0

0
0

文字

分享

0
0
0

暖化使得地球變得更具毒性

陸子鈞
・2011/03/24 ・1084字 ・閱讀時間約 2 分鐘 ・SR值 554 ・八年級

氣候變遷可能促使人類重新思考對環境毒素的測量方式。

科學家警告,全球暖化可能會提高殘留的農藥、重金屬、居家化學藥劑對魚類、自然環境的危害,最後將威脅到人類自己。

融冰可能為環境帶來更多的毒素。

環境毒理學北美分會31屆年會(At the North American branch of the Society of Environmental Toxicology and Chemistry’s 31st annual meeting)中,環境化學家警告,化學物質及氣候變遷之間複雜的交互關係,可能使得化學物質更具毒性,而且環境將更容易受到破壞。

舉例來說,在多倫多大學研究環境化學物質的博士生Erin Mann發現,極地的融冰量增加,使更多海水暴露在大氣中,可能使有害物質更容易揮發到大氣中。她說「全球暖化將增加極地的空氣污染」。

-----廣告,請繼續往下閱讀-----

不僅是氣候會受到影響,水文毒理學家Theodore Valenti注意到,氣候變遷會影響溪流流動、品質、分布,進而影響全世界的酸鹼度,最後改變環境化學物質-像是藥用化合物-的毒性。

這些來自廁所或其他廢水的藥用化合物,原本設計在不同酸鹼度下有不同的性質,使得這些化合物可以準確地在人體不同部位中作用。但現在這些化合物流到環境中,「它們依然保持這樣的性質,我發現在pH9時,相較於pH6,存在10到20倍的毒性差異。」Valenti說。

南伊利諾大學的水文毒理學家Marjorie Brooks說,重金屬毒性,可能也會受氣候變遷影響。以銅來說,LC50(一段時間內,能達到一半致死率的濃度)會隨著溫度下降,表示毒性增加了。這影響非常的大,如果地球溫度以目前的速度在持續上升,她目前在研究的胖頭鱥(Pimephales promelas),其LC50將在2060年降到目前水準的一半。

這還只是一些和氣候變遷較直接的影響。

-----廣告,請繼續往下閱讀-----

科羅拉多州立大學的生態毒物學家Will Clements,注意到暖化會減少洛磯山脈的雪層,而減少夏季的溪流流量。換句話說,這會降低溪流深度及混濁度,增加有害UV光照射到河床的比例。為了了解這影響,Clements和他的團隊,在溪流設置許多樣點,在樣點上架設紗網,遮蔽UV光的量。60天後,在紗網遮蓋的區域,石蠅、浮游、石蠶蛾的族群量較高。研究團隊認為,較淺的溪流,可能有較高的UV曝照量,進而傷害到水棲生物。

氣候變遷也可能挑戰科學家為研究毒性所設計的實驗。

生態學家Nicholas Gard提到,當想到毒性時,必須要把所有因子都考慮進去。舉例來說,全球暖化會使毒素變得更有揮發性,因而也更可能隨著風,散佈到更遠的地方。或者,當減緩地球暖化的計畫將二氧化碳封存到地底時,要考慮到此舉將提高地下水體的酸度,使得岩層中的有害金屬更容易析出,並流到河流中。

美國工兵團的毒理學研究生Jennifer Goss,研究氣候變遷對鉛毒素的影響。軍方對這議題有興趣,因為打入水中的廢棄彈藥會析出鉛毒素,而溫度升高時,鉛的敏感性也升高。

-----廣告,請繼續往下閱讀-----

資料來源:A warming Earth could mean stronger toxins

-----廣告,請繼續往下閱讀-----
文章難易度
陸子鈞
294 篇文章 ・ 5 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
3

文字

分享

0
2
3
極端氣候的問題就在眼前,我們可能面臨什麼樣的未來?——《圖解全球碳年鑑》
商業周刊
・2022/10/04 ・5452字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

沒有比現在更急迫需要預測未來。上千名氣候科學家和經濟學家共同建立並測試嚴謹的電腦模型,來估計地球在一、兩個世代後的樣貌。

政府間氣候變化專門委員會(IPCC),由世界各地的志工科學家組成,他們評估目前關於氣候變遷的科學知識——過去、現在和未來的風險與可能性——從而找出共識。

他們發表一系列報告,為 2050 年及其後的世界,做出 5 個可能的結果,這些情況是根據複雜的運算,測量溫室氣體排放、土地使用和空氣汙染對氣候的影響。

做出 5 個可能的結果,這些情況是根據複雜的運算,測量溫室氣體排放、土地使用和空氣汙染對氣候的影響。圖/Pixabay
圖/商業週刊

經濟成長、人口以及溫室氣體排放的未來軌跡,預期將使地球的平均溫度上升。情況的名稱是根據共享社經路徑(Shared Socioeconomic Pathways, SSP), 依照 1 到 5 編號,每個編號有個比過去更負面的結果。

-----廣告,請繼續往下閱讀-----

5 個未來會面對的暖化問題

5 種情況的暖化程度,在以下幾個方面存在顯著差異:

  • 氣候的激烈程度
  • 海平面上升
  • 熱浪
  • 降雪和降冰的減少
  • 未來的行動和政策

這些情況說明問題如何隨時間加劇,以及改變目前的做法對未來可能的巨大影響。

IPCC 過去的估計已經證實太過樂觀,因此最近 IPCC 的報告預測,全球地表溫度將提早 10 年升溫超過 1.5° C,儘管如此,自從出版那份報告以來所收集的資料,顯示近期的暖化程度要比過去所做的大膽估計更加嚴重。

二氧化碳排放量。圖/商業週刊
情況升高攝氏 /華氏說明
1. 極低排放量(SSP1-1.9)1.4° C /2.5° F2050 年前後,全球二氧化碳排放減到淨零,符合巴黎公約(Paris Agreement)中,維持全球暖化(最多)高於工業前溫度1.5° C,而後穩定在1.4° C 直到2100 年。永續作法被即刻採行,改變經濟成長和投資,人們感受的氣候變遷效應,相較其他情況顯著較輕微,速度也較慢。
2. 低排放量(SSP 1-2.6)1.8° C /3.2° F全球二氧化碳排放大幅降低,但不足以在2050 年以前達到淨零排放。2100年結束時,升溫穩定保持在大約1.8° C。
3. 中排放量(SSP2-4.5)2.7° C /4.9° F邁向實踐永續的進展緩慢,與歷史趨勢相近。二氧化碳排放量維持在目前水準,本世紀結束前達不到淨零。2100 年前溫度上升2.7° C。
4. 高排放量(SSP3-7.0)3.6° C /6.5° F排放量和溫度穩定上升,大約是目前的兩倍,各國趨向彼此競爭,要求更多糧食供給的保障,且提高對糧食供給的警覺。2100 年以前平均溫度已經上升3.6° C。
5. 極高排放量(SSP 5-8.5)4.4° C /7.9° F2050 年以前二氧化碳的排放將加倍,能源消耗增加以及過度使用化石燃料加速經濟成長,但是……2100 年以前全球平均溫度將升高4.4° C。
表/商業週刊
IPCC 假設的情況。圖/商業週刊

了解 IPCC 勾勒出未來的 5 種情況

想像集體行動的後果,是前進的必要的一步,政府間氣候變化專門委員會(IPCC)的 5 種情況,清楚勾勒未來的樣貌。

-----廣告,請繼續往下閱讀-----

他們的報告顯示,人類具備科學的理解、技術的能量和金融手段,將碳排放量限制在 1.5° C,但也清楚說明勇敢行動和政治意志極為重要。

溫度上升 0.5° C,差別就很大

情況 1——正負 1.5° C

這是唯一符合《巴黎公約》,維持全球溫度比工業化前溫度高 1.5° C 目標的情況。

在這情況中,極端氣候比較常見,但世界避免了氣候變遷的最糟衝擊。依然會有健康風險以及氣候改變的風險,但嚴重度會比其他情況好很多。不過,將升溫限制在 1.5° C,將需要能源、土地、基礎建設、交通運輸、工業系統等,作出前所未見的轉變。

-----廣告,請繼續往下閱讀-----

將升溫限制在 1.5° C,將需要能源、土地、基礎建設、交通運輸、工業系統等,做出前所未見的轉變。

情況 2——正負 2° C

在低碳排放的情況,世界在 2030 年後不久就會違反 1.5° C 的公約,但還是設法達到巴黎公約中,2100 年以前將溫度上升維持在比工業化前水準高 2°C 以內。

全球二氧化碳和非二氧化碳溫室氣體的排放,如同在「情況 1」中被大幅削減,但不如「情況 1」快速,2050 年之後才達到淨零排放。如同「情況 1」,也需要透過造林、碳捕捉等方法,移除大氣的二氧化碳。

溫度上升 0.5 度或許看似差別不大,但是 IPCC 的報告清楚指出,每增加 0.5 度,對人類和自然系統的負面影響將顯著提高。

-----廣告,請繼續往下閱讀-----

舉例來說,極度高溫的天氣事件,如熱浪、火燒、洪水和乾旱,將會愈來愈激烈且頻繁,有時會同時發生,加上海平面上升和海水酸鹼度提高,不僅使人類等物種失去居住和棲息的地方,也會因為作物產出下降和漁獲量減少,而導致糧食不足。IPCC 估計,這個情況會比「情況 1」多出高達數億人受到氣候相關風險的負面影響。

關注的區域情況1情況2差異
全球暖化全球意味地表溫度相對工業化前的水準上升1.5° C2° C0.5° C 以上
嚴重的熱浪每5 年全球人口至少一次暴露在嚴重熱浪中14%37%糟2.6 倍以上
海平面上升2100 年以前,全球人口每年都有海平面上升的風險6,900 萬7,900 萬多1,000 萬
海冰平面北極海夏季無冰的頻繁度每100 年至少一次每10 年至少一次糟10 倍
失去生物多樣性脊椎動物失去至少一半地理範圍的脊椎動物4%8%糟2 倍
生物多樣性昆蟲):失去至少一半地理範圍的昆蟲6%18%糟3 倍
生態系統轉變受生態系統轉變影響的全球陸地區域7%13%糟1.9 倍
失去珊瑚礁與目前相比,形成礁的珊瑚減少70-90%99%糟1.2 倍
農作物產出下降暴露在作物產出下降的全球人口數3,500 萬3.62 億糟10.3 倍
表/商業週刊

情況 3——政治和經濟的力量沒辦法短期內做出決定

這是假設政治和經濟的力量,使得難以在短期內採取明快的大動作。

由於累積的二氧化碳排放量與全球地表溫度上升之間有接近線性的關係,因此升溫 1.5° C 的上限有可能在 2030 年代初就被超越,距離本年鑑出版不到 10 年。

-----廣告,請繼續往下閱讀-----

在這情況中,溫室氣體排放到 2050 年都沒有降低,預期本世紀末的升溫將大約 2.7° C。上一次氣溫高於工業化前的水準 2.5° C,估計是在 3 百多萬年前。

暖化會呈現地區性差異,平均而言陸地的暖化將比海洋嚴重,北半球緯度愈高的暖化會比南半球嚴重,北極對暖化的敏感度高於南極,自從工業化年代以來,北極的暖化速度比世界其他地方快了 2 倍。

降雨量會增加。在所有全球暖化超過 1.5° C 的情況中,預期降雨量將會增加,特別是陸地。全球地表平均溫度每上升 1°C,中數降雨量將增加 1% 至 3%(全球和年皆然)。

儘管整體的降雨量增加,但會因緯度而有地區性差異。高緯度和潮濕的熱帶地區,降雨量會增加,但是乾旱地區,包括部分的亞熱帶如地中海、南非、部分的澳洲和南美洲,降雨量會減少。

-----廣告,請繼續往下閱讀-----

高緯度和潮濕的熱帶地區,

降雨量會增加,

但是乾旱地區,降雨量會減少。

凡是升溫超過 1.5° C 的情形,到本世紀結束前,9 月將更有可能沒有北極海冰,當暖化到達 2° C 時,這個可能性幾乎是確定發生。圖/Pixabay

北極海冰會融化。凡是升溫超過 1.5° C 的情形,到本世紀結束前,9 月將更有可能沒有北極海冰,當暖化到達 2° C 時,這個可能性幾乎是確定發生。全球地表溫度上升,將使冰河和大冰原的面積更大幅度縮小,導致全球海平面中數(global mean sea levels,GMSL)上升,在前面 3 種情況中,預期在整個 21 世紀將加速,海洋在這些情況下也會變得更酸,這是因為排放量增加使海洋吸收更多碳的緣故。有些系統將會永遠地被改變,持續的全球暖化將可能永久造成:

  • 海平面上升
  • 大冰原喪失
  • 永凍土的碳排出

情況 4——只顧國家利益,沒有同心協力

這個情況是,隨著全球氣候變遷惡化,國際的協調將受挫。各國沒有同心協力來解決問題,反而只顧國家利益,而以關於能源與糧食保障為主。

由於高度仰賴化石燃料來解決燃眉之急,導致溫室氣體排放穩定成長。到 2100 年前,二氧化碳排出幾近加倍,每年超過 800 億公噸,空氣汙染控制不力,加上非二氧化碳的排出量持續增加,導致地球暖化惡化。

-----廣告,請繼續往下閱讀-----

溫度遽升。由於各國達不到氣候誓約,21 世紀的溫度可能上升 2° C,不到 10 年可能跨越 1.5° C 的門檻。

降雨和乾旱的區域擴大。在全球暖化超過 2° C 的情況(情況 4 和情況 5),全球平均降雨量將比 1995-2014 年間增加 2.6%。

降雨和乾旱的區域擴大。在全球暖化超過 2° C 的情況(情況 4 和情況 5),全球平均降雨量將比 1995-2014 年間增加 2.6%。圖/Pixabay

海洋改變。到本世紀末,全球海面溫度上升 2.2° C,上升的海洋溫度可能影響大西洋經向翻轉環流(Atlantic Meridional Overturning Circulation,AMOC),這是最大的洋流系統,如果 AMOC 停止將造成廣泛影響,例如季風轉變和歐洲與北美州的降雨減少,AMOC 可能永久停止。海洋溫度上升導致 GMSL 上升,主要是因為熱擴散,凡是升溫跨越 2° C標記的情況,就會提高南極大冰原崩解的可能,也造成 GMSL 在 2100 年前後上升至少 1 公尺,有些預測認為會超過 2 公尺。

如果 AMOC 停止將造成廣泛影響,例如季風轉變和歐洲與北美州的降雨減少,AMOC 可能永久停止。

情況 5——二氧化碳的年排放加倍

面對氣候緊急事件惡化下,化石燃料的開發和能源使用勢必更積極,導致溫室氣體排放大幅增加。2050 年以前,二氧化碳的年排放加倍,在本世紀前超過 1,200 億公噸。

再生能源技術的進步加上人們的接受度上升,使這情況不太可能發生。但是碳循環回饋可能影響大氣濃度,從而製造地球反應的循環而導致這種情況,此外基於全球地表溫度升溫在 10 年內預期將跨越 1.5° C,而短期的暖化現象比估計的還要嚴重,因此即使可能性較低也不容忽視。

在這情況中,溫度上升 1.5° C 被認為在近期內很可能發生,大約是 2027 年前後。幾十年內升溫可能來到 2° C,本世紀末之前無法想像的升溫 4.4° C 可能發生。人類從未曾生活在如此氣候狀況下。

這個情況與其他不同的,在於假設強度的空汙控制,以及預測中長期除了甲烷以外「臭氧前兆」的下降,預測甲烷將上升到 2070 年。

跟其他情況相同的是,較大程度的暖化,預期會擴大區域性暖化趨勢的差異。例如相較 1995 至 2014 年的溫度範圍,部分亞馬遜或其他熱帶陸地將升溫 8° C,其他熱帶陸地區域可能升溫 6° C。

降雨量急遽上升,在暖化程度較大的情況下,預期高低降雨量的差異將擴大,冰原將消失,海平面和溫度將上升,世界失去格陵蘭和南極最大冰原,將導致海平面上升與冰河消失。由於冰原的成長緩慢但融化快速,失去任何面積可能無法逆轉。

海洋吸收愈來愈多熱,變得愈來愈暖,於是水往外擴。海平面上升近 1 公尺可能影響居住在海岸區、島嶼以及容易遭到洪水肆虐的近 10 億人生計。

海平面上升近 1 公尺可能影響居住在海岸區、島嶼以及容易遭到洪水肆虐的近 10 億人生計。圖/Pixabay

海平面上升近 1 公尺

可能影響居住在海岸區、島嶼

以及容易遭到洪水肆虐的近 10 億人生計。

我們沒有丟掉任何東西,

只是把我們的問題變成別人的問題。

⸺賽門.西奈克(Simon Sinek),暢銷作家

上網搜尋,種一棵樹

安裝一個簡單的應用程式,

就可以在你每次上網搜尋時種一棵樹。

——本文摘自《圖解全球碳年鑑:一本揭露所有關於碳的真相,並即時改變之書》,2022 年 9 月,商業周刊,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----