0

0
0

文字

分享

0
0
0

銀河系行星數量遠多於恆星

臺北天文館_96
・2012/01/19 ・1897字 ・閱讀時間約 3 分鐘 ・SR值 534 ・七年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

行星在銀河系中,算普遍嗎?過去我們相信地球的條件在銀河系中相當獨一無二,不過,最新研究結果帶來不同觀點:銀河系裡,質量與地球相近,繞行恆星周圍運轉的行星,總共數量恐怕不下幾十億!擁有一個以上行星的恆星不是特例。研究學者是藉由「重力透鏡法」證實,在繁星似錦的銀河系裡,平均每個恆星至少都有一顆行星伴隨在側。

過去16年,天文學家一共偵測到700多顆系外行星,並且已經開始透過分析它們的光譜和大氣這些方法加以一一探索,無庸置疑地,個別地探究這些系外行星具有哪些特徵,顯然有其重要價值。但有個更基本的問題,人們始終好奇依舊:在我們自己的銀河系中,行星的存在,很普遍嗎?

大多數已知的系外行星藉兩種觀測方法得知它們確實存在,一是偵測到主星對行星因重力拉扯帶來的效果(徑向速度觀測),或者因系外行星經過主星前,導致光度下降,並由望遠鏡精確捕捉到這一短暫時刻發生的「凌日事件」。兩種方法很大幅度都會因為比較容易偵測到質量大或者距離恆星近的行星而結果受到左右-許多行星是用這兩種觀測方法都看不到的!

最近在「自然」雜誌上發表論文的一群國際天文學者團隊,則以另一種方式進行著系外行星觀測研究,這種方式可以偵測到質量範圍更廣、質量大小不同的行星,並且,即便行星與母恆星之間的距離再長,觀測也不受限,這種方法叫做:「微重力透鏡」觀測。

該團隊的主要研究員Arnaud Cassan表示,藉由這種「微重力透鏡」觀測法,從2002到2007的6年當中,他們蒐集到許多和系外行星相關的證據,其中最顯著的發現是,在銀河系裡,行星數量遠比恆星更多、更普遍,並且他們還發現,質量大於地球的「超級地球」和「冷海王星」兩類行星, ,在銀河系裡其實數量很多,遠比巨型行星更為常見。(「超級地球」類的質量大約是地球的2~10倍;「冷海王星」類行星質量約地球10~20倍,以「冷」字代表其軌道離主要恆星甚遠,溫度極低)

在「探索透鏡異常網」(PLANET:Probing Lensing Anomalies NETwork)和光學重力透鏡實驗(OGLE:Optical Gravitational Lensing Experiment)團隊支援下,Arnaud Cassan等人的團隊進行了微重力透鏡觀測的後續追蹤。微重力透鏡這種觀測的原理是:如果行星位於主恆星的重力場中,也就是所謂的透鏡區時,經過透鏡的效應,行星會放大背景恆星所發出的光,這種光度放大的結果如果夠明顯, 望遠鏡便可以偵測得到。(PLANET團隊在這個研究中的任務是:針對一些「後續探索價值較高」的微重力透鏡事件,藉由南半球分布在不同經度上的望遠鏡所形成的網路,執行後續跟蹤,這些望遠鏡的位置從澳洲到南非到智利都有。)

微重力透鏡是一種強大工具,用來偵測系外行星時具有其他觀測技術望塵莫及之優點。但是背景星和構成透鏡效應恆星之間必須連為直線,這是微重力透鏡事件能被觀測到的第一要件,如果要在微重力透鏡事件發生時看得到行星,那就近一步必須要「連行星的軌道也能對齊形成一直線」,如此一來,觀測到的機率便更加低微。

誠如上述,儘管以微重力透鏡法來尋找行星如此不易,但在總計6年的觀測資料中,研究團隊分析後竟得到了3顆系外行星的資料,這3顆系外行星分別代表三種不同質量等級:一顆屬於「超級地球」類,一顆則質量相當於海王星,還有一顆質量相當於木星。以微重力透鏡所需的機率條件來看,這種結果簡直像是中樂透一樣的超級幸運。或者,你也可以換成另一種看法:銀河系中行星的數量本來就是這麼多,閉著眼睛簽,也會簽到中獎號碼。

天文學家於是將三個得到正面觀測結果的系外行星資料拿來和先前的7次觀測合併,並且將6年觀測總資料裡的無明顯訊號觀測結果也一併放在資料庫中分析 (研究團隊表示,以本案為例,無明顯訊號的觀測結果在統計資料中的重要性和觀測有結果的資料同等重要。)經過分析,他們的結論是:在總共6顆恆星中,其中一顆擁有質量近似木星的行星,其半數具有質量接近海王星的行星,2/3則具有質量大小屬「超級地球」範圍的行星。該調查中對行星質量和距離所設的標準是:距離母恆星7500萬公里到15億公里(以太陽系為例,這個範圍含括了從金星到土星),質量範圍:從地球5倍起跳,直到木星的10倍。

綜合各種資料後的結論是,他們強烈主張:平均起來,每個恆星所擁有的行星數量應大於一:「這是普遍定律而非少數例外。」

Daniel Kubas結論說:過去我們以為,地球在銀河系中是多麼特別的不同。不過現在看來,質量和地球相近而環繞於母恆星周圍的行星,在我們這個銀河系裡,恐怕有數十億個那麼多!

加州大學厄灣分校Virginia Trimble發表評論時表示,「在我手上有一張清單,上面列了可以用來找系外行星的方式一共17種,目前只用上了5種,未來,找到更多行星應該不太意外。」(Lauren譯)

資料來源:中研院天文網[2012.01.13]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 27 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2220 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

12
4

文字

分享

1
12
4
活躍黑洞的炙熱遺跡:費米泡泡
EASY天文地科小站_96
・2022/04/29 ・4611字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星
圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team.

你看過銀河嗎?

如果你在晴朗的夏日午夜旅行到沒有光害的山上,將會看到天上有一條淡淡的、若有似無的亮帶,好像一條薄薄的雲橫跨夜空,它正是我們所居住的星系 ── 銀河系(Milky Way)的盤面。在數位相機的加持之下,我們還能看到這薄薄的盤面上,其實布滿恆星、星雲、以及塵埃帶,複雜、深邃而美麗。

美麗的銀河。圖/陳子翔(CC BY-NC-ND 4.0)拍攝於清境。

但如果,你有一雙能夠看到「伽瑪射線」的眼睛,你將看到兩個視角高 50 度、寬 40 度的巨大橢圓形「泡泡」,矗立於銀河盤面兩側。它們名為「費米泡泡 Fermi Bubbles」,是銀河系中巨大且神祕的結構之一。

費米泡泡的起源,以及存在的意義,一直是過去十多年來,天文學家相當關注的研究主題。

費米泡泡示意圖。圖/NASA’s Goddard Space Flight Center

最近(2022 年 3 月),一篇刊登於《自然天文學》(Nature Astronomy)的研究顯示,壯闊的費米泡泡很可能源自兩百多萬年前,銀河系中心超大質量黑洞的一次能量爆發。

費米泡泡的發現

當我們一聽到「費米泡泡」這個詞,腦海中浮現的第一個問題往往是:

「費米是誰?這個泡泡跟他有什麼關係?」

在物理界,恩里科.費米(Enrico Fermi)這個名字可謂家喻戶曉。他是 20 世紀初最重要的物理學家之一,曾參與曼哈頓計畫,設計與建造世上第一個核子反應爐和原子彈;並且在量子力學、核子物理、粒子物理和統計力學都貢獻卓越。後世以他命名的物理概念、研究計畫不計其數。這之中,就包含「費米伽瑪射線太空望遠鏡 Fermi Gamma-ray Space Telescope」。

費米太空望遠鏡。圖/NASA

正如其名,費米是一座專門用於觀測伽瑪射線的太空望遠鏡,它於 2008 年發射升空,是軌道上最好的伽瑪射線太空望遠鏡之一。比起前輩們,費米擁有更大的視野、更高的靈敏度和空間解析度,可以看得更廣、更暗、更清楚。

它的主要任務,是不斷的掃視整片天空,繪製伽瑪射線的全天地圖(all sky map),研究黑洞、中子星、超新星等宇宙中最高能的天體。

費米太空望遠鏡的十週年科學成果紀念海報。圖片中橢圓形的區域,就是費米拍攝的伽瑪射線全天圖,以等面積投影法投影成二維的圖。中間的水平亮帶源自銀河盤面上的氣體,上下兩個泡泡狀結構就是費米泡泡的示意圖。圖/NASA

費米太空望遠鏡升空短短兩年後,天文學家就從觀測資料中發現,如果我們將費米的全天伽瑪射線圖中已知的星體(比如銀河系的瀰散氣體、中子星、其他星系等)全部扣除,將會看到銀河中心的上下兩側,各有一對高 50 度、寬 40 度的巨大橢圓形區域,而這是從未發現過的銀河系新結構!

天文學家於是將它命名為「費米泡泡 Fermi Bubble」,以紀念費米太空望遠鏡的重要貢獻。

相對於銀河系中的瀰散氣體,費米泡泡的亮度其實並不高。因此天文學家必須先小心翼翼的將其他伽瑪射線的來源建模並扣除,才能看到這巨大但黯淡的構造。影/NASA Video

而除了在伽瑪射線看到的費米泡泡之外,天文學家也在微波和 X 射線波段看到了相似的結構。

在微波波段,威爾金森微波各向異性探測器(WMAP)和普朗克衛星(Planck)都在費米泡泡的位置觀測到兩片橢圓形的明亮區域,天文學家稱之為「微波薄霧 microwave haze」。而在 X 射線波段,2019 年才昇空的義羅西塔(eROSITA)衛星則發現了與費米泡泡相似,但是更大的泡泡狀結構,被稱為「eROSITA 泡泡」。

另外,在紫外線波段,雖然沒辦法直接看見泡泡狀的結構,但天文學家藉由遙遠天體通過費米泡泡中的稀薄氣體時產生的吸收譜線,可以計算出費米泡泡的膨脹速率,大約是每秒數百到數千公里的等級。

綜合以上資料,天文學家認為費米泡泡應該是源自數百萬至一千萬年前,銀河系中心的一次巨大爆炸。這場爆炸大約釋放了 1048 – 1049 焦耳的龐大能量(相當於太陽終其一生釋放的能量,再乘以 10000 倍以上),並加熱了銀河系中心的氣體,使其以每秒數千公里的速度劇烈膨脹。百萬年後的今天,就成為了橫跨數萬光年巨大泡泡。

但是,這張錯綜複雜的拼圖,還缺少了最核心的一塊:

這麼龐大的能量,究竟是從何而來?

超新星爆發還是黑洞噴流?費米泡泡的身世之謎

費米泡泡剛被發現不久,天文學家就對驅動費米泡泡的核心引擎,提出了兩位候選人:

第一種觀點,認為銀河系中心在數千萬年前可能曾有大量的恆星形成,其中年輕的恆星由於壽命短暫,很快的就走完它的一生,並發生超新星爆炸,釋放出巨大的能量。

另一種觀點,則認為銀河系中心的超大質量黑洞在數百萬年前可能短時間內吃進了大量氣體,並在過程中將能量以噴流(jet)或外流(outflow)的形式釋放出來。

兩種說法聽起來都頗有可能,而且天文學家都有在其他星系看過類似的現象,那該怎麼知道哪邊才是對的呢?這時,天文學家們就兵分兩路,觀測學家們繼續對費米泡泡進行更多觀測,尋找更多可能的隱藏線索;理論學家則利用電腦模擬,嘗試在電腦中重現出觀測結果。

劇烈的超新星爆發(如左圖的 M82)與黑洞噴流(如右圖的 Centaurus A)都可能產生類似費米泡泡的結構。圖/NASA, ESA, CXC, and JPL-CaltechNASA/CXC/SAO, Rolf Olsen, JPL-Caltech, NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle

早年,兩派假說各有各的優勢,也有各自難以解釋的弱點。但隨著觀測資料的不斷累積,天文學家漸漸發現黑洞的噴流假說似乎更符合觀測結果,因此更具說服力。但即使如此,想要在電腦模擬中一次重現費米泡泡所有的觀測特徵,仍是相當困難的挑戰。

三個願望,一次滿足

然而今(2022)年三月,清大天文所楊湘怡教授利用三維磁流體力學電腦模擬(MHD Simulation),就一次重現了費米泡泡、義羅西塔泡泡與微波薄霧三個重要的觀測特徵。

他們假設銀河系中心的超大質量黑洞,在 260 萬年前曾經朝著銀河系盤面的上下兩側噴出兩道噴流。噴流帶有 1050 焦耳的強大能量,其中含有大量以接近光速運動的高能電子。當這些高能電子與低能量的光子碰撞時,電子會將能量傳遞給光子,就好像被保齡球打到的球瓶一樣,讓光子從低能量的可見光,變成高能量的伽瑪射線。這個被稱為「逆康普頓散射 Inverse Compton Scattering」的機制,讓我們能在伽瑪射線看到費米泡泡。

與此同時,這些高能電子在銀河系的磁場中運動時,會以「同步輻射 Synchrotron Radiation」的方式放出微波與無線電波,形成我們看到的微波薄霧。最後,強大的噴流在撞擊銀河系中的氣體時,會產生以每秒數千公里高速移動的震波(Shock Wave)。震波所到之處,受到壓縮而加溫的氣體就會釋放出 X 射線,成為我們看到的義羅西塔泡泡。而且氣體運動的速度,也與紫外線觀測的結果相符。

這個研究結果,將伽瑪射線、X 光、紫外線到微波的所有觀測結果,用黑洞噴流漂亮的一次重現,這無疑是我們對費米泡泡理解的一大進展。

將理論模擬的費米泡泡投影到銀河系的可見光影像上。圖中可以清楚的看到費米泡泡(Cosmic rays)、義羅西塔泡泡(Shocks)以及它們跟太陽到銀河系中心的距離(28000 光年)的大小比較。圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team

未來展望

那麼,費米泡泡的身世之迷,就此蓋棺論定了嗎?

嗯⋯⋯還沒這麼快。

無論多麼精細的模擬,終究是對真實世界的近似與簡化,理論學家永遠可以繼續考慮更多的物理機制,計算出更精細的結果。觀測天文學家也會不斷拿出更多、更好的儀器,挑戰模擬的結果。

更宏觀的看,如果銀河系中心的超大質量黑洞在兩百多萬年前真的曾經如此活躍,它釋放出的龐大的能量,是否曾對銀河系造成其他的影響?我們是否能夠從中學到更多關於銀河系的歷史,以及黑洞跟星系間複雜的共同演化機制?這些都有待天文學家的持續探索。

費米泡泡的故事,仍未完結。

銘謝

感謝論文第一作者、清大天文所楊湘怡老師對本文的指導與建議。

參考資料(學術論文)

  1. Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole | Nature Astronomy
  2. Unveiling the Origin of the Fermi Bubbles – NASA/ADS
  3. X-Ray and Gamma-Ray Observations of the Fermi Bubbles and NPS/Loop I Structures – NASA/ADS
  4. Fermi Gamma-ray Space Telescope: High-Energy Results from the First Year

延伸閱讀(報導與科普文章)

  1. 本次研究相關
  2. 費米泡泡相關
  3. 其他相關天文物理科普文章
所有討論 1
EASY天文地科小站_96
21 篇文章 ・ 766 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

6
1

文字

分享

0
6
1
謎樣的「超快自旋小行星」——什麼原因讓它自旋這麼快而不崩解?
科技大觀園_96
・2021/12/23 ・2604字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

超快自旋小行星的自旋週期小於兩小時。圖/沈佩泠繪

科學家相信,一顆小行星的內部可能是由一堆大大小小的碎片組成,這些碎片靠著彼此的重力聚集成一顆小行星,這就是所謂的「瓦礫堆模型」。瓦礫堆小行星無法自旋太快,如果自旋速度超過一個極限,整顆小行星就會遭受強大的離心力而崩解。瓦礫堆模型可以解釋為什麼小行星有一個自旋週期 2 小時的極限,因為超過這個極限,小行星就會瓦解。 

圖中的黑點是一般小行星,圖中虛線是 2 小時的自旋週期,藍色圓點是超快自旋小行星,它們的自旋週期比一般小行星快,短於 2 小時。圖/章展誥提供

「凡事都有例外」,這句話在小行星的自旋週期上也適用。2002 年,科學家發現一顆特別的小行星,它的長度大約 700 公尺,自旋週期只有半小時!這種小行星被稱為「超快自旋小行星」。這個例外讓天文學家感到困惑,是什麼原因讓它自旋這麼快而不崩解?瓦礫堆模型不適用了嗎?還有其他更多的超快自旋小行星嗎?這些問題就成了章展誥的研究主題。

如何量測小行星的自旋週期?

小行星本身不發光,只會反射太陽光。假設小行星的形狀是長橢圓形,當太陽照射到面積最大那一側,小行星看起來最亮;當太陽照射面積最小那一側,小行星看起來最暗。從小行星的亮度變化就可以知道它的自旋週期。 

從小行星的亮度變化可以推算出它的自旋週期。圖/沈佩泠繪

章展誥於 2011 年取得中央大學天文所博士學位,當時是跟隨高仲明教授研究銀河系結構。畢業後他先留在原團隊做博士後研究,後來轉跟隨葉永烜教授,與美國加州理工學院合作研究小行星的旋轉與結構模型,自此與超快自旋小行星結緣。

為了尋找其他的超快自旋小行星,章展誥利用加州理工學院帕洛馬瞬變工廠(Palomar Transient Factory)的 1.2 公尺廣視野望遠鏡,進行大量小行星自旋週期的測量。2014 年春季,他發現一顆疑似超快自旋小行星,這顆小行星的亮度相當暗,無法確定它是不是真的轉得很快,就像聽音樂時,音量很低,很難聽清楚是哪一首歌;這時如果你有一對大象般巨大的耳朵,就可以把旋律聽得清楚。音樂和光一樣都是一種訊號,章展誥需要大口徑的望遠鏡,進一步確認這顆小行星是不是真的轉得很快。 

加州理工學院帕洛馬瞬變工廠的執行地——帕洛馬天文台。圖/Wikipedia

當時他正在加州理工學院訪問,便與加州理工學院的合作者使用他們的 5 公尺口徑望遠鏡進行自旋週期確認,結果顯示它確實是一顆超快自旋小行星。這顆超快自旋小行星的發現,證實了 2002 年發現的第一顆超快自旋小行星並不孤單,超快自旋小行星是一個族群。 

提到那次經驗,章展誥心中除了喜悅還有震撼,原來美國一流名校是這樣做研究的!取得 5 公尺望遠鏡的使用時間就像是走到對街買杯奶茶一樣容易,資源如此豐富,做研究自然得心應手。

除了轉得快,與其他小行星有什麼不同?

因為超快自旋小行星的相關研究成果,在 2017 年 4 月舉行的「小行星、彗星、流星國際研討會」(Asteroids, Comets, Meteors 2017, ACM 2017)上,國際天文學會(IAU)宣布將編號 10679 的小行星命名為 Chankaochang——章展誥小行星。到 2020 年 3 月為止,已知的超快自旋小行星一共有 26 顆,其中的 23 顆是章展誥的團隊發現的。除了尋找更多超快自旋小行星,章展誥還進一步研究它們的組成和分佈,比較它們與其他小行星有什麼異同。

小行星距離我們那麼遠,天文學家要如何研究小行星的組成呢?假設建築工地裡有三種建材,分別是磚頭、水泥和大理石,如果它們放在手碰不到的距離,要如何分辨?你一定知道從顏色就可以分辨它們的材質,紅色是磚頭,灰色是水泥,白色是大理石。實際上天文學家也用類似的方法,他們用小行星的顏色來分辨它們的組成。章展誥的研究發現,這些超快自旋小行星的組成與一般的小行星並沒有不同。

小行星主要分佈在火星與木星的軌道之間,這些小行星分佈的區域稱為小行星帶。超快自旋小行星在小行星帶的分佈位置有什麼特別的地方嗎?它們比較靠近火星或木星?章展誥發現超快自旋小行星分佈的位置並不特別,與其他小行星分佈的位置很相似。

超快自旋小行星除了自旋得超快,它們的組成與分佈跟其他小行星並沒有什麼不同。至於為什麼它們可以轉得超快而不裂解,目前仍是未解之謎,期待未來章展誥能夠解開謎團,告訴我們答案。 

章展誥目前是中央大學天文所的助理研究學者。圖/章展誥提供

從星團到小行星 章展誥繞著天文轉

章展誥大學是念中央大學物理系,修過普通天文學後,覺得天文容易上手,後來進入天文所蔡文祥教授的研究室做暑期學生,開始他的天文研究之路。當時的時空背景,大多數的大學生畢業後都會選擇念碩士班,章展誥覺得天文比較親近,所以選擇報考天文所。考上中央大學天文所,繼續跟隨蔡文祥教授研究球狀星團。

碩士班畢業後,章展誥到成功大學物理系許瑞榮教授實驗室協助研究紅色精靈,紅色精靈是一種高空閃電現象,他參與的團隊很幸運地拍到紅色精靈,這是臺灣首次記錄這種特殊、罕見的現象。

離開成大後,章展誥曾經到科技業工作,後來覺得不同部門之間,對解決問題方式存在很大的差異,因此在一年後離開企業界,回到中央大學擔任高仲明教授的研究助理,工作是用大量的天文數據和影像建構虛擬天文台。處理大數據的經驗,讓他可以幫助學弟解決研究上的問題,這讓章展誥興起攻讀博士的念頭。於是在 2006 年,他進入中央大學天文所博士班就讀,研究銀河系;博士後一直到現在,則聚焦在小行星。

從球狀星團、紅色精靈、虛擬天文台、銀河系到小行星,章展誥跨足天文、太空多個研究領域,至於未來,且讓我們拭目以待!

科技大觀園_96
82 篇文章 ・ 1104 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。