Loading [MathJax]/extensions/tex2jax.js

0

2
4

文字

分享

0
2
4

天邊一朵雲,藏了哪些秘密?

研之有物│中央研究院_96
・2018/06/21 ・3245字 ・閱讀時間約 6 分鐘 ・SR值 493 ・六年級

-----廣告,請繼續往下閱讀-----

  • 採訪編輯/歐柏昇 美術編輯/張語辰

雲,是氣候模式中非常難預測的一項因素,卻與全球暖化、空氣污染等環境議題密切相關。中研院環境變遷研究中心的王寳貫主任,研究領域從小尺度的粒子運動,一直到大尺度的風暴,試圖解答雲與環境的課題。

本文專訪氣象學家王寳貫,從物理的角度認識「雲」。 攝影/張語辰

雲到底是什麼玩意兒?

看到一朵雲在飄,我們很容易誤以為一朵雲就像一棵樹、一顆蘋果,是「一樣東西」。

一朵雲其實不是真的「一樣東西」,只是彼此關係很淺的一團水珠的集合。

一朵雲飄動的過程中,「內容物」其實不斷在變動,裡面的水珠有的長大、有的則蒸發。飄過來之後,很可能一開始的水珠已經全部換掉了;即使雲的形狀看起來沒有變,但雲的內容物很可能有了天翻地覆的變化。

天氣預報裡常說,颱風從海上過來,「在臺灣登陸」。讓人錯覺似乎有某樣東西從太平洋移動到臺灣,但事實上最主要是把這個「運動」傳過來。颱風抵達臺灣的時候,它的空氣已經不同於原來生成時的那團空氣,而是「氣流的運動」傳到了臺灣。

好比往池塘丟一塊石頭,水波跑出去了,但是水面上的小樹枝並不會隨著水波往外跑,只會上下動。颱風就像波動一樣,波動的形狀跑出去了,但是水氣的材料留在原地。

-----廣告,請繼續往下閱讀-----

如果地球上沒有雲,會怎麼樣?

一般用氣候模式來推估未來氣候的變化,裡面有個很大的不確定性,就是在於「雲」。事實上,人類對雲的了解很不足。一朵雲可以支撐多久?什麼地方可以產生雲?這些問題很難回答,卻有重大的影響。

假設地球上沒有雲,會發生什麼事嗎?首先,雲的來源主要就是水蒸氣。

如果把地球上的水蒸氣都拿掉,那地球上的平均溫度會比零度還要低。

地球誕生的早期,氣體被埋在地下,經過火山活動釋放出來,其中很重要的物質就是水蒸氣,使地球溫暖到平均攝氏十五度。空氣中有了水蒸氣,上空溫度夠冷,就會凝結產生雲。

如果地球上雲太多,會怎麼樣?

從外太空看地球,雲是地球上最白的部分,可以把陽光反射回去。地球上如果雲很多,「反照率」就很強,地面上受到的太陽輻射少,就會變得比較冷。

-----廣告,請繼續往下閱讀-----

金星在夜空中之所以明亮,除了由於距離地球很近,也因為整個星球被一層雲包住,反照率強,陽光照射時就看起來亮晶晶。金星上的雲是硫酸,顏色沒有那麼白;而地球上的雲是白色的,反照率更強。假使地球上的雲非常濃厚,太陽的能量通通被反射,地表就會進入寒冬。

(左)地球的雲是白色的,雲的厚度較沒那麼厚。(右)金星表面被厚厚的硫酸雲遮蓋,雲的顏色較沒那麼白。 圖/NASA

為什麼要了解雲的個別粒子運動?

雲對氣候的影響非常大,因此我們需要知道,雲可以在什麼地方產生?一旦產生可以撐多久?什麼樣的雲可以撐久一點?

看似單純的雲裡面有許多種類的小粒子,有小水珠、大雨滴,還有許多冰晶。即使在夏天,很多雲裡也充滿冰晶,因為在兩、三千公尺的高度環境,氣溫得以維持在攝氏零度以下。

為什麼要特別介紹冰晶呢?因為冰晶的運動與雲的物理有關係。雲中的冰晶如果變得夠大、往下掉的時候,如果掉落速度很快,蒸發量就會比較大。就像是夏天很熱,沒有風的時候散熱很慢,但是開個電風扇就會覺得涼快,因為對流作用會把熱量帶走。一旦蒸發量大,就會吸收掉比較多周圍空氣的能量,使得那塊空氣變冷。在同樣氣壓條件下,冷空氣會下沉,而下沉氣流則會使雲散掉。

-----廣告,請繼續往下閱讀-----

這些牽涉到許多小粒子、複雜的運動過程,團隊使用精密的流體力學進行分析計算,才得以模擬雲的生成與流動。

風暴上面真的沒有雲嗎?

從前氣象學家認為,風暴的頂端就是雲所能達到的最高界線,再往上是平流層,非常乾燥沒有水蒸氣。一般的長程飛機就是飛在平流層底部,搭飛機時你會發覺那裡一望無際幾乎沒有雲,因為幾乎沒有水蒸氣。

但是,後來由人造衛星收集的資料發現,風暴頂端之上,竟然還有一些雲。有雲就代表有水蒸氣,那這些水蒸氣是從哪裡來呢?

王寳貫團隊研究風暴模型,利用電腦模擬得到了一個可能的結果:經由「碎波」的現象,水蒸氣可以上升到平流層;而且這個現象風暴有關係。在對流層的頂端,因為對流很強,會產生重力波。若只是一般的波動,水蒸氣上不去平流層。但是如果像在海邊突然翻過來的「碎浪」一樣,產生「碎波」,那就可以把物質傳到平流層。

-----廣告,請繼續往下閱讀-----
雲頂「倒捲」的形狀,即是「碎波」。王寳貫團隊以電腦模擬碎波的形狀、大小、方位、發生地點,和實際觀測情況相當吻合。 圖/Wang, P. K. 2004: A cloud model interpretation of jumping cirrus above storm top, Geophys. Res. Lett., 31, L18106

在風暴中,碎波會將水蒸氣往上送到平流層,這個現象有什麼意義呢?

平流層上如果有水蒸氣、或者有雲的話,它會使地面的暖化更嚴重。

因為平流層的水蒸氣,溫度非常低,特別容易吸收地面上傳過來的紅外線。

過去談全球暖化,主要談「二氧化碳」,沒有考慮到平流層上「水蒸氣」的問題。而最近研究發現,平流層上的水蒸氣有時多、有時少,持續變化。團隊認為這些水蒸氣很可能是在風暴發生時,經過碎波現象傳送上去的。全球暖化的現象可能會影響風暴的活動,從而影響往平流層上傳送的水蒸氣。而這些水蒸氣又會反過來影響地表的溫度,含量多的時候紅外線不容易傳出去,地面上變暖;含量少的時候熱量比較容易散發出去,就會變得比較冷。

雲和空氣污染有什麼關係呢?

雲要凝結,需要有小的汙染物,也就是所謂「凝結核」。如果空氣真的是非常乾淨,乾淨到一點塵埃都沒有,天空中不會有雲,每天都是藍天。

-----廣告,請繼續往下閱讀-----

如果觀察天空,就會發現多數的時候就算是藍天也帶點灰白,代表了空氣含有很多小粒子,聚集吸收了水氣形成很稀薄的雲,壟罩天空。

如果塵埃太多,造成很多稀薄的雲,非常多但是分散掉了,水滴很小而不下雨,你就不會把它叫「雲」,而是叫「霾」。

現在臺灣的空氣污染,除了來自本地以外,還來於自中國大陸、東南亞;尤其在春天,臺灣是這三種空污來源的會合地區。但是,臺灣的空氣污染觀測相當不夠,過去都只是在地面測量。有鑒於空污觀測的不足,王寳貫團隊最近與德國布萊梅大學 (University of Bremen)合作,推動「臺灣大氣化學轉化與污染傳輸」(Pro-ACT3)計畫。

「臺灣大氣化學轉化與污染傳輸計畫」的高空研究飛機。 圖/吳姿蓉提供

合作的德國團隊在 2018 年 3 月開了 G550 高空研究飛機到臺南,進行一個月的觀測,探測臺灣地區、東海及南海上空多種空氣污染物的物理化學性質。這項研究將了解臺灣空氣污染物的傳輸與轉化機制,從中找出未來防制境外空污的方式。

延伸閱讀:

  1. 冬天打雷為什麼是不祥之兆?氣象學家有解釋
  2. 王寳貫的個人網頁
  3. Kai-Yuan Cheng, Pao K. Wang and Chen-Kang Wang, 2014, “A Numerical Study on the Ventilation Coefficients of Falling Hailstones”, JOURNAL OF THE ATMOSPHERIC SCIENCES, 71(7), 2625-2634. (SCI) (IF: 2.672; SCI ranking: 32.4%)
  4. Tempei Hashino, Mihai Chiruta, Dierk Polzin, Alexander Kubicek and Pao K. Wang, 2014, “Numerical simulation of the flow fields around falling ice crystals with inclined orientation and the hydrodynamic torque”, ATMOSPHERIC RESEARCH, 150, 79-96. (SCI) (IF: 2.2; SCI ranking: 39.2%)
  5. Setvak, M., K. Bedka, D. T. Lindsey, A. Sokol, Z. Charvat, J. Stastka, and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229-248.
  6. Wang, Pao K., M. Setvak, W. Lyons, W. Schmid, and H. Lin, 2009: Further evidence of deep convective vertical transport of water vapor through the tropopause, Atmos. Res., 94, 400-408.
  7. Wang, P. K. 2004: A cloud model interpretation of jumping cirrus above storm top, Geophys. Res. Lett., 31, L18106., doi:10.1029/2004GL020787
  8. Wang, P. K., 2002: Shape and Microdynamics of Ice Particles and Their Effects in Cirrus Clouds. Invited monograph in Advances in Geophysics, Vol. 45, Academic Press, 1-265.
  9. 王寳貫,《雲物理學》。1997,國立編譯館(渤海堂印行)。
  10. 王寳貫,〈雷公的髮髻〉,《數理人文》第九期。
  11. 新聞報導:台德合作測空污 高空研究飛機進駐

本著作由研之有物製作,原文為《每天看到的雲,藏著什麼大學問?》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位





-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3654 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

-----廣告,請繼續往下閱讀-----

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

-----廣告,請繼續往下閱讀-----

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

-----廣告,請繼續往下閱讀-----

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

-----廣告,請繼續往下閱讀-----
輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

-----廣告,請繼續往下閱讀-----
2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

-----廣告,請繼續往下閱讀-----

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

-----廣告,請繼續往下閱讀-----

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
2

文字

分享

0
2
2
守護飛行安全的重要後援!航空氣象知多少
鳥苷三磷酸 (PanSci Promo)_96
・2023/04/19 ・3347字 ・閱讀時間約 6 分鐘

本文由 我的青航時代-2023航發會×暑期航空營 委託,泛科學企劃執行。

座落在熱帶和亞熱帶氣候帶的台灣,地形複雜,天氣的變化多端,比另一半翻臉的速度還快。在地面上的人們尚且需要天氣預報,才能順利規劃日常生活起居;在天空中翺翔的飛機,同樣也必須仰賴航空氣象的資訊,才能完成一趟安全的飛行。一起來瞭解航空氣象扮演的重要角色吧!

努力讓「不測風雲」變得可測

過去不少令人觸目驚心的空難憾事,如 2014 年復興航空 222 號班機空難受颱風麥德姆風雨影響墜毀、2020 年空軍黑鷹直升機因天氣驟變失事,都與天氣因素有關。根據台灣國家運輸安全調查委員會的報告,台灣近 10 年的民用航空運輸重大飛航事故分析中,「天氣」是其中僅次於人員因素的事故原因。

因此要守護機組人員與乘客的安全,能否及時提供可靠的機場氣象觀測、預報及警報,供飛航作業人員參考,便至關重要。

-----廣告,請繼續往下閱讀-----
2012-2021 年民用航空運輸業重大飛航事故原因分類統計(單位:事件個數)
。圖/國家運輸安全調查委員會

那麽氣象資訊是怎麽來的呢?幕後功臣就是設置於台灣各處民航機場,堅守各自崗位的航空氣象臺。目前全島共有 5 個航空氣象臺(松山、桃園、高雄、豐年及金門)與 5 個任務臺(蘭嶼、綠島、恆春、北竿、南竿)[註1]負責監測航空氣象。

航空氣象人員的職責,就是蒐集、整理、分析和解釋飛航所需的機場及航路之預測、預報、警報及顯著危害天氣資訊。他們是飛航安全背後的强力後援,全天候守視飛航情報區天氣變化及提供諮詢。

氣象資訊從哪來?來認識氣象觀測的好幫手們

要即時準確地進行氣象觀測,絕對少不了各種氣象裝備的幫忙!任憑氣象七十二變,氣象人員也能透過氣象觀測隨時掌握情況,確保航空安全。飛航服務總臺在各民航機場都有設置的自動氣象觀測系統(Automatic Weather Observation System,簡稱 AWOS),是一個多功能的好幫手。它可以觀測風向、風速、能見度、跑道視程、雲量、雲高、溫度等等各種項目,讓氣象人員可以用來進行機場天氣測報和航機管制作業。

飛機在起飛降落時,最擔心遇到增加飛行難度的風切(Wind Shear)。風切指的是大氣中不同兩點之間,風速或風向的劇烈變化。低空風切(Low-level wind shear)則是指 1600 呎(500 公尺)以下空氣層中的風切,可能造成飛機難以操控而被迫重飛,甚至失速導致飛航事故,因此需格外注意。

-----廣告,請繼續往下閱讀-----

針對棘手的風切問題,氣象臺在松山機場和桃園國際機場設置了 低風切警報系統(Low Level Wind-Shear Alert System,簡稱 LLWAS),利用機場周邊沿跑道兩側及跑道延伸線外之多個 20 公尺以上測風塔進行風場觀測。當風場變化達到風切發生條件時,系統立刻就會透過文字、圖形和聲音等警告資訊,提醒氣象觀測員及塔臺管制員,發布風切警報警示進場和離場的機師做好因應措施。

低風切警報系統中的測風塔。圖/飛航服務總臺

1985 年在桃園國際機場架設的都卜勒氣象雷達(Doppler weather radar),長得就像一個巨型氣球,是當時全亞洲首座供作業用的 C 波段氣象雷達,掃描範圍可達 300 公里。它就像個盡責可靠的氣象觀測員,負責台灣北部機場和附近航路天氣的即時監測與預警,可以掌握劇烈天氣如颱風、雷雨、風切和亂流等天氣現象的發展和移動,提供資訊給飛航相關人員作業參考,確保飛行安全。

1985 年在桃園國際機場架設的都卜勒氣象雷達。圖/飛航服務總臺

「有字天書」——航空氣象報告内容大解密!

如果你拿到一份航空氣象報告,恐怕會以為這是一串亂碼。由各種英文字母縮寫和數字組成的航空氣象電碼,其實有著國際規範的通用格式。只要懂得解讀,就會發現裏頭包含了風向、風速、能見度、雲層狀況、溫度露點及氣壓等多項氣象資訊。按照其用途,航空氣象報告可以分成不同的類型,以下簡單介紹其中幾種。

依照機場的作業規模,航空氣象臺會每半小時或每小時發布機場例行天氣報告(Meteorological Terminal Aviation Routine Weather Report,簡稱 METAR),供飛行員和航管員使用來評估該地區當前的天氣狀況。當天氣變化達特定條件時,則會發布機場特別天氣報告(Aviation Special Weather Report,簡稱 SPECI)。另外,觀測員也會發布未來 2 小時天氣預報,提供航機進行作業因應規劃。

-----廣告,請繼續往下閱讀-----

若需要預測更長程的天氣變化,臺北航空氣象中心也會每天四次更新機場預報(Terminal Aerodrome Forecasts,簡稱 TAF),其有效時間長度分為 30 小時/24 小時/18 小時等三類,讓航空公司可以用來擬定航班飛行計劃,作為航機調度、載重、油料和旅客安排的參考。

安全至上!如何從惡劣天氣中全身而退

在航空業中,天氣變化不只是出門要記得帶傘這點程度的不便,更會影響航班的安排規劃。如果預計會有暴雨或風暴,航空公司可能會取消或延誤航班,以確保乘客和機組人員的安全。當風速和風向發生改變,機師也可能需要改變飛行路線和高度,以大大降低航程的風險。

但你是否也有過類似經驗:明明天氣很好,來到機場卻遇上航班延誤的消息,而感到困惑不解?這些讓旅客滿肚子哀怨的情況,其實也都是為了安全考量,所作的因應安排。因為即使機場所在地的天氣肉眼可見的良好,並不代表機場適合起飛降落。

例如飛機降落前到達一定高度時,機師必須完全看得見跑道及地面狀況,覆蓋在機場起降航道附近的低雲、雷雨區,都可能造成能見度下降,造成飛機不能按時降落。飛行時,若航路前方有雷雨天氣,基於安全考量,機師通常會繞過或飛越,也就增加了航行時間導致班機誤點。靠山邊的機場如蘭嶼機場,常因地形產生風切亂流,導致飛機降落困難,不得不重飛或返航,延誤航班。

-----廣告,請繼續往下閱讀-----

此外,同樣是飛往某地的航班,也可能發生有些能走,有些卻被告知走不了的情況。這是因為航機機型大小不同,適航標準也不同。即使是相同的機型,也會因駕駛員的證照類別、航空公司所訂的安全標準之差異,綜合機場條件、天氣和駕駛員對航機狀態的判斷後,對班機行程做出不一樣的決策。

氣象服務網與 APP 在手,航空氣象即時就有

飛航服務總臺也緊跟時代脚步,建設各項線上即時的氣象資訊服務,包括「航空氣象服務網」和「航空氣象資訊 APP」。航空氣象服務網主要讓航空公司簽派員、飛行員及航空相關人員申請註冊使用,以查詢全球各主要機場即時天氣測報及預報資料。在網站首頁,也有機場即時天氣資料、台灣地區機場適航狀態、即時衛星雲圖等資訊,開發讓一般民衆查詢。

航空氣象資訊 APP 也應行動裝置普及誕生,可供航空從業人員下載使用。一般民衆也能透過 APP 取得全球各大機場即時天氣資訊、東亞地區衛星雲圖及臺灣地區雷達回波圖等資料。

航空氣象資訊 APP 使用介面。圖/飛航服務總臺

【註解】

-----廣告,請繼續往下閱讀-----
  1. 任務臺業務分別由豐年 (業管蘭嶼、綠島)、高雄(業管恆春)、松山(業管北竿)及桃園(業管南竿)航空氣象臺負責管理。
  1. 飛航服務總臺:航空氣象服務介紹
  2. 飛航服務總臺:臺北航空氣象中心
  3. 飛航服務總臺:氣象裝備
  4. 台灣飛安統計(2012 – 2021)。國家運輸安全調查委員會。
  5. 飛航服務總臺:桃園機場都卜勒氣象雷達介紹
  6. 航空氣象服務網
  7. 「2020 飛航解密 暢遊天際」系列講座 – 臺北航空氣象中心主任余曉鵬精彩演講內容
  8. Wikipedia – 航空例行天氣報告
  9. Wikipedia – 終端機場天氣預報
-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia