0

3
1

文字

分享

0
3
1

「爸,媽,我想要念地球科學系。」但地科系到底在做什麼?

陳柏成 (Po Cheng Chen)
・2016/07/19 ・3535字 ・閱讀時間約 7 分鐘 ・SR值 525 ・七年級

away-1020088_1280
升大學這件事,常常是高中生必經的迷惘。圖片來自:pixabay

作者/P.C

今天,我想要和大家分享自己求學生涯的一點小心得,也希望透過這篇文章,讓更多對於升大學選填志願仍舊迷惘的高中生們有一些些幫助。

身為一個過來人,我知道當高中生在面對升大學這件事時,苦惱的人還真是不少;成績好的人,似乎能選填的科系無非就是那幾個,又或是對於某些科系很感興趣,卻又不知骨子裡是賣什麼葫蘆,更別說還要考慮在長輩壓力下,慎重思考未來的工作出路了。

那麼地球科學系呢?這到底是一個什麼樣的科系?

那年還是高中生的我,僅憑著高中堂數不多的地科課,以及一廂情願想拯救地球的使命感,便毅然決然在學測放榜後以推甄的方式,來到了國立成功大學地球科學系(看到科系名稱有「地球」兩個字,便一股腦地覺得和拯救地球一定相關)。「拯救地球」這想法,還真不是開玩笑!當年因為氣候變遷的議題愈來愈受各方重視,小小年紀的我滿腔熱血,覺得應該要為這個環境付出什麼,於是就這樣一腳踏入了地球科學系。

-----廣告,請繼續往下閱讀-----

然而,不諱言的說,地球科學是一個冷門科系。還記得高中那年選填志願時,生物老師曾說,別忘了想想以後出路,想法變了你就會後悔了。而在高中升大學的那年暑假,去補習班應徵打工,也曾被裏面老師調侃地科系到底能有什麼用。碰到類似這些事情,心情固然沮喪,但我運氣也很好,至少爸媽是支持我的,只因為我說喜歡自然,想多關心地球環境。而在往後含研究所的六年地球科學求學生涯,終於有了一些心得,可以回饋給對地球科學有興趣,卻又因種種緣由仍舊迷惘的高中生們。

首先,地球科學這門學問一點都不小,相反的,它非常的大。舉凡大氣、地質、海洋、太空甚至各自之間的影響等等都是一門學問。地震發生了,和地球科學有關;聖嬰現象來了,和地球科學有關;磅礡的山巒層疊與美麗的礦物們和地球科學有關;甚至那些我們人類乃至整個生命演化的歷史,無一處不和地球科學息息相關,如影隨形。

念地球科學相關的人,首先觀察力會慢慢變得特別的敏銳。

記得我們大學時期,有別於其他科系,我們的特色之一便是常常到處遊山玩水!(真的是有山有水不誇張)而真實原因是在於,地球科學很重視觀察這件事情。那些書本上教的學問,遠不如你一次到野外好好認識來得痛快。野外課通常會去哪些地方呢?其實只要是大自然的環境,都有可能!例如我們會去某些根本渺無人跡的地方攀岩,或是某座水庫上做水質調查,也有可能正在溯溪,甚至跑到離島或是國外(如美國大峽谷)。只要你走的是地球科學相關的科系,這類的神奇經驗只會多不會少(出海、雷達觀測等等也有),有時自己回過神來,猛然發現自己身處在一個陌生的蠻荒之地上,都有種我是叢林冒險王藤岡弘的錯覺。

通常這帶來的附加價值是,別人系上是快畢業才來一次畢業旅行,我們則是三不五時就像畢業旅行,一次野外一天兩天一個禮拜甚至更久都有,那些在大自然環境裡與同學們產生的革命情感,是一輩子都忘不了的珍貴回憶。而透過這些直接面對大自然的過程,我們也漸漸從一些微小的事物,開始懂得如何推論背後的脈絡與始末。

-----廣告,請繼續往下閱讀-----

後來我才了解,這其實是一門非常重要的訓練過程;誠如正身為高中生的你,可能也有些感觸,現在的台灣教育太習於將滿滿的知識一次塞給學生,而其實知識,尤其是自然領域的知識,往往多數都是建立在最基礎的「觀察」而來。有了觀察,心中有了想法,於是有了假設,開始想要去驗證。如此反覆,才慢慢構成了現今的知識體系。每一步走來,都是多麼的不容易。

面對未來,我們都會徬徨,因為沒有人能夠預知下一步會發生什麼事情。如果你覺得你會喜歡地球科學,那麼卻仍猶豫不決是否就讀相關科系的原因會在哪呢?我想根據過去的經驗,大致可以先初分以下幾種可能:

25303398383_03c71d8abc_z
當年出野外一景,大家沿著河床觀賞大自然的奧妙。圖片來自:原作者

1. 未來的出路好嗎?有錢途嗎?

這真是一個值得引戰且重量級的問題。依我目前初略的認知,首先要取決於你的眼界有多高,企圖心有多強,心中的理想有多遠。其實我想說的是,在現在這個全球化時代,「出路」這件事,早已不再侷限台灣小小本島,更何況地球科學這門學問;但提及至此,你必須先了解自己對於地球科學的喜歡是哪一個層次?

舉例來說,有的人喜歡地球科學,是因為他喜歡接觸大自然,那麼或許他可以朝野外工作邁進;有的人則是喜歡將地球科學分享給更多人了解,那麼當教師或是其他教育推廣者都是不錯選擇;又或是其實你想研究更深層次的背後理論,那麼遁入學術巨塔絕對是值得你考慮的一個方向。但話先說在前面,不同的工作類型都有他的困難處與進入門檻,這裡就先不細說,只是先有一個初步的輪廓。

-----廣告,請繼續往下閱讀-----

以上是約略說明「出路」的部份,那麼錢途呢?

從這裡開始,引戰指數開始飆升。首先這要看你從什麼角度切入。如果你想要賺大錢,自然比對的對象就會是台灣一些比較熱門的行業,並依他們平均薪資作為參考。但不瞞你說,如果你的心中真的著重於「賺大錢」,那麼確實在目前情況下,念地球科學方面的科系在台灣相對能有的平均薪資比不上那些熱門行業。

可是這裡有3點值得注意的地方:

第一,如果你的眼界不只在台灣,那麼自然就另當別論。地球科學在別的國家,重視的程度與給予薪資依據國家政策與本身擁有資源,當然也就有所不同。舉例來說,澳洲就是一個相對適合依靠海洋潮汐或波浪提供能源的國家,再加上相關能源政策,需要擁有海洋方面背景的人自然會更多,薪資也因需求而相對優渥;又或是因應氣候變遷,國外早已有多個相關顧問公司,幫助企業提供解決方案,這些都是地球科學領域者可以努力的方向。

-----廣告,請繼續往下閱讀-----

第二,既然想要「賺大錢」,那麼其實大多數的行業都可能無法滿足你的要求,如果你同時又很有想法與野心,或許在你人生規劃裡再放上一個創業;在台灣,既然地球科學相對冷門,意味著創業所面臨的競爭數量低(但不代表市場大),至於該如何塑造,就還是得依靠自己的敏略度與積累的經驗甚至資金才行。

第三則是趨勢。縱使現在地球科學相對冷門,但未來呢?隨著氣候變遷與能源議題愈來愈受重視,將會需要更多地球科學領域人才。舉例來說,面對氣候變遷,目前主要手段一個在於減緩(mitigation),一個在於調適(adaptation)。這兩者的不同在於,前者直接透過某些原既有措施的降低或停止而達到效果(例如要求排碳大戶將排碳量降低等等),而後者則是著重於面對未來氣候演變,我們該如何規劃與因應。後者就非常需要地球科學領域的人才,因為唯有我們投入研究背後機制,才能有更多相對應的對策。

所以你問未來的出路好嗎?有錢途嗎?依目前即將升大學的你來說,極有機會趕上這波趨勢,但這也取決於你的眼界與理想有多遠,危機就是轉機,能不能掌握轉機就還是得靠你自己了。

2. 進去後都在學一些什麼?會不會其實我根本沒興趣?

解決的方法就是多問學長姐,或是很多網路資源可以搜尋。這裡提供一個最簡單也最容易深入了解的方法,那就是參加「系展」。以成功大學地球科學系來說,每年都會固定舉辦一次系展,內容自然著重於地球科學的不同領域介紹。而透過參與系展,你除了能更認識地球科學本身外,對於該校該科系的風氣與學習方向,也可以問現場的很多大哥哥大姊姊解說員們(甚至教授有時會在現場),他們一定都會很樂意為你解惑的。

-----廣告,請繼續往下閱讀-----

3. 出野外會不會很危險?一定要出野外嗎?

對於地球科學相關領域來說,野外其實是一門必修課,也就是在大學 4 年期間,你一定有機會參與野外的!至於會不會很危險,在大多數的情況下,老師和助教絕對比你還擔心這個問題,所以至少在大學時期不用想太多。不過如果之後想再深入就讀研究所的話,依據所選領域的不同,野外有時確實也會有其危險的地方。研究所訓練的是如何解決問題,而如果到博士階段更是要懂得尋找問題。於是野外地點可能往往變成是一些渺無人跡但卻又只有你需要去的地方(因為其他人研究方向與你不同),危險性自然也就更高了。但是透過這樣的訓練,你將會懂得如何在野外有更安全的生存方式,而多找伙伴一同參與也是一個好的選擇(同時也比較不無聊);其實只要你是一個具有冒險熱忱的人來說,這樣的生活反而還是一種享受呢!

所以啦~如果你已經對地球科學產生了興趣,卻仍有些迷惘,希望透過這篇文章可以讓你有更進一步的了解;當然囉,如果你仍有相關的問題想詢問,也非常歡迎你來信至 geostorycontactus@gmail.com,又或者到我們網站投稿自己對地球科學的一些想法,便有機會在平台上與大家一同分享了!

本文轉載自 GEOSTORY聽聽地球怎麼說

文章難易度
陳柏成 (Po Cheng Chen)
12 篇文章 ・ 5 位粉絲
熱愛自然科學,曾擔任PanSci實習編輯,現於美國夏威夷大學就讀博士班。如有任何問題,歡迎來信:consciencecpc@gmail.com

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
1

文字

分享

0
0
1
備審卡關、筆記好難整理?國高中生必學,一個 prompt 讓 AI 幫你做科系探索!
泛科學院_96
・2024/04/13 ・450字 ・閱讀時間少於 1 分鐘

這集來分享學生必學的 AI 工具與操作!

本來是想做寫作業的 AI prompt,但肯定會被罵翻……因此這次聚焦在如何用 AI 協助整理筆記、職涯探索、製作歷程檔案等事情上。

廢話不多說,讓我們開始吧 !

最後,附上本支影片的學習懶人包:

如果你有更多想要學習的操作技巧,歡迎在下面留言跟我們敲碗~有其他想要看的 AI 測試或相關問題,也可以留言分享喔!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 51 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

3
2

文字

分享

0
3
2
大家都知道「地球在動」,但你怎麼知道?
賴昭正_96
・2023/06/19 ・6380字 ・閱讀時間約 13 分鐘

  • 賴昭正/前清大化學系教授、系主任、所長;合創科學月刊

在第一本書中,我將描述球體的所有位置,以及我歸因於地球的運動,因此本書可以說是包含宇宙的一般結構。 在剩餘的書中,我將其它恆星和所有球體之運動與地球的移動性聯繫起來,這樣就可以確定如果歸因於地球的運動,它們的運動和外觀可以保存到什麼程度。

-哥白尼(Nicolaus Copernicus,1473 – 1543)

隨便找個國中生問:「地球是宇宙的中心嗎?」相信他們都會回答說:「不是。地球除了自轉外,還在繞著太陽公轉。」可是如果你緊接著問:「你怎麼知道它在動呢?」相信大部分的國中生(甚至大學生)可能就不知道怎麼回答了:「嗯⋯這?⋯那?⋯??」

這事實上是一個非常難以回答的問題,因此雖然早在公元前 250 年希臘天文數學家阿里斯塔克斯(Aristarchus ,公元前 310 – 230)就曾經提出地球繞日說,但這一理論不但不為大眾所接受,還給他帶來了一生的嘲笑。

而希臘數學家蛇床子(Eudoxus of Cnidus,公元前 410 – 347)於公元前 380 年左右提出以不動之地球為中心的宇宙模型則幾乎統領了以後 2000 年的宇宙觀!

你該如何證明地球自轉?圖/envatoelements

1543 年,波蘭哥白尼基於在數學上處理起來比較簡潔,在德國紐倫堡出版六本題為《De Revolutionibus Orbium Coelestium》(論天體運轉)之書,提出日心系統,謂地球不在宇宙中心之特別位置,而是與其它行星一起在圍繞太陽的圓形軌道上運動。

-----廣告,請繼續往下閱讀-----

此後經伽利略(Galileo Galilei,1564 – 1642)、開普勒(Johannes Kepler 1571 – 1630)、及牛頓(Isaac Newton,1643 – 1727)等天文數學家的發展,地球繞日說不但慢慢地為天文學家所接受,也漸漸成為主流的宇宙觀。但這些發展似乎都是紙上談兵而已,並不是真正的觀察實驗結果。

有什麼方法可以證明地球是在動的呢?

加速度運動

相信大部分的讀者都有下面的經驗,那就是坐在平穩(等速)直線行駛的車廂內不會覺得火車在動;如果那個時候旁邊也有一輛類似的火車經過,我們根本無法知道到底是誰在動。

事實上不止不會覺得火車在動,伽利略早在四百多年前就告訴我們:不管在車廂裡做任何實驗都沒有辦法偵測出火車在動的(相對論)。但是如果火車突然加速,我們便可立即警覺到火車在動。

如果坐在等速前進的火車中你不會感受到火車在動。圖/envatoelements

圓周運動因為運動方向一直在改變,所以不是直線運動,而是一種加速度運動。坐遊樂場所裡的旋轉木馬之所以有被往外甩的感覺便是因為加速度造成的。地球的自轉及公轉都是圓周運動,我們不是也應該有被往外甩的感覺嗎?

-----廣告,請繼續往下閱讀-----

高中物理告訴我們圓周運動的加速度 a 為

上式中的 v 為圓周上物體的運動速度,r 為圓半徑。地球自轉運動最厲害的地方在赤道上, 將其值及地球半徑代入上式,得地球自轉在赤道上的加速度為 0.033 m/s2,只有重力加速度 9.8 m/s2 的 300 分之 1 而已。

這加速度需要 14 分鐘才能將車子或火車從零加速到時速 100 公里(「高性能」車子大約只需十秒鐘),我們能感覺出來嗎?此一往外甩的慣性力【常被稱為「離心力」(centrifugal force)與重力方向相反,因此如果有非常精確的體重機,原則上可以讓我們測出赤道上重量減輕,證明地球在自轉的。

將地球公轉的平均速度及半徑代入上式,則得地球公轉的加速度為 0.006 m/s2,與重力加速度一比更是微乎其微。所以想靠地球自轉及公轉的加速度來偵測地球在動顯然是相當困難的。

-----廣告,請繼續往下閱讀-----

恆星視差

坐火車的人都有這一經驗:窗外比較近的東西從眼前飛過,越遠的東西就越不動。所以如果火車是從左往右,當你比較圖一中遠近不同之 A、B 兩點的相對位置時,你將發現中非常遠的 A 點不動;但是比較近的 B 點則會從 A 之右邊 B’ 移到 A 之左邊 B”。事實上這視差與火車動不動無關,而是因 A、B、及觀察者三者的相對位置而異。

圖/作者提供

同樣的道理,因為地球繞太陽公轉,我們可以在兩個不同的軌跡點(例如夏至及冬至兩點)看到這「恆星視差」(stellar parallax)現象(圖一)。1838 年,德國天文學家貝塞爾(Friedrich Bessel)成功測量了天鵝座(Cygni)61 號恆星的視差,證明地球並不是一年四季都在同一個位置。當然,不在同一個位置表示「動過」,所以間接地證明了地球在動。

星光像差

站在大雨筆直而下的大街上時,你只需將雨傘直接舉過頭頂即可保持乾爽。可是當你開始走路時,你便必須將雨傘朝行走方向傾斜以免被淋濕,走得越快,傾斜度就需要越大。如果不知道雨是垂直而下(對地球而言),你將誤以為雨是從前方傾斜而至(對你而言)。

(左)在雨中靜止不動;(右)在雨中往右跑。 圖/作者提供

同樣的道理。當地球繞太陽公轉運動時,我們也可以檢測到與運動速度有關之入射星光的「傾斜」(見圖二)——在天文學上稱為「星光像差」(stellar aberration)。因為地球一年四季的運動速度不同,所以「像差」也將因之而異。。

-----廣告,請繼續往下閱讀-----

1725 年起,英國天文學家布拉德利(James Bradley)及同事一直在努力想測量天龍座伽馬(Gamma Draconis)的視差;他們雖然沒有找到預期的現象,但卻發現天龍座伽馬在三天內往「錯誤」的方向移動了驚人的弧度。在同事去世後不久,布拉德利終於意識到這無法用視差來解釋的現象是:因地球在恆星方向運動速率不同之「光像差」(light aberration)和光速有限所引起的。

布拉德利於 1729 年元月向英國皇家學會宣布此一首次確鑿證明地球在「動」的發現,提供了阿里斯塔克斯、哥白尼、和開普勒理論正確性的觀察證據。巴黎天文台台長德蘭布爾(Jean Delambre)認為這是「(18 世紀)最輝煌、最有用的發現」;在其 1821 年所出版之《18 世紀天文學史》中謂:「正是由於布拉德利的這⋯發現,我們才有了現代天文學的準確性。」 

圖/作者提供

傅科

最能夠直接證明地球每日自轉的實驗是「傅科擺」(Foucault pendulum)。法國人傅科(Léon Foucault,1819 – 1868) 小時候對學校功課沒興趣,喜歡自己在家建造玩具和機器。1839 年進入巴黎醫學院,看到血就昏暈,因此只好放棄從醫。但指導教授多內(Alfred Donné)慧眼識英雄,把他留聘為助手從事研究,兩人於 1845 年合作出版了《顯微鏡課程》(A Course of Microscopy)。

傅科與多內的合作開啟他作為科學傳播者的職業生涯:多內退休後,傅科成為具有影響力之《辯論雜誌》(Journal de Débats ) 的科學編輯,接替了多內向公眾報導最新科學領域發展的角色。透過每週生動地報導巴黎科學院會議,傅科很快引起了公眾和科學精英的注意,包括了法國具有影響力的數學家和政治家阿拉戈(François Arago)。

-----廣告,請繼續往下閱讀-----
圖/作者提供

1850 年傅科突發出奇想:如果能夠設計出一個鐘擺,其頂點雖可以隨地球上的支架移動,但能完全自由轉動(也就是與支架間的旋轉摩擦力為零);那麼鐘擺一旦開始擺動,因為不會跟著地球旋轉,地球將在其下方旋轉——但對地球上觀察者來說,將是擺動平面在旋轉。1851 年元月,傅科在家中地下室成功地建造了這樣一個鐘擺後,阿拉戈要求他在巴黎天文台也裝置一個。

不久後,巴黎的每一位科學家都收到了前往巴黎天文台參觀鐘擺的邀請。在天文台進行實驗證明地球確實在旋轉的 1851 年 2 月 3 日,阿拉戈也向科學院宣讀了現在稱為「傅科擺」的論文。幾週後,傅科在巴黎萬神殿(Panthéon)的圓頂上用一根 67 米長的金屬絲懸掛了一個重 28 公斤的黃銅塗層鉛擺,又復製了一個「傅科擺」(圖三,註 1)。

傅科擺的物理

台灣早期科教館曾經展示過「傅科擺」,現在已經找不到了。但相信許多讀者都曾在世界其它各地(如北京或廣州)看過。如果在北極的正上方掛一個「傅科擺」,我們很容易直覺地了解地球將在其下方以 24 小時的週期旋轉。將鐘擺掛在赤道上某一點的正上方,則它只受到地球自轉的前進推力(見後),筆者還可以了解(看出)地球在其下方不會旋轉;但筆者很難想像掛在台北的上空時,地球如何在其下方旋轉?

在忘寢廢食之苦思後,筆者終於領悟到伽利略 1630 年用來錯誤地「證明」地球在動的例子,事實上正是解釋 1851 年「傅科擺」的最佳工具。一個往東方前進之逆時針方向旋轉輪子,在任何一瞬間,對「一位靜止不動的旁觀者 A」來說(圖四左),最上方那一點的速度應該比中間點慢,最下方那一點則比中間點快(註 2)。

-----廣告,請繼續往下閱讀-----

但是對於與輪子同時前進、但不旋轉之中間觀察者 B 來說(圖四中),兩個向量相減的結果,上方那一點的速度將是往左,下方那一點的速度則是往右,這正是為什麼他只看到輪子在逆時針方向旋轉的原因。對一位隨輪子旋轉及前進之中間觀察者 C 來說,則輪子不轉不動:如果觀察者 B 不是一個數學點的話,將依順時針方向旋轉(圖四右,註 3)!

圖/作者提供

地球自轉造成台北 101 大樓往右的旋轉推力;大樓南方因為旋轉圈子比正上方的中間點大,速度因之比中間點快;反之,大樓北方則因為旋轉圈子較小,速度應比中間點慢(圖五白色箭頭)。所以對旁觀者 A 來說, 101 大樓中間點及南、北方兩點之表面速度如圖四左所示;圖四中則為觀察者 B 所看到的:整個台北(地球表面)在圍他逆時針方向旋轉。

住在地球上的我們當然是隨著台北地球表面旋轉的觀察者 C:整個台北不轉不動,B 在順時針方向旋轉;如果 B 是「傅科擺」(記得掛它的條件嗎?),則是鐘擺平面在順時針方向旋轉!同樣的原理我們可以推論到:「傅科擺面」在北極會順時針方向旋轉(週期 24 小時);在赤道上不旋轉(因南、北方兩點之速度一樣);越北的「傅科擺」週期越短(因南、北方兩點之速度差別越大,註 5)。

結論

在「加速度運動」一節裡,我們談到了地球的自轉及公轉所產生的效應在日常物體的運動中,因與其它力相比太小了,很難偵測到。但在長距離和長時間的大規模運動中(如大氣中之空氣或海洋中之水),它還是可能脫穎而出變得很明顯的,例如海邊高(低)潮之所以每天出現兩次,正是因為地球自轉的關係(註 2)。

-----廣告,請繼續往下閱讀-----

又如時常發生在台灣之熱帶氣旋(颶風)的形成,事實上也正是因地球自轉之故:在北半球產生逆時針的氣旋(註四),在南半球將產生順時針的氣旋。但赤道附近因旋轉太小,不會有颱風的。

除傅科擺外,要證明地球在動的原理似乎都很容易理解,但不容易執行;反之,傅科擺似乎容易製作,卻不容易理解。怪不得雖然早有人懷疑地球在動,但卻必須等了兩千年才能觀測到。即使在科技突飛猛進的今天,要證明地球在動似乎也不是幾個字就可以解釋清楚的,怪不得國中生(甚至大學生)只能支吾以對了。

*************** 猜猜看:旁觀者 A 是誰 ***************

我們在圖四及文中提到了「一位靜止不動的旁觀者 A」;不知讀者是否曾在心中質問「他是誰呢?」牛頓也曾想過這個問題:這位靜止不動的旁觀者在他心中是「絕對空間」——一個永遠存在那裡靜止不動的宇宙背景。

但是與他同時代的德國哲學家、科學家和數學家萊布尼茲(Gottfried Leibniz,1646 -1716)卻認為根本沒有這種空間,空間只是一種幻覺。對愛因斯坦發展廣義相對論有巨大啟發的馬赫(Ernst Mach,1838 -1916,奧地利物理學家兼哲學家)是一位十足的實證派人物,他認為任何可觀察到的現象都是相對於遙遠的恆星(或宇宙中所有的物體),因此從這裡得出地球在旋轉的結論是不合理的:我們怎麼知道不是恆星在旋轉呢?當太空沒有任何物體時,地球是否還在自轉呢?

德國哲學家、科學家兼數學家,萊布尼茲(Gottfried Leibniz,1646 -1716) 圖/wikimedia
奧地利物理學家與哲學家,馬赫(Ernst Mach,1838 -1916) 圖/wikimedia

他認為如果沒有其它物體比較,地球與靜止無異,旋轉沒有任何意義。因此對馬赫來說,加速不是絕對的、也是相對的!所以地球的自旋是相對於這「一位靜止不動的旁觀者」(遙遠的恆星)而言的,是它造成的!讀者相信馬赫的觀點嗎?或者根本沒有這個人(萊布尼茲幻覺空間)?或者還是比較相信牛頓的絕對空間? ⋯⋯甚或是因為我去看它,所以地球才在旋轉的近代量子物理觀?對這些爭論有興趣的讀者請參考《我愛科學》。

註解

  1. 原來之擺錘在 2010 年 4 月 6 日因電纜斷裂損壞無法修復,現在的鉛擺為複製品。
  2. 伽利略錯誤地認為這一快一慢的(地球)速度變化正是造成潮汐現象的原因;依照他這一個理論,海邊高(低)潮每天只出現一次,但事實上我們知道因為地球自轉的關係,高(低)潮每天出現兩次。牛頓正確地解釋了潮汐現象主要是因月球引力造成的。
  3. 如果 B 或 C 向前丟出去一顆石子,則 B 將看到該石子直線前進;但是因為「科氏力」(Coriolis force )的關係,C 將看到該顆石子沿右彎的曲線前進;詳見『「 離心力 」真的存在嗎?』。所以「科氏力」可用來解釋「傅科擺」在地球表面的軌跡(與地點緯度、從什麼地方啟動鐘擺、及鐘擺長度有關;加上鍾擺頂點雖然不隨地面旋轉,但並不是「絕對」靜止不動,而是隨地球自轉及公轉,因此細節上是很複雜的,以至於在網路上可以看到許多不同或不完全正確的軌跡圖)。
  4. 因為註 3 之「科氏力」。在網絡上可以看到不少用同樣的原理來解釋水槽、浴缸、或抽水馬桶排水時,在北半球的水流將是逆時針方向旋轉。筆者家中兩個抽水馬桶排水時都是逆時針旋轉,不知讀者府上是否也是一樣?但筆者覺得像加速度一樣,我們不可能偵測到地球自轉對這麼小之水體影響的,有興趣的讀者可參考英文《科學美國人》 2001 年的『有人終於以解決了「水流下排水管的方向是否會因您所在的半球而異」這個爭論?如果有,為什麼?』。
  5. 我們可以利用微積分來計算圖四中之旋轉速度。如果地球的半徑為 R,該中心點是地球表面緯度 Φ 上的一點,則其地球旋轉半徑應該是 Rcos(Φ),將它乘以地球自轉速率 ė,即得在該點的直線速度。其上下兩點的直線速度微差 dėRcos(Φ) 造成對該點的旋轉(圖四中),將它除以旋轉微半徑 RdΦ 則得附近表面對該點的旋轉速率: 。鐘擺的週期與之成反比;台北的緯度為 25°N,故「傅科擺」的週期為 56.8小時[=(24小時)/sin (25°)]

參考資料

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。