Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

醫療機器人和神戶醫療產業都市——日本,百聞不如醫見(2)

miss9_96
・2017/01/03 ・2657字 ・閱讀時間約 5 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

續前篇:《醫院該不該以賺錢為目的?一窺日本醫療國際化的現況

日本在機器人領域的發展,不論在二次元或三次元裡都十分成功。筆者在這次的訪日行程裡,有幸見識到了日本的醫療機器人,在機器人協助患者行走的過程裡,雖然不像駕駛鋼彈、EVA 般的帥氣,但老婆婆用我聽不懂的日語,表達出滿足的喜悅,卻是充滿了真實和感動。

從來沒想過,「想站起來」這個念頭,對某些人可能是種恐怖的經驗。

「回家以後,我覺得更有信心了」,患者露出了微笑這麼地說著。

從床上起身、平穩的散步,這對我們而言都是再簡單不過的事情。但對於腦中風、脊髓受損等疾病導致肌肉萎縮的患者來說,這種動作可是異常艱鉅的行為!他們因為疾病導致下肢的肌力減弱而難以行動,又因為缺乏使用,再惡性循環進一步地下肢肌肉萎縮,最終導致行動不便。

在 JR 東京綜合醫院裡,引入了復健用的下肢醫療機器人:HAL®(Hybrid Assistive Limb®。HAL 醫療機器人並不像我們想像中的那種人形機器人,它的運算電腦外觀僅是一塊白色版子,繫在患者的背後,連通的四具馬達縛在患者的大、小腿處,同時會有量測皮膚電位的電極貼片黏於患者的大腿,穿戴完畢後,患者的下身像是穿上了一套白色的外骨骼機器似的。HAL 醫療機器人的原理是「動之前,大腿皮膚已經先有感覺了!」,當患者的大腦傳遞「移動大腿」的訊號時,即使患者沒有意識到「移動」的念頭,其神經訊號已經從大腦透過脊髓,傳遞到大腿的肌肉裡,而大腿皮膚表面也呈現了電位的變化。而就在此刻,電極貼片將電位變化傳給患者背後的運算電腦,由電腦協調四具馬達的出力,以協助患者運動!

-----廣告,請繼續往下閱讀-----
HAL®(Hybrid Assistive Limb®)
HAL®(Hybrid Assistive Limb®)

在 JR 東京綜合醫院裡,我看到了一名約莫 60 歲的患者穿戴後 HAL 醫療機器人後,從舉步艱難,慢慢地變成了平穩行進(仍需復健師視情況調整電腦參數)。而患者也透過翻譯告訴我們,使用 HAL 醫療機器人後,原本對於「起身、走路」感到恐懼的心理,漸漸地有勇氣和力量去克服了,這對於患者來說,是極大的信心鼓舞!

JR 東京綜合醫院的田中清和醫師告訴我們,目前 HAL 的租金約 25 萬日幣/月,而復健的收費約 1 萬日幣/小時。雖然學理上的研究未到完備的程度,但由於有許多的需求,目前仍是供不應求的狀態。

神戶醫療產業都市

1995 年 1 月 17 日清晨,芮氏 7.3 的地震襲擊了日本關西。一夕之間,六千多名神戶市民,離世了。

1995 年的神戶大地震,摧毀了神戶市,許多建設和公共設施都付之一炬。儘管傷痛,神戶市開始對於都市的未來討論和深思,究竟,神戶的未來要變成什麼樣的都市呢?數年的討論期裡,各種想像都被提出,也有人認為神戶可規劃成有著眾多娛樂產業的休閒都市。但最終,市政府選了一條艱難的道路,他們要將神戶打造成未來的醫療產業都市

-----廣告,請繼續往下閱讀-----

在 1998 年左右,日本的經濟仍屬於強勁成長的時代。日本理化學研究所(日本重大國家研究機構,近似於台灣的中央研究院)位於神戶市的分院起了重大的磁吸作用,有專精於 iPS 萬能再生細胞研究的「多細胞系統形成研究中心(RIKEN Center for Developmental Biology)」、以及擁有超級電腦——「」的「計算科學研究機構(RIKEN Advanced Institute for Computational Science)」等機構,再加上神戶市立中央市民醫院等臨床單位,這些重要的研究單位,吸引了許多生醫廠商進駐到神戶空港外的人工島上,形成醫療產業聚落。從 1998 年的 0 間廠商開始,到了 2015 年已經超過 300 間醫療廠商進駐,目前超過 7000 名員工,估計帶來的經濟效果約 1600 億日圓。

神戶的港灣人工島。圖/wiki
神戶的港灣人工島。圖/wiki

而神戶市政府在推動醫療產業都市時,了解到政府單位並沒有能力分析、規劃醫療產業,因此神戶市政府協助成立了獨立的財團法人——「先端醫療振興財團」。雖然從中文的角度裡看到財團二字,但該法人的目的是支援神戶醫療產業都市的發展、連結產官學的力量以提高醫療產業、建構適於次世代醫療的發展環境等。先端醫療振興財團目前的理事長是開創癌症免疫療法的本庶佑(ほんじょたすく)教授,神戶市每年撥出 40 億日幣推動醫療產業都市,其中的 15 億日幣交由先端醫療振興財團全力推動醫療產業化。

神戶醫療產業都市推動醫療用機器人、長照用機器人的產業化,在基礎研究上也利用超級電腦——「」的能力,縮短新藥開發等研究的時間與金錢成本。同時也有次世代抗體藥物和 iPS 醫療產品的研究正在進行,同時由於受到國際的重視,世界衛生組織(World Health Organization / WHO)也和先端醫療振興財團、神戶大學等在 2016 年的 9 月開始合作進行失智症的臨床研究,希望能對失智症做到早期發現、早期診斷、早期介入的「先制醫療(pre-emptive medicine)」目的!

具有 864 個機櫃的超級電腦「京」。圖/wiki
具有 864 個機櫃的超級電腦「京」。圖/wiki

我個人認為……

看了日本對於醫療國際、產業化、HAL 醫療機器人,以及神戶醫療產業都市後,我對於日本政府在處理「跨領域」和「未知性高」的事物態度上,有了極大的印象。日本政府對於難以管理的「醫療國際、產業化」任務,毅然的設立了獨立的法人來推動這項任務,也藉此避免了政府內各部會權責重疊、資源浪費的問題。儘管目前成效尚不及亞洲鄰國,但他們「以當地人需求為本、以當地醫療自主為目的」的俄羅斯海參崴醫療影像中心的範例,令人印象深刻。檯面上因為北方四島而交惡的兩國,但民間的互動卻如此的活絡。

-----廣告,請繼續往下閱讀-----

而在 JR 東京綜合醫院裡,能夠親眼看到患者的微笑,讓我覺得 HAL 醫療機器人真的是很棒的東西!而這種能夠改善患者生活的智慧醫療工具,也許就是台灣打開鄰11ㄅ國醫療市場的方式之一。而神戶醫療產業都市裡,我看到了日本政府極為大膽的一面。神戶市每年超過 5 億台幣的費用交給了先端醫療振興財團分配運用,神戶市政府對專家團隊的信任,以及規劃後,不論世界和政局如何改變,依舊對於未來超過十年以上的堅持、毅力(神戶於 1998 年設定未來將朝向醫療產業都市,至今堅持了 18 年),都讓我感到非常的有意思!回頭看看台灣,我覺得兩國在醫療上都各有所長,也許未來有一天,兩國能夠有機會一起交流,甚至一起合作開展未來的醫療啊!

-----廣告,請繼續往下閱讀-----
文章難易度
miss9_96
170 篇文章 ・ 1087 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。