人工智慧(Artificial Intelligence, AI)廣泛地指有能力自行做出合理決策以解決現實世界中的複雜問題的人造系統,其可能有能力進行邏輯推理、計畫、知識學習、表達、自然語言處理(natural language processing)、感知(perception)和物理世界互動等。其相關研究曾在 1970 年代沉寂一時,但近十年來因為機器學習技術的進步、電腦運算與儲存成本的降低,以及大量的資料累積使其技術與應用快速發展,讓人工智慧系統不僅在以往被認為是人類專利的領域擊敗人類頂尖高手,例如 AlphaGo 戰勝了圍棋棋王,在實務應用上也獲得多項重大突破,例如程式化金融交易、異常金融操作自動預警已經獲得普遍應用,自駕車與無人機也已逐步邁向實用化,展現出人工智慧技術巨大的潛能,但也因此引出不少擔憂的聲音。
人工智慧系統在以往被認為是人類專利的領域擊敗人類頂尖高手,例如 AlphaGo 戰勝了圍棋棋王。圖/By Google DeepMind, Google DeepMind AlphaGo Logo, Public Domain, wikimedia commons
白宮提出人工智慧白皮書
為了因應人工智慧快速發展可能帶來的衝擊,許多國際組織均已提出討論,如聯合國、經濟合作暨發展組織(OECD)、亞太經濟合作組織(APEC)等。各國政府與人工智慧學會也提出研究報告,其中美國白宮科學技術委員會(National Science and Technology Council, NSTC)於今(2016)年 10 月提出的白皮書,除了介紹當前人工智慧發展的概況外,也對人工智慧對社會帶來的衝擊提出回應方針,本文將以該白皮書的建議為基礎,提供臺灣政府與企業或可參考的方向。
就政策涵蓋範疇而言,泛用人工智慧(Artificial General Intelligence,或稱強人工智慧)可能有能力進行人類大部分的工作,但目前還不知道要如何建立這樣的系統,也不確定還需耗費多長時間才能研發成功,故除了需持續投入資源研究外,短期內不會對社會和政策造成太大影響。然而能解決特定問題的弱人工智慧則已經逐漸出現在日常生活中,除了熱門的自駕車外,能自動規劃行程的導航系統、購物網站的商品推薦功能都可以算是這樣的系統,而導入人工智慧的領域正在快速增長,並深入日常生活各層面,這才是政策上應該重視的部分。
-----廣告,請繼續往下閱讀-----
人工智慧的挑戰
人工智慧在公領域的應用正在起步,例如在美國匹茲堡(Pittsburg)城市內實驗將交通號誌交由人工智慧即時調控,讓交通等待時間和汽車廢氣排放改善了 21 ~ 42 %;華特瑞德國家軍事醫療中心(Walter Reed National Military Medical Center)已經導入人工智慧協助診療;芝加哥大學、南加州大學和史丹佛大學分別啟動嘗試藉人工智慧解決失業、輟學、遊民、貧窮等社會問題的研究計畫;美國政府亦提出資料導向司法(Data Driven Justice)和(shutterstock) 警察資料計畫(The Police Data Initiative),以藉人工智慧技術改善司法與警察體系的效率;在野生動物保育、國土監測方面的例子則有多國合作的海龜保育計畫「龜聯網(The Internet of Turtles)」。
因此應對人工智慧帶來的挑戰並非易事, 需要產、官、學共同投入。公部門方面,政府應加強投資於相關研究與人力的訓練。目前美國非機密性的人工智慧研究計畫由聯邦政府的網路與資訊科技研發計畫(The Networking and Information Technology Research and Development Program)統一主管,去年投注在相關科技研發的經費是 11 億美元(新臺幣 348 億元),今年預估可達 12 億。同時也應該加強開放資料,但不僅僅是將檔案掃描成 PDF 放上網站,而是要將開放資料標準化成適於機器學習的格式(Open Data for AI),以便利各部門和民間人工智慧的發展。
-----廣告,請繼續往下閱讀-----
應對人工智慧帶來的挑戰並非易事, 需要產、官、學共同投入。它也會影響社會進而造成很大的變革。圖/By David Hsieh @ flickr, CC BY 2.0
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。