。圖/[廣宣] 牛奶妹 徵求中興大學牧場鮮奶長期訂戶

飢荒、疾病,時代力量的逆境考驗?

為了解釋歐洲歷史上 LP 比例的大幅上升,許多論點提出喝奶的優點,但是想想頗有可疑。把鮮奶加工製成乳製品,就能輕易抵銷 LP 問題,即使是飢荒時節也不例外;不能直接喝奶也不會餓死,吃起司就好。在營養加分方面,能喝奶真的有什麼優勢嗎?

由人群中遺傳變異的比例變化,我們能評估天擇影響的結果,但是不見得能抓到當初天擇真正的目標。新研究的分析指出,LP 的意義似乎不在創造優勢,而是避免劣勢。

跑完一大堆統計分析後,有兩項因素和 LP 的關聯性最高。一項是人口數量的波動,另一項是人口的密度。論文的解釋是,人口數量波動和飢荒有關(飢荒讓人口減少),密度和傳染病有關(人變多會增加傳染病的機率)。

沒有 LP 的人直接喝奶,副作用往往是腹瀉,在豐衣足食的現代社會多半沒有大害,還能刺激代謝,順便減肥;雖然對某些人而言,拉肚子依然是困擾的問題。

至於營養不良的人,腹瀉更可能出問題;某些疾病下,拉肚子造成脫水,容易重傷害健康。時常被營養不良、傳染病、飢荒等災厄糾纏,是古代的常態。

由此推論,不論是饑荒的短期逆境,或是傳染病的長期逆境(論文沒有特別討論,我想也包括寄生蟲?),配備 LP 的人由於能少拉肚子,生存機率也會大一點。

不同地區的人群,在不同年代的 LP 人口比例。圖/參考資料 1

魔鬼藏在拉肚子?

影響最大的年齡層可能介於 5 到 18 歲。此一小大人的階段,乳糖酶將漸漸失去作用;營養不良、體弱多病的人身體比較脆弱,拉肚子是要命的事,這或許正是天擇的目標!

古時候衛生狀況不佳,拉肚子大概很常見,而未成年人的死亡率也遠勝現在,小孩死掉並不意外。在此之下,能減少拉肚子的 LP 遺傳變異,長期累積下來,正面影響力或許頗為可觀。

這項研究的說法是否正確?它仍不足以算是決定性的證據,不過脈絡頗有道理。非洲也有多個獨立誕生的 LP 遺傳變異,相較於歐洲了解少很多,這是個潛在的研究方向。

另外不可忽視,讓乳糖酶維持作用的 LP 遺傳變異,也受到飲食習慣、生活背景影響,不單純是遺傳的事。例如自古牧業發達的蒙古、哈薩克,居民的 LP 比例一直很低,幾千年來也活得很好。少拉肚子也許能解釋歐洲的狀況,其餘地區不宜過度延伸。

延伸閱讀

參考資料

  1. Evershed, R. P., Davey Smith, G., Roffet-Salque, M., Timpson, A., Diekmann, Y., Lyon, M. S., … & Thomas, M. G. (2022). Dairying, diseases and the evolution of lactase persistence in Europe. Nature, 1-10.
  2. The mystery of early milk consumption in Europe
  3. Famine and disease drove the evolution of lactose tolerance in Europe
  4. How humans’ ability to digest milk evolved from famine and disease
  5. Ancient Europeans farmed dairy—but couldn’t digest milk

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
191 篇文章 ・ 872 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。