0

0
1

文字

分享

0
0
1

H0LiCOW!測量哈伯常數發現,宇宙跟我們想的可能不一樣

活躍星系核_96
・2017/02/09 ・2861字 ・閱讀時間約 5 分鐘 ・SR值 525 ・七年級

編譯/ 黃珞文

哈伯常數最新獨立測量證實,我們的宇宙模型可能需要小小修正。

哈伯常數(H0),是貫穿整個宇宙學研究領域的基本數值,可以用來說明宇宙膨脹得多快、估算宇宙年齡、宇宙的體積大小、宇宙裡有多少暗物質。

圖/ESA/Hubble, NASA, Suyu et al.

這張照片居中的 HE0435-1223,素以「得到很漂亮的重力透鏡效果」聞名。圖像顯示的是 HE0435-1223 和它周圍的 4 個「分身」影像──因為碰上了宇宙中的透鏡而產生「分身」。扮演「宇宙透鏡」的星系質量很大,重力很強。和眼鏡店裡的那些鏡片類似,「宇宙透鏡」把位在其正後方的 HE0435-1223 類星體所發出光線之光路改變。

順便一提,HE0435-1223 是這 4 個「分身」的「本尊」,中間的透鏡星系不是本尊,是質量特別大的星系,負責提供透鏡效果,前者稱為背景星系,後者稱為前景星系,較遠的在後,較近的在前。但是,因為角度的關係,圖中並無法分辨出孰為前景或背景。

-----廣告,請繼續往下閱讀-----

就是這樣的「透鏡系統」,最近成為測量宇宙膨脹的最新工具。

H0LiCOW 測量哪些東西?

重力透鏡現象是在宇宙中,三點排成一直線的偶然結果。首先,三點的其中一個是地球;位於地球和最遠那一點的中間者,通常是質量比較大的天體(譬如星系),也稱為「前景」星系;三點中最遠的,則稱為「背景」星系,本身是極為明亮的天體,所發出的光,在經過前景大質量星系周圍時,大質量星系的重力場會讓經過它的光就像穿過一片玻璃透鏡一樣,光的路徑也會發生改變。這個過程有時還能把遠端明亮天體的影像複製出好幾個分身影像。

H0LiCOW 這項計畫(註 1),廣泛使用許多知名的地面型及太空望遠鏡(註 2)觀測到的透鏡星系圖像,用在哈伯常數的測量上。

究竟此團隊掌握什麼獨家技巧能做這樣的測量呢?原來,他們的想法是這樣,重力透鏡影像之產生,其實都存在著一些參數:「前景透鏡星系在形狀上的差異」、「遠端背景光源位置並不總是剛好對齊在正中央」等,因這些參數不同,遠端光線從一開始出發到抵達,途中走的路徑都不一樣,結果各自抵達地球也就有了時間差。

-----廣告,請繼續往下閱讀-----
  • 蘇游瑄的影片解說

至於遠端光源,因為類星體的特色使然(H0LiCOW 計畫中的遠端光源都是「類星體」):能量強、很明亮、變化規律,天文學家經年累月觀測它們規律地閃爍,這種閃爍的特性,在每個受到透鏡作用的「分身」影像上,都一樣可以辨認得到。於是,這就可以用於確認每個分身影像抵達地球的時間差是多少,更重要的是,這樣的差異數值,直接和哈伯常數相關。

瑞士 EPFL 研究員 Frédéric Courbin 在團隊共同發布新聞稿中表示,H0LiCOW 團隊的這種方法,在目前用來測量哈伯常數的一些方法中,是最簡單又最直接的一種,因為只用到幾何學和廣義相對論,不需要用到其他假設。值得一提的是,這個結果的精確率達到 3.8%。德國馬克思–普朗克天文物理研究中心蘇游瑄團隊相信,未來的巡天觀測計畫將持續找到成百上千的更多重力透鏡類星體,重力透鏡時間差用於測量哈伯常數的這個方法非常有競爭力,得到的哈伯常數可望達到 1% 的準確度。

哈伯常數是多少?

H的單位是公里/秒/每百萬秒(km/s/Mpc)差距,百萬秒差距是一種天文學所使用的距離尺度,1 百萬秒差距等於 326 萬光年。H的公式看起來很簡單,即 H0=速度/距離,此速度是星系在直線上的遠離速度,因為宇宙在膨脹,所以遠方天體都在向後退。所以,用星系的運動速率除以星系和我們之間的距離,可以測量宇宙膨脹率。

測量哈伯常數有什麼重要?

測量哈伯常數以及掌握此數值所代表的意義,在研究宇宙如何創生和演化的無論計算或模型上,都是不可或缺的基本要素。H0LiCOW 合作計畫大部分研究,是蘇游瑄在臺灣中央研究院天文所擔任助研究員期間完成,她目前轉到德國馬克思–普朗克天文物理研究中心工作,對於測量哈伯常數到底有什麼重要,蘇游瑄說:

-----廣告,請繼續往下閱讀-----

「哈伯常數對現代天文學至關重要,因為它能協助我們去證實或反駁『宇宙是由暗能量、暗物質和普通物質組成』──這樣的宇宙認知,到底是否正確,或者是我們還少了某些關鍵。」

她還指出,哈伯常數對最新的天文研究領域非常關鍵,因為它可以幫我們檢視,現在我們所認知的宇宙,到底是對還是不對?究竟宇宙是不是由暗能量暗物質和普通物質所組成?還是,宇宙中還有什麼我們仍不知道?

測量哈伯常數很難嗎?

精確測量哈伯常數相當困難。推估運動速率是很直接,不會模稜兩可,但是,距離多少,這在天文學裡相當難算,只能用我們稱之為「標準燭光」的東西來測量。「標準燭光」的天體具有非常精確而已知的亮度,只要測量天體的亮度,拿它來和標準燭光做個比較,就可以推算出距離。

在過去幾十年計算哈伯常數的歷史中,所用到的標準燭光是「造父變星」和 「Ia 型超新星」,後者特別指在雙星系統裡所發生的「超新星爆發」。

獨立測量哈伯常數有何特殊含義?

科學界賦予獨立測量一種獨特的地位。一個數值能夠以多種測量方式取得,其精確度和正確性就可能越高。由 H0LiCOW 團隊獨立測量得出的哈伯常數測量值,和 2016 年哈伯太空望遠鏡在鄰近宇宙所得到的測量值非常一致(註3)。這是值得強調的事實。

-----廣告,請繼續往下閱讀-----

哈伯常數有三種,既有一致,也有不同,誰對了?

哈伯常數到底是多少,不是該拍板定案了?除非哪裡有問題?沒錯,問題來了,測量鄰近宇宙和測量大霹靂後所殘留的宇宙微波背景輻射(古早宇宙)的結果,不一致。

哈伯望遠鏡和 H0LiCOW 團隊從鄰近宇宙得到的數值接近,但是與目前的宇宙標準模型不合,而普朗克衛星測得的宇宙微波背景輻射得到的哈伯常數值,和宇宙標準模型很速配,但是卻和哈伯望遠鏡和 H0LiCOW 所得數值略差一截。

為什麼這些數值差這麼多,尤其他們的精確度卻又都是如此之高(參考註 3)?答案有可能是,其實我們根本不完全懂這個宇宙。這項差異有可能引領宇宙學進入一個前人未知的探索領域,是我們現有的宇宙觀和宇宙模型還未納入的新物理。

註解:

-----廣告,請繼續往下閱讀-----
  1. H0LiCOW 全名是 H0 Lenses in COSMOGRAIL’s Wellspring。
  2. 該研究使用到的望遠鏡包括有:哈伯太空望遠鏡(NASA/ESA)、凱克望遠鏡、甚大望遠鏡(ESO)、Subaru 望遠鏡、Gemini 望遠鏡、臺灣團隊參與儀器研發的「加法夏望遠鏡」(Canada-France-Hawaii telescope)、 NASA 的史匹哲太空望遠鏡。研究還使用到 Swiss 1.2-metre Leonhard Euler Telescope 和 MPG/ESO 2.2-metre telescope 等望遠鏡所提供資料。
  3. 根據歐洲太空總署和哈伯太空望遠鏡 2017 年 1 月 26 日發布的新聞稿:H0LiCOW 團隊得到的哈伯常數值是 71.9±2.7 公里/秒/百萬秒差距,即「每增加百萬秒差距的距離,膨脹秒速增加 71.9 公里誤差 2.7 公里」。另一科學團隊於 2016 年以哈伯太空望遠鏡測得之值是 73.24±1.74 公里/秒/百萬秒差距。歐洲太空總署普朗克衛星於 2015 年測量的哈伯常數是 66.93±0.62 公里/秒/百萬秒差距,仍是目前最精確的哈伯常數值。其精確度高低,看 ± 後面的數字可以知道,普朗克的誤差值是 0.62 公里,換言之,它如果是對的,其他測量法得到的結果應該在 66.31~67.55 公里/秒/百萬秒差距這個範圍之間,但其他測量方法得到的結果卻並不在這個區間,這顯示重大研究結果之間出現不一致。

本文編譯自 Alison Klesman 所撰寫的 HOLiCOW! Astronomers measuring the expansion of the universe confirm that we still don’t understand everything

http://pansci.asia/archives/flash/114191

文章難易度
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

5
4

文字

分享

0
5
4
高速移動的話時間流速會不一樣嗎?時間暫停是可能的嗎?——《關於宇宙我們什麼都不知道》
天下文化_96
・2023/11/08 ・2746字 ・閱讀時間約 5 分鐘

我們都感覺到相同的時間嗎?

在二十世紀之前,科學認為時間是普適的:每個人和宇宙中的一切,都感覺到相同時間。那時的假設是,你如果在宇宙裡四處擺滿了一模一樣的時鐘,那麼每個時鐘在任何時刻都會顯示相同時間。畢竟,這就是我們在日常生活中遇到的情況。想像一下,如果每個人的鐘都以不同的速度奔跑,會是多麼混亂!

但後來,愛因斯坦的相對論把空間與時間結合成「時空」*1 概念,改變了一切。愛因斯坦強調,移動中的時鐘運行速度較慢。如果你以接近光速行駛至附近的星星,那麼你體驗的時間,將遠遠少於在地球上的時間。這並不是說你覺得時間過得很慢,像是「駭客任務」中的慢動作鏡頭那樣,而是說地球上的人和時鐘測量到的時間,會比宇宙飛船上的時鐘量到的更長。我們都以同樣的方式(以每秒一秒的節奏)體驗時間,但是如果我們彼此以相對高速移動,我們的時鐘就不會同步。

在瑞士的某個地方,製錶師剛剛心臟病發作。

一模一樣的時鐘卻以不同速度運行,似乎違背了所有的邏輯論證,但宇宙就是這樣運行的。我們知道這是真的,因為我們己經在日常生活中見證了。你的手機(或汽車、飛機)上的 GPS 接收器,會假定繞地球跑的 GPS 衛星時間走得較慢(衛星以每小時數千里的速度,在受地球巨大質量彎曲的空間中移動)。沒有這些資訊,你的 GPS 設備將無法從衛星傳輸的信號中,精確的同步和進行三角定位。關鍵是當宇宙遵循某個邏輯法則時,這些法則有時不見得如你所想。以這個案例來說,宇宙有個最高速限:光速。根據愛因斯坦的相對論,沒有任何東西、資訊甚至是外送披薩的旅行速率,可以比光跑得快。這個速率(每個時段所移動的距離)的絕對上限,會產生一些奇怪後果,並挑戰我們的時間概念。

-----廣告,請繼續往下閱讀-----

首先,先確定我們了解這個速率限制是如何運作的。最重要的規則是:從任何角度來衡量任何人的速率時,這個速率限制都必須適用。我們說沒有什麼東西可以比光速還快時,無論你用什麼觀點來看,就是「沒有」。

所以我們來做個簡單的思考實驗。假設你坐在沙發上並打開手電筒。對你來說,手電筒的光線以光速遠離你。不過,我們是否可以把你的沙發綁在火箭上,點燃火箭然後讓沙發以驚人的速度移動呢?如果此時你打開手電筒,會發生什麼事?如果把手電筒指向火箭前方,光線是否以光速再加上火箭的速率移動呢?

我們將在第十章〈我們能以超光速移動嗎?〉花更多時間在這些想法上。但重要的是,為了讓所有觀察者(在火箭上的你和我們其他在地球上的人)看到,手電筒的光線都是以光速移動的,於是某些東西必須改變,這個東西就是「時間」。

為了幫助你理解這個概念,讓我們回到把時間當做時空第四維度的想法。這個想法有助於想像物體如何穿越時間和空間,而把宇宙速限應用在你的總速率上。如果你坐在地球上的沙發裡,你沒有穿越空間(相對於地球)的速率,所以你穿越時間的速率可以很高。

-----廣告,請繼續往下閱讀-----

但如果你坐在火箭上,對地球而言,火箭的移動速度接近光速,那麼你穿越空間的速率是非常高的。因此,為了讓你穿越時空的總速率在相對於地球時,保持在宇宙速限之內,你的時間速率必須減少,在此所有的速率量測都使用地球上的時鐘。

還讀得下去嗎?

對於不同人可以回報不同時間長度,你可能很難接受,但這是宇宙的運作方式。更奇怪的是,人們可能會在某些情況下,看到事件以不同順序發生,而且都是正確的。舉例來說,兩位誠實的觀察者,如果以非常不同的速度移動,他們會對誰贏得直線競速賽有不同的看法。

如果你的寵物美洲駝和雪貂進行賽跑,那麼,依據你的移動速度和相對於比賽場地的距離,你可以看到心愛的美洲駝或雪貂贏得比賽。每隻寵物都會有屬於自己事件的版本,如果你的祖母能夠以接近光速的速率移動,她看到的比賽結果可能完全不同。而且,所有人都是正確的!(不過要注意的是,每個人的時間起始點都不相同。)

-----廣告,請繼續往下閱讀-----
圖/《關於宇宙我們什麼都不知道》

我們喜歡認為宇宙有絕對真實的歷史,所以不同人可以體驗不同的時間,是令人難以接受的想法。我們可以想像,原則上有人可以寫下宇宙至今發生的每一件事(這會是非常冗長的故事而且大半都超級無聊)。如果這故事存在,那麼每個人都可以根據自己的經驗來進行檢查,除非是無心之過或視力模糊,每個人讀的故事應該要一致。但愛因斯坦的相對論使得一切都是相對的,所以不同觀察者對於宇宙裡事件的先後順序,會有不同的描述。

最終我們必須放棄宇宙有絕對單一時鐘存在的想法。雖然因此我們有時會遇到違反直覺且看似荒謬的領域,但驚人的是,這種看待時間的方式已測試為真。與許多物理革命一樣,我們被迫拋棄自我的直覺,並遵循受時間主觀意識影響較小的數學之道。

時間會停止嗎?

打從一開始,人們就想排除時間會停止的概念。時間除了向前,我們從未見過它做過其他事,既然如此,時間怎麼可能還有別的選項呢?由於我們本來就不清楚為什麼時間要前進,所以很難自信的說,時間向前是永恆真理。

一些物理學家相信,時間的「箭頭」是根據熵必須增加的法則所決定。也就是說,時間的方向與熵增加的方向相同。但如果這是真的,當宇宙達到最大熵時會發生什麼事?在這樣的宇宙裡,一切都將處於平衡而且不能創造秩序。那麼,時間會在這一點停下來嗎?還是時間不再有意義?一些哲學家猜測,在這個時刻,時間的箭頭和熵增加的法則可能會逆轉過來,導致宇宙縮小到一個微小奇點。不過,這個說法比較像是深夜裡藥吃多了後激發的猜測,而不是實際的科學預測。

-----廣告,請繼續往下閱讀-----

還有理論提出大霹靂創造了兩個宇宙,一個時間向前流逝,一個時間向後奔流。更瘋狂的理論則提出時間不只一個方向。為什麼不呢?我們可以在三個(或更多)空間方向中移動,為什麼不能有兩個或更多的時間方向?真相為何?如往常一樣,我們不知道。

註解

  1. 愛因斯坦的天才並沒有展現在為事物命名上面。

——本文摘自《關於宇宙我們什麼都不知道》,2023 年 9 月,天下文化出版,未經同意請勿轉載。

天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

2

2
2

文字

分享

2
2
2
諦聽宇宙深處的低吟,宇宙低頻重力波訊號代表的意義——《科學月刊》
科學月刊_96
・2023/11/01 ・3782字 ・閱讀時間約 7 分鐘

  • 作者/陳哲佑
    • 任職於日本理化學研究所,專長為黑洞物理、宇宙學、重力理論等。
    • 熱愛旅行、排球與珍珠奶茶
  • Take Home Message
    • 今(2023)年 6 月,北美奈赫茲重力波天文臺(NANOGrav)團隊觀察到宇宙中的低頻重力波。
    • NANOGrav 團隊利用數個脈衝星組成「脈衝星陣列」(PTA),測量各脈衝星訊號到達的時間,計算不同訊號的到達時間是否存在著相關性。
    • PTA 得到的重力波訊號相當持續,沒有明確的波源。科學家推測此訊號可能來自多個超大質量雙黑洞系統互繞而產生的疊加背景。

2015 年 9 月,位於美國的雷射干涉儀重力波天文臺(Laser Interferometer Gravitational-Wave Observatory, LIGO)成功偵測來自雙黑洞碰撞的重力波訊號(請見延伸閱讀 1)。

這個發現不僅再次驗證愛因斯坦(Albert Einstein)「廣義相對論」的成功,更引領人類進入嶄新的重力波天文學時代。到了現在,我們不僅能使用各種電磁波波段進行觀測,還多了重力波這個強而有力的工具能夠窺探我們身處的宇宙,甚至還有同時結合兩者的多信使天文學(multi-messenger astronomy)註1,皆能帶給人類許多單純電磁波波段觀測無法觸及的資訊(請見延伸閱讀 2)。

如同不同波段的電磁波觀測結果為我們捎來不同的訊息,重力波也有不同的頻譜,且頻譜與產生重力波的波源性質有非常密切的關係。以雙黑洞碰撞為例,系統中黑洞的質量與碰撞過程中發出的重力波頻率大致上成反比,因此當系統中黑洞的質量愈大,它產生的重力波頻率就愈低。

目前地球上的三個重力波天文臺:LIGO、處女座重力波團隊(The Virgo Collaboration, Virgo),以及神岡重力波探測器(Kamioka Gravitational wave detector, KAGRA, or Large-scale Cryogenic Gravitational wave Telescope, LCGT)都受限於干涉儀的長度,只對頻率範圍 10~1000 赫茲(Hz)的重力波有足夠的靈敏度,此範圍的重力波對應到的波源即是一般恆星質量大小的雙黑洞系統。

-----廣告,請繼續往下閱讀-----

然而,來自超大質量黑洞互繞所發出的重力波頻率幾乎是奈赫茲(Nano Hertz,即 10-9 Hz)級別,如果想要探測到此重力波,就需要一個「星系」規模的重力波探測器。雖然這聽起來彷彿天方夜譚,但就在今年 6 月,北美奈赫茲重力波天文臺(North American Nanohertz Observatory for Gravitational Waves, NANOGrav)的團隊利用「脈衝星計時陣列」(pulsar timing array, PTA)成功地觀測到這些低頻重力波存在的證據。

以不同方式觀察不同頻率的重力波

與電磁波相似,重力波也有不同的頻率。不同頻率的重力波會對應到不同性質的波源,且需要不同的方式觀測。圖/科學月刊 資料來源/Barack, et al. 2018

NANOGrav 如何觀測低頻重力波?

讀者聽過脈衝星(pulsar)嗎?它是一種高速旋轉且高度磁化的中子星(neutron star)註2,會從磁極放出電磁波。隨著脈衝星的旋轉,它的電磁波會以非常規律的時間間隔掃過地球,因而被身處於地球上的我們偵測到,就像是海邊的燈塔所發出的光,會規律地掃過地平面一般。由於脈衝星的旋轉模式相當穩定,掃過地球的脈衝就如同宇宙中天然的時鐘,因此在天文學上有相當多的應用——甚至可以用來觀測重力波。

利用脈衝星觀測重力波的第一步,首先要記錄各個脈衝星的電磁脈衝到達地球的時間(time of arrival),並且將這些訊號與脈衝星電磁脈衝的理論模型做比對。

如果訊號和理論模型相符,那麼兩者相減後所得到的訊號差(residual)只會剩下一堆雜訊;相反的,如果宇宙中存在著重力波,並且扭曲了該脈衝星和地球之間的時空,那麼兩訊號相減之後就不會只有雜訊,而會出現時空擾動的蹤跡。

-----廣告,請繼續往下閱讀-----
利用數個脈衝星組成的脈衝星計時陣列,可用來尋找宇宙中低頻的重力波訊號。圖/Tonia Klein, NANOGrav 

然而以觀測的角度來看,即便我們從來自單一脈衝星的訊號中發現訊號差出現偏離雜訊的跡象,也不能直接推論這些跡象一定是來自重力波。畢竟科學家對脈衝星的內部機制和脈衝傳遞的過程也並未完全了解,這些未知的機制都可能會使單一脈衝星的訊號差偏離雜訊。

因此為了要判斷重力波是否存在,就必須進行更進一步的觀測:利用數個脈衝星組成脈衝星陣列,測量每個脈衝星訊號到達的時間,並且計算這些不同脈衝星訊號的到達時間是否存在某種相關性。

舉例來說,如果脈衝星和地球之間沒有重力波造成的時空擾動,那麼即便每顆脈衝星的訊號差都出現偏離雜訊的跡象,彼此之間的訊號也會完全獨立且不相干;反之,如果脈衝星和地球之間有重力波經過,這些重力波便會扭曲時空,不僅會改變這些脈衝訊號的到達時間,且不同脈衝星訊號到達的時間變化也會具有某種特定的相關性。

根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。

-----廣告,請繼續往下閱讀-----

科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。

NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。

他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。

除了 NANOGrav,其他團隊例如歐洲的脈衝星計時陣列(European Pulsar Timing Array, EPTA)、澳洲的帕克斯脈衝星計時陣列(Parkes Pulsar Timing Array, PPTA)、印度的脈衝星定時陣列(Indian Pulsar Timing Array, InPTA),以及中國的脈衝星計時陣列(Chinese Pulsar Timing Array, CPTA)等,皆得到相符的結果。

-----廣告,請繼續往下閱讀-----

NANOGrav 觀測結果帶來的意義

與先前 LIGO 觀測到的瞬時重力波訊號不同,目前利用 PTA 得到的重力波訊號是相當持續的,而且並沒有較明確的單一波源,反而像是由來自四面八方數個波源組成的隨機背景訊號。

打個比方,LIGO 收到的重力波訊號像是我們站在海邊,迎面而來一波一波分明的海浪,每一波海浪分別對應到不同黑洞碰撞事件所發出的重力波;而 PTA 的訊號則是位於大海正中央,感受到隨機且不規則的海面起伏。

目前對這些奈赫茲級別的重力波訊號最合理也最自然的解釋,是來自多個超大質量雙黑洞系統互繞而產生的疊加背景。若真是如此,那這項發現將對天文學產生重大的意義。

過去科學界對於如此巨大的雙黑洞系統能否在可觀測宇宙(observable universe)的時間內互繞仍普遍存疑,如果PTA觀測到的重力波真的來自超大質量雙黑洞互繞,那代表這類系統不僅存在,它們的出現還比過去我們預期的更為頻繁,且產生的訊號也更強。

-----廣告,請繼續往下閱讀-----

NANOGrav 的觀測結果

橫軸為脈衝星陣列中,兩脈衝星位置之間的夾角;縱軸為訊號之間的相關性;藍色數據點為 NANOGrav 15 年的觀測結果;黑色虛線為 HD 曲線。可看出數據點的分布與 HD 曲線相當吻合。圖/科學月刊 資料來源/Agazie et al. 2023

不過除了雙黑洞系統,也有其他「相對新奇」的物理機制也可能產生這樣的重力波背景,包含早期宇宙的相變、暗物質,以及其他非標準模型的物理等。若要從觀測的角度去區分這些成因,最重要的關鍵在於,能否從隨機背景中找到特定的波源方向。

如果是雙黑洞系統造成的重力波,勢必會有來自某些方向的訊號比較強;反之,如果是早期宇宙產生的重力波,那麼這些重力波將會隨著宇宙的膨脹瀰漫在整個宇宙中,因此它們勢必是相當均向的。

為了找到波源方向,提升訊號的靈敏度成為了當務之急。而若要提升 PTA 的靈敏度,最主要的方式有兩種——其一是將更多的脈衝星加入陣列;其二則是延長觀測的時間。

目前,不同的 PTA 團隊已經組成國際脈衝星計時陣列(International PTA)互相分享彼此的脈衝星觀測資料。隨著觀測技術的進步,解密這些奈赫茲級別的神祕重力波將指日可待。

-----廣告,請繼續往下閱讀-----

註解

  1. 相較於過往只能以可見光觀測宇宙,多信使天文學能利用多種探測訊號,如電磁波、微中子、重力波、宇宙射線等工具探索宇宙現象,獲得更多不同資訊及宇宙更細微的面貌。
  2. 質量較重的恆星在演化到末期、發生超新星爆炸(supernova)後,就有可能成為中子星。

延伸閱讀

  1. 林俊鈺(2016)。發現重力波!,科學月刊556,248–249。
  2. 金升光(2017)。重力波獨白落幕 多角觀測閃亮登場,科學月刊576,892–893。
  3. NANOgrav. (Jun 28 2023). Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony. NANOgrav.
  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 2
科學月刊_96
249 篇文章 ・ 3499 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

7
0

文字

分享

0
7
0
韋伯太空望遠鏡運作滿週年,它看到了什麼?
PanSci_96
・2023/09/02 ・3306字 ・閱讀時間約 6 分鐘

古老星系中發現有機分子?我們離第三類接觸還有多遠?

韋伯正式展開拍攝任務已經屆滿週年,最近也傳回來許多過去難以拍攝到的照片。六月初,天文學家在《自然》期刊上發表了這張照片,在藍色核心外,環繞著一圈橘黃色的光環。

這是一個星系規模的甜甜圈?這是一個傳送門?還是外星文明的戴森環?

——都不是!其實,這是一個含有有機物多環芳香烴的古老星系,其名為 SPT0418-47。因為名字很長,以下我們就簡稱為 SPT0418 吧!

-----廣告,請繼續往下閱讀-----

這個觀測結果有什麼特殊意義?這代表我們發現外星生命了嗎?

SPT0418 是怎麼被拍到的?扭曲時空的重力透鏡!

一年前,在韋伯望遠鏡傳回第一組令人震撼的照片時,我們製作了兩期節目來介紹韋伯望遠鏡,和它在天文觀測史上跨時代的重要意義。在那之後,也有不少泛糰敲碗,希望我們可以再繼續介紹韋伯望遠鏡的後續發展。

這次在週年前夕公開的這張 SPT0418 照片,是一張標標準準因為重力透鏡而形成的美麗照片。「重力透鏡 Gravitational Lensing」這個概念,相信有在關注天文物理的泛糰們,應該都有聽過。愛因斯坦的廣義相對論告訴我們,星系與星系團的龐大質量會扭曲它們周圍的時空,就像一面星系尺度的超級放大鏡一樣,可以在光線通過時改變它們的走向,從而扭曲背景星系的影像。而如果背景星系與前方的前景星系剛好前後對齊的話,重力透鏡效應還能將背景星系扭曲成美麗的環型,這個環型被稱為「愛因斯坦環 Einstein Ring」。

背景星系從黑洞後面經過時的重力透鏡效應模擬影像。圖/Wikimedia

乍聽之下,重力透鏡會扭曲背景星系影像,好像會干擾觀察,是個缺點。但實際上重力透鏡在扭曲影像的同時,也會聚焦背景星系發出的光,從而讓背景星系變得更加明亮而容易觀測,讓天文學家可以看到更遠或更暗的天體。因此雖然扭曲的影像會增加分析上的麻煩,但天文學家其實非常喜歡觀測這些受重力透鏡效應影響的天體們。甚至會專門安排觀測計畫,拍攝這些受重力透鏡效應影響的區域。這次的主角 SPT0418,正是韋伯太空望遠鏡針對重力透鏡效應開展的「TEMPLATES 」觀測計畫的其中一個觀察對象。

-----廣告,請繼續往下閱讀-----

SPT0418 是一個位於時鐘座(Horologium)方向,距離地球約 123 億光年遠的古老星系。最早在南極望遠鏡(SPT)的觀測資料中被發現,並在後續以阿塔卡瑪大型毫米及次毫米波陣列 ALMA 進行的觀測中,確認了它是一個富含大量塵埃,而且正在以每年約 350 個太陽質量的超高速率生成恆星的星系。

在我們與 SPT0418 之間,還存在著一個前景星系。正是這個前景星系的質量扭曲了周圍的時空,像一片巨大的放大鏡一樣將背後的 SPT0418 扭成了漂亮的愛因斯坦環。

當觀察者、前景星系和背景星系在同一直線上時,就可以透過重力透鏡效應觀測到愛因斯坦環。圖/PanSci YouTube

在這張經過調色的照片中,中間的藍色部分就是前景星系,旁邊的橘色環則是因為重力透鏡而扭曲的 SPT0418 。得益於這個重力透鏡,SPT0418 的影像被增亮了三十倍以上,非常適合讓天文學家一窺早期宇宙中星系的狀態,因此被選為韋伯的觀測目標。

韋伯望遠鏡藉由重力透鏡效應拍攝到的扭曲的古老星系 SPT0418-47。圖/J. Spilker/S. Doyle, NASA, ESA, CSA

那麼,這次的觀測又有什麼重要意義呢?

-----廣告,請繼續往下閱讀-----

多環芳香烴是什麼?看見它代表什麼意義?

這次的拍攝結果不能完全說是意外,因為在這個研究中,韋伯的目標非常明確,就是要尋找古老星系中的多環芳香烴。

在天文學上,多環芳香烴通常指兩個以上的苯環所組成的有機化合物的統稱,人們一般以它的簡稱「PAH」來稱呼它。

發現有機分子,難道這代表有生命存在於古老星系中嗎?其實不能這麼快下定論。

因為 PAH 廣泛存在於各式各樣的星系中,與其他由碳和矽組成的塵埃顆粒,同屬於星際塵埃的一部分。甚至在彗星、小行星、隕石中,都能發現各式各樣的 PAH。目前認為,宇宙中可能有超過 20% 的碳原子,都是以 PAH 的方式存在,只是環數不盡相同。

-----廣告,請繼續往下閱讀-----
圖中右側的黑色暗帶為星際塵埃。圖/NASA, ESA, and the LEGUS team

所以,雖然科學家認為,宇宙中的生命誕生,可能與這些這些遍布其中的有機分子有關。但發現 PAH,不能直接與發現生命劃上等號。

過去數十年的天文觀測結果也顯示,PAH 確實廣泛存在於星系之中,但是天文學家對於這些分子究竟如何形成?又是什麼時候形成的?目前還沒有共識。因此迫切需要更多觀測,例如這次的目標 SPT0418 是個距離我們非常遙遠的古老星系,對於研究宇宙早期星系以及 PAH 的起源就很有幫助。

觀察 PAH 的困難及韋伯望遠鏡的重大突破

然而,要觀察 PAH 卻不太容易。原因是這些 PAH 發出的光,波長主要都集中在幾微米到十幾微米的近紅外與中紅外線波段。這個波段的光線受到大氣層的吸收非常嚴重,幾乎無法從地面觀測,因此過去我們很難取得相關數據。想要尋找 PAH 的蹤跡,勢必得使用紅外線太空望遠鏡才行。

這時,就是韋伯大展身手的時候了。比起同樣專注於紅外光譜的前輩史匹哲太空望遠鏡,韋伯的鏡片直徑大了超過七倍,集光面積更是大了將近六十倍,這不僅讓韋伯能夠拍攝遠比史匹哲更清晰的影像,更可以在更短的時間內拍攝到更暗的目標。

-----廣告,請繼續往下閱讀-----

得益於韋伯強大的觀測能力,在這個研究中它僅僅對著 SPT0418 曝光了不到一個小時的時間,就在 3.3 微米的波段找到了清晰的 PAH 發射譜線,確認了PAH的存在的同時,也打破了觀測到最遠的 PAH 訊號的紀錄。

此外天文學家也發現,韋伯所拍攝到的 SPT0418 與前幾年使用 ALMA 觀測到的影像並不全然相同。

由於觀測波段不同,不同的望遠鏡拍攝同一天體的亮部分布會產生差異。圖/PanSci Youtube

由於韋伯拍攝的是 PAH 發出的近紅外光,而 ALMA 拍攝到的則是毫米尺寸的大顆粒塵埃所發出的遠紅外線,因此這可能代表 SPT0418 這個星系的不同部分,有著不同的塵埃組成。為甚麼會這樣呢?天文學家目前也沒有肯定的答案,需要更多的觀測來進一步釐清。

任務還在繼續!TEMPLATES 計畫持續追蹤 PAH 足跡

韋伯對 SPT0418 拍攝的照片,不僅打破了人類探測過離太陽系最遠的 PAH 訊號紀錄,更展示了在重力透鏡加韋伯的攜手合作下,能大幅拓展人類觀測遙遠星系的能力。除了 SPT0418 之外,天文學家還預計觀測另外三個被重力透鏡放大的星系,尋找並研究其中 PAH 的足跡,以解開星系與星際塵埃的演化之謎。

-----廣告,請繼續往下閱讀-----
韋伯望遠鏡的「TEMPLATES 」計畫預計觀測四個被重力透鏡效應放大的天體。圖/JWST ERS Program TEMPLATES

雖然還有許多未解之謎,但韋伯傳回來的每張相片,都能讓我們能更了解這個宇宙一點點。最後想問問大家,韋伯望遠鏡正式展開拍攝工作屆滿一年,你最喜歡,或最希望我們繼續來講解的照片是哪一張呢?

  1. 土星、天王星和海王星的行星環高清照
  2. 大爆炸後 3.2 億年就誕生的的古老星系
  3. 即將蛻變為超新星的恆星照
  4. 更多你覺得美麗的照片,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1219 篇文章 ・ 2198 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。