7

0
0

文字

分享

7
0
0

手機訊號造成蜜蜂大量死亡?媒體這麼說,咱們就這麼信?

鄭國威 Portnoy_96
・2011/05/16 ・2620字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

蜜蜂,圖片來自Wikipedia

如果你在Google裡頭搜尋「手機 蜜蜂」,稍微研究一下,就會發現從2007年開始,每一年都會有一波「手機是蜜蜂殺手」、「蜜蜂消失的原因:手機!」、「研究:手機訊號造成蜜蜂大量死亡」之類的報導充斥在媒體報導中。相信的人,少部份開始反思手機這個方便的通訊科技對自然造成的傷害,開始不安,想著是否該回歸原始;絕大部分若無其事地繼續行動生活,那也是因為覺得無能為力或是於事無補。然而這些在媒體跟網路上不斷流竄的恐懼-「我們用的手機殺死了蜜蜂」- 到底是怎麼來的?

美國蜂農哈肯柏格是第一個將工蜂莫名失蹤的問題報告給美國昆蟲學家的人,當時是2006年底,這個嚴重的現象被稱為「蜂群衰竭失調」(Colony Collapse Disorder),剛好我手邊有一本《科學人》雜誌 2009年5月號,封面故事就是《蜜蜂消失了?》,文章把問題解釋得非常清楚,並列出了四個可能的「嫌疑犯」,分別是化學藥劑(農藥、除草劑、殺蟎劑等)、蜂蟹蟎(會吸取蜂蛹的血液)、寄生菌(蜜蜂微粒子,是單細胞真菌)、還有以色列急性麻痹病毒(IAPV,多數發生CCD的蜂群感染此病毒)。然而蜂群消失並不是受到單因影響,歐美科學家逐漸形成共識,認為這是多種因素互相作用下才產生的結果,其中也包括「營養不良」- 因為人類大規模栽植單一作物、喜歡維持環境的整潔,然而整片綠草坪對蜜蜂來說就像沙漠一樣,沒辦法提供多元的食物來源。

儘管這些大咖嫌疑犯已經夠讓人頭痛了,而且我們該著手改善的方向也很明確,還是有人覺得這樣謎底就被解開太無趣、太平淡,決定再多找幾個兇手來墊背;全球暖化、基改農作…還有電磁波跟手機訊號,都被牽扯進來,而電磁波跟手機訊號因為有「研究結果支持」,所以最受媒體喜愛…不論這些研究是否合理。

就以最近這波報導來說好了。這篇又引起媒體不斷轉述的「研究」(全文在此PDF)作者是瑞士人丹尼爾法佛(Daniel Favre),他是瑞士洛桑國家理工學院的科學家,這頭銜大概是媒體唯一沒錯報的,讓這則研究跟報導顯得頗具權威性。先讓我們看看媒體是怎麼說的:

-----廣告,請繼續往下閱讀-----

自由時報蜜蜂大量亡 手機訊號是元兇

瑞士科學家研究證實,全球蜜蜂數量驟降的原因是手機發出的訊號所致,因為手機發射的訊號會對蜜蜂造成干擾,令牠們亂飛甚至遠離蜂巢,最後死亡。研究人員表示,他們在兩個蜂箱中間放置一支手機,當手機發射訊號時,蜜蜂振翅的頻率從450赫茲增至4000多赫茲,增加了8倍,而蜜蜂振翅的頻率增高後,會開始亂飛,進而死亡。

聯合報研究:手機訊號波 造成蜜蜂大量死亡

多年來,世界各地的蜜蜂面臨神秘死亡,原因至今不明。最近瑞士一項研究指出,造成大量蜜蜂死亡的原因,是手機發射的訊號。 前瑞士洛桑國家理工學院的生物學家法佛發表了研究結果…法佛發表文章表示,手機訊號對蜜蜂產生極大影響,甚至誤導它們,致使它們遠離蜂巢,是造成蜜蜂死亡的主因。

報導中的說法好像終於找到幕後黑手,把CCD完全歸咎於手機訊號,不顧之前科學家提出過的其他證據。同時你可以自己看看研究全文,裡頭有沒有提到一個「死」字?答案是沒有,也沒有瀕死、殺死、餓死…通通沒有…即使我們先不質疑論文的正確性,全然相信內容,也不該把這研究跟各地方發生的蜂群衰竭失調混為一談,說成是「主因」,因為就連作者自己也只是說這篇研究提供了一種解釋的可能性(…would substantiate one more explanation for the “disappearance” of bee colonies around the world)。媒體上過度肯定的聳動標題完全是加油添醋。

接著就要質疑一下論文本身了。研究者直接將手機放在蜂房上,但是現實情況中有誰會在講電話的時候把手機貼著蜂房呢?就像有研究為了知道手機對性能力的影響而做實驗,把手機就貼著兔子的睪丸放著一樣(而且這實驗還沒有證實手機對性能力有影響),這樣類比真的對嗎?就算因此而得到某種顯著結果,又真的有意義嗎?

-----廣告,請繼續往下閱讀-----

即便我們接受這樣的實驗設計,實驗過程也費人思量。論文中說,實驗組(手機通話中)過了三十分鐘之後,蜜蜂才開始有發出聲音(worker piping),然而過了20小時直到實驗結束,蜜蜂都沒有出現其他行為了,也就是說,根本就沒有所謂的「蜜蜂遠離蜂巢」(swarming)、「蜜蜂亂飛」等等情事,完全是媒體唬爛。

研究中沒有說明,但我們可以馬上想到的是,使用中的手機會發熱,而且螢幕可能還會發光,把這樣一個東西放在蜂房上,蜜蜂有反應是很正常的。過去研究指出蜜蜂對於溫度跟光都很敏感。而且論文裡,除了描述不同蜜蜂嗡聲以外,沒有說明這些反應跟手機訊號開始傳輸後之間的關係,也沒有數據呈現,這實在是很難取信於人。

研究分別在瑞士Lausanne跟Morges兩個海拔高度相差230公尺的城市進行,從2009年2月初作到同年6月底,但我們卻無法從論文中得知哪一場實驗是在哪裡、何時進行的…這真的是一個很初探性質的研究啊。

當然我很清楚,台灣的媒體只是跟著國外媒體起舞,只對吸引眼球的結果有興趣,反正大家一起不查證,責任就分攤掉了…真不知道這樣的偽科學新聞我們還要忍受多久?也難怪王老師人人都可當了

-----廣告,請繼續往下閱讀-----

最後,回過頭來,也得檢驗一下這論文的基礎,那就是地磁跟電磁波到底是不是蜜蜂判別方向的工具。如果不是,或是不是唯一的工具,那就更難說這些類似研究能跟蜜蜂大量消失有關了。(見蜜蜂與數學)

我推荐各位看看維基百科上Colony Collapse Disorder 條目中,「可能造成原因(Possible causes)」的電磁波(Electromagnetic radiation)部份,上頭記載了近年來的各項相關研究,以及2007年之後,媒體對這些設計粗糙、大多未經同儕評鑑的研究之追捧。其中對於這篇論文的紀錄是這樣的:

In April 2011, a study conducted by a former investigator of the EPFL École Polytechnique Fédérale de Lausanne appeared, which stated that active mobile phones placed directly inside a beehive can induce the worker piping signal (in natural conditions, worker piping either announces the swarming process of the bee colony or is a signal of a disturbed bee colony); the author mentioned that “phones are not present in the close vicinity of honeybees in real life” and did not indicate what negative effect, if any, working piping might have within a colony, nor was any link to CCD demonstrated.[109]

在此不是要說手機訊號或電磁波絕對不可能影響蜜蜂,但可信服的研究出現之前,還是別陷入無謂的恐慌吧。

延伸閱讀:

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 7
鄭國威 Portnoy_96
247 篇文章 ・ 1182 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

0

2
1

文字

分享

0
2
1
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3634字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2182 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
2

文字

分享

0
1
2
臺中、高雄、花蓮舉辦 112 年度廣電媒體專業素養培訓課程,共創優質媒體閱聽環境
PanSci_96
・2023/11/18 ・802字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

國家通訊傳播委員會(下稱 NCC)為健全廣電事業發展、提升從業人員專業素養,促使廣電事業製播優質節目及傳遞正確資訊,今(112)年援例舉辦「廣電媒體專業素養」培訓課程,本趟知識列車自 8 月起於臺北開跑,9 月分別安排於臺中、高雄,花蓮場則於 10 月辦理完成。

NCC 於 8 月舉辦專業訓練課程臺北場後,佳評如潮,在 9 月舉辦的臺中、高雄場, 10 月舉辦的花蓮場,各地媒體從業人員共同參與,除了「廣播事業營運發展」、「電視事業營運發展」、「性別平權」、「權益保護」、「多元文化」等主題外,更為中、南、東部業者規劃「內容自律」課程,邀請國立臺灣海洋大學助理教授,同時也是資深媒體人的許文宜教授,從實例探討廣電相關法規,培養內容自律意識;「消費者權益保護」課程邀請衛福部食藥署吳怡萱副稽查員,透過食品藥妝及醫藥法規,講述食藥廣告製播應注意事項。

圖 1 「消費者權益保護」課程邀請衛福部食藥署吳怡萱副稽查員分享

因應數位時代的快速變化,安排「 AI 在廣電媒體的應用發展趨勢」課程,分享科技新知及 AI 於廣電節目應用實例;「事實查證工具應用」課程則旨在培養識別虛假訊息的能力,從而可充分履行媒體的專業責任,安排每場次 3 小時的事實查證工作坊,期提高參與業者事實查核意識及能力,進而杜絕虛假訊息傳播。

圖 2 「 AI 在廣電媒體的應用發展趨勢」課程邀請集仕多股份有限公司梁哲瑋總經理分享

睽違兩年首次回歸實體課程,中、南部從業人員展現其熱情,不僅課程踴躍互動,課後也與講師熱絡交流,紛紛表示課後收穫良多。花蓮場原訂課程面臨「小犬」颱風侵襲而延期一周辦理,出席率仍高達 8 成,展現東部業者學習新知的熱情與企圖心,期待未來廣電媒體產業持續相互砥礪,攜手打造優質視聽環境!

-----廣告,請繼續往下閱讀-----
PanSci_96
1219 篇文章 ・ 2182 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
廣電媒體專業素養培訓課程好評再加開!歡迎報名臺北加開場,共同打造美好的閱聽環境!
PanSci_96
・2023/11/10 ・859字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

國家通訊傳播委員會(下稱 NCC)為健全廣電事業發展、提升從業人員專業素養,促使廣電事業製播優質節目及傳播正確資訊,舉辦「廣電媒體專業素養培訓課程臺北加開場」,將於 11 月 30 日假集思交通部國際會議中心辦理,詳情請見報名表

本課程已邁入第 15 個年頭,在睽違兩年線上辦理後,今年回歸實體課程,盼能提升廣電媒體從業人員專業素養,建立優質廣電環境,進而提供民眾最精準訊息。本系列課程 8 月 22 日從臺北出發,一路前往臺中、高雄、花蓮,環島巡迴課程於 10 月 13 日圓滿結束,系列課程議題多元且講師具備領域專業,課程佳評如潮。

因應許多業者期待, NCC 將舉辦專業培訓課程臺北加開場,規劃以下課程:一、「 AI 在廣電媒體的應用發展趨勢」課程,邀請集仕多股份有限公司總經理梁哲瑋分享科技新知及 AI 於廣電節目應用實例;二、「從廣播/電視節目探討內容自律機制」課程,邀請國立臺灣海洋大學助理教授、同時也是資深媒體人的許文宜教授,從實例探討廣電相關法規,培養內容自律意識。透過專家學者精闢解析、傳遞新知,提供一個讓業者互動交流的平台。

NCC 身為廣電媒體主管機關,將持續辦理一系列課程,致力於優化從業人員專業素養與識讀能力,彼此勉勵、交流,一起成為守門人,製播更精準、優質的內容,共同打造一個美好的視聽環境!

-----廣告,請繼續往下閱讀-----

參與課程者也將獲頒「參訓證明」,歡迎廣電媒體從業人員與關心此議題的民眾踴躍線上報名參加,名額有限,欲報從速,額滿為止。

臺北加開場活動資訊:

  • 時間: 11 月 30 日(四) 14:00-17:30
  • 地點:集思交通部國際會議中心 2 樓 202 會議室(台北市中正區杭州南路一段 24 號)
  • 費用:免費
  • 報名連結:https://forms.gle/ykK3YvBa89TQMLi16
PanSci_96
1219 篇文章 ・ 2182 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。