0

0
0

文字

分享

0
0
0

解讀綠豆的基因體密碼——2016國際豆類年

Gene Ng_96
・2016/09/17 ・1298字 ・閱讀時間約 2 分鐘 ・SR值 545 ・八年級

Mung_bean_Vigna_radiata_Dired_open_Pod_in_Hong_Kong-1024x768
綠豆(Vigna radiata,mungbean)圖/ Earth100, CC BY-SA 3.0

在炎夏,大家都愛喝清涼的綠豆湯消暑;綠豆粉加糖等做成綠豆糕也是受歡迎的甜點;綠豆提煉出的澱粉(直鏈澱粉),用來製作的綠豆粉絲(冬粉)、涼皮、涼粉等等,也都是常見食材。韓國及印度的科學家為綠豆定序了全基因體,有助瞭解豇豆屬豆類植物的演化。

綠豆(Vigna radiata,mungbean)是一種豆科、蝶形花亞科豇豆屬植物。綠豆原產印度、緬甸地區,可能是在 6千至 4千年前被馴化(acclimation)的。現在東亞各國普遍種植,非洲、歐洲、美國也少量種植,印度是最大種植國,而中國、緬甸等國是主要的綠豆出口國。

綠豆屬於喜熱,短日照作物;可以在春(4 月下旬至 5月上中旬)、夏(6 月中、下旬)播種。生長周期約為 70 至 110 天。因為綠豆耐蔭性,同時綠豆根部的根瘤菌具有固氮作用,因此綠豆在實際種植過程中常常可以和其他作物套種,如玉米、穀物、芝麻等。 綠豆種子和莖被廣泛食用。乾綠豆呈綠黃色或暗綠色,堅硬有光澤,含有類黃酮、單寧、皂素、生物鹼、植物甾醇、香豆素、強心苷等物質。

綠豆種子加水萌發成的豆芽是東亞、南亞烹調中常見的蔬菜。綠豆芽含有豐富的維生素 C,與綠豆相比,綠豆芽中的蛋白質分解成了人體更易吸收的胺基酸。

-----廣告,請繼續往下閱讀-----
bean-sprouts-657415_640
綠豆泡水之後發芽成的豆芽菜。圖/LoveToTakePhotos @ pixabay

韓國首爾國立大學及印度國際半乾旱熱帶作物研究所等人完成了栽培綠豆V. radiata var. radiata VC1973A)以及野生綠豆V. radiatavar. sublobata)的全基因體序列,他們比較了兩者基因體以瞭解綠豆的馴化。此研究結果發表在 2014 年的《自然通訊》(Nature Communications)。

豇豆屬還有其他重要的作物,例如曲毛豇豆(V. reflexo-pilosa var. glabra,créole bean)、吉豆(V. mungo,black gram)、赤小豆(V. umbellata, rice bean)、烏頭葉豇豆(V. aconitifolia,moth bean)和紅豆( V. angularis, adzuki bean),這些豇豆的基因體大小不等,從 416 Mb 至 1,394 Mb都有。

為了瞭解它們的種化和演化關係,他們還利用了 22 種豇豆的轉綠體資訊及大豆的基因重建了豇豆的親緣演化樹。他們也同時定序了分佈於台灣、日本等地的豆科豇豆屬的捲毛豇豆四倍體 (Vigna reflexo-pilosa var. glabra),捲毛豇豆是綠豆的近親,他們發現四倍體是演化上近期產生的多倍體事件。 由於綠豆的種植大多是在發展中國家,因此遺傳學研究較為落後,他們希望能藉此基因體序列,協助農藝學家進行綠豆品種的改良。

參考資料:

-----廣告,請繼續往下閱讀-----
  • 原學術論文-Kang YJ, et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun. 2014 Nov 11;5:5443. doi: 10.1038/ncomms6443.
  • 綠豆-維基百科

編按:「紅豆!大紅豆!(芋頭!)ㄘㄨㄚˋㄘㄨㄚˋㄘㄨㄚˋ,你要加什麼料?」各種豆類不只是吃銼冰的好配料,它們默默成為我們生活中無比重要的一部分。 2016 年是國際豆類年,臺灣大學科學教育發展中心(CASE)針對各種常見豆類的基因體密碼作介紹,讓我們能更了解其中的「豆」知識。

本文原出自臺灣大學科學教育發展中心其他單位需經同意始可轉載。

文章難易度
Gene Ng_96
295 篇文章 ・ 29 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
「綠豆」生「南亞」,之後往哪去?破解綠豆的傳播路徑——《科學月刊》
科學月刊_96
・2023/10/28 ・4698字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/李承叡
    • 臺灣大學生態學與演化生物學研究所副教授
  • Take Home Message
    • 農作物在馴化後的傳播受到人類活動影響,綠豆於南亞印度次大陸被馴化,往東南亞、東亞到中亞的逆時針方向傳播。
    • 因南北方環境差異大,綠豆順著環境梯度小的路徑傳播。傳播到北方的綠豆(中亞)也發展出躲避乾旱的性狀。
    • 《天工開物》、《齊民要術》記載古代綠豆的性狀和栽種方法,佐證氣候影響傳播路徑,更塑造現今多樣的品系。

小麥與大麥起源於中東,稻米起源於長江流域,玉米起源於中美洲,這些是生物學家已經證實的農作物起源。但是你有沒有想過,農作物在被馴化之後如何擴散到世界各地,又為什麼產生如此多樣的形態?

除了人類傳播之外,有沒有其他因素會影響農作物散播的時間和路徑,進而改變同一種作物在不同地區的形態特質,最後甚至決定了人們栽種與使用它們的方式?我們能否使用語源學(etymology)與千年前的中國文獻記載,佐證現代遺傳學研究?

以起源於印度次大陸的綠豆為例,筆者的研究團隊就在近期解析了綠豆傳播到整個亞洲的特殊路徑,並找出了關鍵的決定因子。

從遺傳資訊推敲綠豆的傳播路徑

和我們日常接觸到的蔬果不同,野生的植物既不好吃也不適合栽種。於是人類在漫長的歷史中慢慢把野生植物改變為自己喜歡的樣子,這個過程就是「馴化」(domestication)。被馴化的農作物有一個關鍵性狀:無法自然散播種子,人類能藉此確保農作物的收穫量。

-----廣告,請繼續往下閱讀-----

野生豆科植物(Fabaceae)成熟的豆莢會自然開裂,但這樣的能力在栽培豆類卻早已消失,因此許多作物栽培品系的繁衍與傳播只能依靠人類。這是不是代表農作物在馴化後的傳播只會受到人類活動影響呢?

研究團隊與國際農作物種原中心合作,使用超過千個綠豆栽培品系(以下簡稱綠豆)並解析遺傳多樣性,發現綠豆可分為與地理位置緊密相關的四大族群:東亞、中亞、東南亞、南亞族群。

過去考古證據顯示,綠豆在數千年前首先於南亞印度次大陸被馴化。有趣的是,遺傳分析發現它們並非向各個方向同時擴散,而是尋著南亞、東南亞、東亞,再到中亞的逆時針方向傳播(圖一)。

圖一、亞洲四大栽培綠豆族群的傳播途徑與種子形態。圖/科學月刊 底圖/吳培文

在東亞,這樣的傳播方向也許有跡可循。身處東亞的古中國人通稱西域、中亞民族為「胡人」,因此以「胡」為名的作物多半是由中亞往東傳播到東亞。

-----廣告,請繼續往下閱讀-----

成書於約 544 年的中國古代農牧著作《齊民要術》記載當時黃河流域中下游的農業狀況,其中提到胡麻、胡瓜、胡蒜(大蒜)、胡荽(香菜)、胡豆(蠶豆或豌豆)等作物,只有綠豆是以「菉豆」稱之。這似乎支持綠豆不是由中亞向東傳播,符合由遺傳資訊推導出的傳播路徑。

一般來說,動植物的傳播是循序漸進的,因此栽培綠豆在南亞被馴化後,應該會同時先往較近的東南亞與中亞傳播,最後才進入東亞。

中亞和南亞的地理位置相對近,但為什麼綠豆卻輾轉繞了亞洲一大圈之後才出現在中亞呢?植物的自然傳播通常會受到地形阻隔的影響,因此南亞與中亞之間的興都庫什山脈(Hindu Kush)可能是個明顯的地理屏障。

但是如同前文所說,綠豆已經沒辦法自然傳播,只能靠人類散播種子了,因此我們更應該關注:興都庫什山脈對人類活動會不會是個屏障,阻隔了中亞與南亞居民的交流?在過去,穿越興都庫什山的交通雖然不便,但並非不可能。

-----廣告,請繼續往下閱讀-----

早在 4000 年前,中亞與南亞之間已經有文化交流的證據,歷史上跨越興都庫什山的商業活動(如絲路的南亞支線)其實並不少見,且許多政權的領土均包含興都庫什山南北兩側(如貴霜帝國與帖木兒帝國)。既然兩地間的交流如此頻繁,綠豆為什麼沒有直接從南亞傳播到中亞?

形態與環境差異是重要線索

歷史上南亞與中亞的頻繁交流顯示,人類很有可能曾經嘗試把起源於南亞的綠豆直接帶到中亞種植,但最後沒有成功,所以今日的中亞綠豆後來才由東亞傳入。而這個歷史疑案也許可以從氣候環境與生態學找到解答。

從亞洲的衛星照片來看,我們第一時間就會發現各地「顏色」不同:南亞與東南亞比較綠,中亞卻是一片褐色,直接反映各地的氣候條件有所差異。

於是研究團隊比較了不同綠豆族群的棲地環境,發現南亞與中亞的環境相差非常多:南方的生長季長、降雨多,但北方的中亞生長季短、且剛好是乾季(圖二)。因此人類活動雖然有可能把綠豆往各個方向傳播,但起源於南亞的綠豆卻無法在中亞被順利種植。

-----廣告,請繼續往下閱讀-----

相對地,東南亞和南亞的氣候環境相近,綠豆可以順利在當地被種植。接著,東南亞和東亞的靠海地區降雨較多,由東南亞向北傳播相對沒那麼困難。我們可以因此推論,綠豆順著環境梯度較小的路徑、以逆時針的趨勢從南亞傳播到亞洲各地。

地理學名著《槍炮、病菌與鋼鐵》(Guns, Germs, and Steel)提到,因為南方與北方環境差異較大,與人類相關的動植物較容易沿著大陸的東西軸線快速傳播。綠豆的傳播路徑也印證了這個論點。

圖二、亞洲南、北部的氣候差異會影響綠豆的生長,導致綠豆的形態特質產生差異。圖/科學月刊 底圖/ArcGIS

如果環境差異真的讓數千年前南亞的綠豆品系無法順利在中亞被栽培,那現代的綠豆為什麼可以存活在中亞地區?是不是中亞的綠豆已經產生了一些改變,讓它們可以適合當地環境?

為了釐清這個問題,研究團隊設計了田間試驗,結果發現南方的綠豆生長期較長、開花較晚、豆莢較多、種子較大;北方綠豆(尤其是現代的中亞品系)在這些性狀都有相反的趨勢。

-----廣告,請繼續往下閱讀-----

此趨勢符合一種植物躲避乾旱的典型策略:當植物生活在生長季短又乾燥的北方,在土壤水分耗盡前盡快開花結果是最有利的,但也造成產量較低的副作用。

有人可能會問,在這些 20 世紀蒐集的綠豆品系中看到的性狀差異,真的能反映他們歷史上的不同嗎?科學家測量到的差異會不會是近代育種的結果?幸運的是,千年前的中國文獻幫了大忙。

根據宋神宗熙寧年間(約 1068~1077 年)的文獻《湘山野錄》對宋真宗(968~1022 年)的記載:「真宗深念稼穡,聞占城稻耐旱、西天綠豆子多而粒大,各遣使以珍貨求其種。」文中清楚提到,相較於身處北宋國都開封(中國中北部)的宋真宗所熟知的綠豆,西天(南亞)的綠豆產量高、種子大(圖三),與21世紀科學家的研究結果相符。

圖三、千年前的宋真宗為現代植物遺傳學研究提供最好的佐證。圖/科學月刊 素材/wikimedia

栽種條件與方式也會影響傳播

除了氣候之外,還有其他因素也有可能限制南方綠豆在北方的種植、進而影響傳播路徑嗎?研究團隊也發現,古人的記載隱藏了植物生理學的精髓。1637 年由宋應星撰寫的《天工開物》記載:「綠豆必小暑方種,未及小暑而種,則其苗蔓延數尺,結莢甚稀。若過期至於處暑,則隨時開花結莢,顆粒亦少。」

-----廣告,請繼續往下閱讀-----

24 節氣與太陽運行有關,因此當年的小暑應與現在相近,在國曆7月7日左右,處暑應在 8 月 23 日左右。不過,24 節氣和植物生理學有什麼關係呢?事實上,24 節氣反映了太陽的相對位置,也就是日照時間的長短。

綠豆是原生於南方的短日照植物:一天內的日照長度(簡稱日長)必須低於某個時數,綠豆植株才會開花。在北方高緯度地區,若在 7 月初之前種綠豆,日長太長,短日照植物只長大不開花,造成「其苗蔓延數尺,結莢甚稀」;若在 8 月底才種,日長太短,因此「隨時開花結莢,顆粒亦少」。

綠豆種植之後也必須在秋季的低溫來臨之前收成,由此可見日照長度與秋季低溫大大限制了綠豆可以在北方種植的時間,尤其是在中亞,這個時間點正好是乾季(圖四)。因此各種氣候條件均在北方偏好生活史短的綠豆品系,讓南方生活史較長的品系沒辦法直接在北方穩定栽培。

氣候條件的差異影響綠豆在亞洲的傳播路徑,塑造亞洲各地具有不同生活史及形態的栽培品系,也再次佐證研究團隊推估的逆時針傳播路徑。

-----廣告,請繼續往下閱讀-----
圖四、現代中亞作物栽培的時程與綠豆四個族群原生地的月平均降雨量。由於主要作物(冬小麥)生長期、日照長度、與秋季低溫的影響,在亞洲北方僅有短短幾個月適合種植綠豆,且中亞在這幾個月是乾季,更加需要相對耐旱、生活史短的綠豆品系。圖/科學月刊 資料來源/李承叡

相對於南方著重於產量的育種方式,北方綠豆生活史短但產量低,這樣的特質其實也影響到當地人們運用與栽培綠豆的方式。

有趣的是,相較於糧食作物,6 世紀的《齊民要術》更加強調綠豆身為「綠肥作物」的角色:「若糞不可得者,五六月中,穊種菉豆,至七月、八月,犁掩殺之。如以糞糞田, 則良美與糞不殊,又省功力。」

豆科植物會與根瘤菌共生,將空氣中的氮氣轉換為生物可利用的形式。這段敘述甚至不太重視綠豆種子的收成,直接將植株埋入土內當肥料,更強調了效果與糞肥一樣好。

在近代中亞,當地人也不會把綠豆當成主要作物,而是在冬小麥收成後(6 月)與下一輪冬小麥播種前(10 月),利用田裡剩餘的水分栽培綠豆。

在過去,這或許有點碰運氣的味道——有收成很好,沒有的話就當綠肥。當然,這是指過去的農耕情形,若在近代農業科技與灌溉技術發達的東亞,情況可能就不太一樣了。

跨領域探索農作物傳播歷史

在綠豆的傳播故事中,研究團隊的論點是南亞與中亞巨大的氣候環境差異造成此特殊的傳播路徑。但是就如同大多數的生物學研究,反例依然存在:胡椒、胡麻、胡瓜這三種作物,考古學研究證明它們起源於印度,但它們的名字(胡)卻顯示它們可能由印度先傳播到中亞,再到東亞。

為什麼這些作物不像綠豆一樣受到氣候條件限制?筆者研究團隊認為,這些相對高價值的重要香料、油料、瓜類等作物可能受到人類更細心地照顧與灌溉,因此或許較不受氣候環境逆境影響。

如前文所述,綠豆在北方一開始的角色可能是農閒時的綠肥或是碰運氣的作物,不太需要照顧與灌溉,因此受氣候環境影響相對大。

這個研究雖然以綠豆為出發點,最後卻回答了更大的問題:什麼因素會影響農作物的傳播、傳播的後果又為何?

研究團隊證明了氣候環境會決定農作物傳播的路徑、促進形態多樣性、甚至最後改變了人類對這個作物的種植與使用方式:在南方,人們追求產量與大種子;在北方,農人只能趁短暫的夏季種植生活史快、產量低的品系,順便當綠肥。

連結遺傳多樣性、氣候環境、植物適應及人文歷史,這個綠豆的故事為農作物跨領域研究開啟了新的視野。

延伸閱讀

  • Ong, P. W. et al. (2023). Environment as a limiting factor of the historical global spread of mungbean. Elife, 12, e85725.
  • 〈本文選自《科學月刊》2023 年 8 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
249 篇文章 ・ 3436 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
解讀綠豆的基因體密碼——2016國際豆類年
Gene Ng_96
・2016/09/17 ・1298字 ・閱讀時間約 2 分鐘 ・SR值 545 ・八年級

-----廣告,請繼續往下閱讀-----

Mung_bean_Vigna_radiata_Dired_open_Pod_in_Hong_Kong-1024x768
綠豆(Vigna radiata,mungbean)圖/ Earth100, CC BY-SA 3.0

在炎夏,大家都愛喝清涼的綠豆湯消暑;綠豆粉加糖等做成綠豆糕也是受歡迎的甜點;綠豆提煉出的澱粉(直鏈澱粉),用來製作的綠豆粉絲(冬粉)、涼皮、涼粉等等,也都是常見食材。韓國及印度的科學家為綠豆定序了全基因體,有助瞭解豇豆屬豆類植物的演化。

綠豆(Vigna radiata,mungbean)是一種豆科、蝶形花亞科豇豆屬植物。綠豆原產印度、緬甸地區,可能是在 6千至 4千年前被馴化(acclimation)的。現在東亞各國普遍種植,非洲、歐洲、美國也少量種植,印度是最大種植國,而中國、緬甸等國是主要的綠豆出口國。

綠豆屬於喜熱,短日照作物;可以在春(4 月下旬至 5月上中旬)、夏(6 月中、下旬)播種。生長周期約為 70 至 110 天。因為綠豆耐蔭性,同時綠豆根部的根瘤菌具有固氮作用,因此綠豆在實際種植過程中常常可以和其他作物套種,如玉米、穀物、芝麻等。 綠豆種子和莖被廣泛食用。乾綠豆呈綠黃色或暗綠色,堅硬有光澤,含有類黃酮、單寧、皂素、生物鹼、植物甾醇、香豆素、強心苷等物質。

-----廣告,請繼續往下閱讀-----

綠豆種子加水萌發成的豆芽是東亞、南亞烹調中常見的蔬菜。綠豆芽含有豐富的維生素 C,與綠豆相比,綠豆芽中的蛋白質分解成了人體更易吸收的胺基酸。

bean-sprouts-657415_640
綠豆泡水之後發芽成的豆芽菜。圖/LoveToTakePhotos @ pixabay

韓國首爾國立大學及印度國際半乾旱熱帶作物研究所等人完成了栽培綠豆V. radiata var. radiata VC1973A)以及野生綠豆V. radiatavar. sublobata)的全基因體序列,他們比較了兩者基因體以瞭解綠豆的馴化。此研究結果發表在 2014 年的《自然通訊》(Nature Communications)。

豇豆屬還有其他重要的作物,例如曲毛豇豆(V. reflexo-pilosa var. glabra,créole bean)、吉豆(V. mungo,black gram)、赤小豆(V. umbellata, rice bean)、烏頭葉豇豆(V. aconitifolia,moth bean)和紅豆( V. angularis, adzuki bean),這些豇豆的基因體大小不等,從 416 Mb 至 1,394 Mb都有。

-----廣告,請繼續往下閱讀-----

為了瞭解它們的種化和演化關係,他們還利用了 22 種豇豆的轉綠體資訊及大豆的基因重建了豇豆的親緣演化樹。他們也同時定序了分佈於台灣、日本等地的豆科豇豆屬的捲毛豇豆四倍體 (Vigna reflexo-pilosa var. glabra),捲毛豇豆是綠豆的近親,他們發現四倍體是演化上近期產生的多倍體事件。 由於綠豆的種植大多是在發展中國家,因此遺傳學研究較為落後,他們希望能藉此基因體序列,協助農藝學家進行綠豆品種的改良。

參考資料:

  • 原學術論文-Kang YJ, et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun. 2014 Nov 11;5:5443. doi: 10.1038/ncomms6443.
  • 綠豆-維基百科

編按:「紅豆!大紅豆!(芋頭!)ㄘㄨㄚˋㄘㄨㄚˋㄘㄨㄚˋ,你要加什麼料?」各種豆類不只是吃銼冰的好配料,它們默默成為我們生活中無比重要的一部分。 2016 年是國際豆類年,臺灣大學科學教育發展中心(CASE)針對各種常見豆類的基因體密碼作介紹,讓我們能更了解其中的「豆」知識。

本文原出自臺灣大學科學教育發展中心其他單位需經同意始可轉載。

文章難易度
Gene Ng_96
295 篇文章 ・ 29 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

2
0

文字

分享

0
2
0
生物基因的未來 ──《基因諾亞方舟》
Gene Ng_96
・2019/02/01 ・2592字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

隨著科技發達,各種社群網路與監控、氣候危機、機器人與人、優生學是我們必須正視的議題,更多有關科學、生物、科技的精彩電影,請見 Giloo 紀實影音與台北當代合作,「未來近了」片單

蘋果出了史上最貴的 iPhone XS Max,一支要價 NT$52,900。可是,如果把一支智慧手機的所有化學元素都分開再賣給你,價錢還會這麼高嗎?蘋果公司出這價錢合理嗎?我們是不是該抵制一下這黑心的商業行為?

別急,如果把你身體分解成元素,不過也就主要是一堆碳、氮、磷、氧、氫等等的元素,加起來的價格又是多少?

製造一部蘋果手機並不是把一堆化學元素隨意混合而已,而是依一大堆零件的設計藍圖,在眾多工廠裡頭用精妙複雜的機器生產再組合起來。不管智慧手機多昂貴或多便宜,我們所買的,是用非常多資訊和知識製造組合,然後用軟韌體運行的高科技產品。

而要製造出一個像你我他一樣的人類驅體,也要有大量的設計藍圖,然後在各種細胞和發育的作用下,長成我們現在這個樣子,並按照類似軟韌體邏輯的運作藍圖來控制日常的生理、生化運行,這些生命藍圖編碼了奈米小機器人的資訊。我們人類正常來說,大概有兩萬多個這樣的藍圖,它們就是我們的基因,奈米小機器人就是蛋白質。

-----廣告,請繼續往下閱讀-----

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

豐富多樣的藍圖庫

每個物種,都有一個獨特的藍圖庫,就是基因體。不同物種之間,有許多基本藍圖頗相似,也有不少藍圖內容不太一樣,甚至有新的藍圖,或者份數不同。其中一些動植物種,經過人類上千年甚至上萬的選拔,不同品系間的藍圖庫也有差異,其中好些藍圖有了新的資訊,造就出多樣的品種。

這些多姿多彩的藍圖庫,無論是改進人類食物食材的生產效率和品質上,或是提供天然的藥物上,都有著舉足輕重的影響。不過很不幸的,在氣候變遷下,或者資本主義講求的極致效率下,很多野生的藍圖庫也好,人工培育出的藍圖庫也好,都面臨著滅頂之災。而這部紀錄片《基因諾亞方舟》,談的就是演化生物學家、遺傳學家、動物學家、植物學家、微生物學家、農學家、生物物理學家、細胞生物學家、生化學家、病理學家、流行病學家等等 ⋯⋯ 合力為守護地球上繽紛多彩的生命歷經試煉一路演化來的藍圖庫而作出的努力。

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

-----廣告,請繼續往下閱讀-----

死都要保護的種子庫

我們人類其實是種子控,不信你數數今天吃了多少種子:米飯、麵條、麵餅、麵包、豆製品等等,全都是用植物的種子做的。這些糧食多樣性的喪失,讓農作物曝露在疾病、氣候變遷等危脅中。蘇聯在納粹德軍圍城時,守護多樣種子庫的科學家,坐視滿室的食物仍寧可餓死,真是令人不勝唏噓和感動。

《基因諾亞方舟》的開頭,帶我們到挪威只有兩千多住戶的斯瓦巴群島 (Svalbard)。為了延續我們糧食的未來,科學家在那蓋了一個全球最大的種子庫  — — 斯瓦爾巴全球種子庫 (Svalbard globale frøhvelv),利用極地天然的寒氣保存了來自全球兩百多個國家的各種作物種子,最多可以容納廿二億顆種子,現今已收藏超過一百萬份種子樣本。

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

生物組織蒐藏庫

生命的多樣性也取決於個體擁有多樣的組織器官。保存在細胞核的 DNA 存有各種生命藍圖,但就像工程師施工時不需要把整本工程藍圖都搬到工地或工廠一樣,轉錄作用把 DNA 上的生命藍圖拷貝成一份信使 RNA 的藍圖副本再送到核醣體去製造蛋白質,就像工程師影印奈米機器人製造藍圖副本到工廠施工,工作完成後就銷毀副本資源回收。透過窺視細胞中有哪些和有多少藍圖副本,我們能夠猜測生命的運作。

-----廣告,請繼續往下閱讀-----

《基因諾亞方舟》同時也介紹德國野生生物的細胞銀行,用液態氮的超低溫保存各種生物組織,為我們凍結了不同物種的不同組織的藍圖副本。而在南台灣,屏東高樹鄉的辜嚴倬雲植物保種中心,植物學家也把植物的各部分小心剪下裝入小試管瓶中,再放入裝滿液態氮的大型鐵桶中,為後世子孫保存各種植物的生命運作秘密。這個自然科學博物館、國立清華大學及保種中心合作向科技部申請的「冷凍保種計畫」,目標是要在三年內完成三萬種植物的液態氮保存計畫,每個物種至少八份組織樣本,完成後將是世界最具規模的蒐藏庫。

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

很科幻又不科幻的基因資料庫

過去要定序一個人類的生命藍圖,也就是人類基因體,耗費了幾百億美元,還有三千多位科學家十幾年的寶貴時間。拜 DNA 定序成本比 IT 產業的晶片成本下降速度更快許多所賜,如今定序你我的基因體,費用快要比 iPhone XS Max 還便宜了!於是中國野心勃勃的華大基因 BGI,單單一家機構,正以佔全球定序總量六成的大規模,日夜不停機地要為上萬種脊椎動物的基因體定序。

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

-----廣告,請繼續往下閱讀-----

但我們也別忘了,除了物種和作物品系的多樣性,你我也都是獨一無二的,即使是同卵雙胞胎也有表觀遺傳的差異,就像同一本教科書被不同學生劃的重點有差一樣,不同的後天環境會在相同的 DNA 上做出不同的標記。為了保存和研究個體間的遺傳異同,影片訪問中國、英國和奧地利的生物資料庫或基因銀行,這些基因資料庫或許有一天能幫助我們破解疾病和藥物代謝差異的遺傳因素。臺灣人體生物資料庫也基於臺灣獨特的生活型態和致病因素而成立,為生物醫學研究蒐集龐大的生物檢體與健康資訊,迄今已收集超過九萬人的樣本。而在不久的未來,科學家甚至可能試圖用基因體編輯的技術來修正我們的生命藍圖以治療疾病,或者改造人類,甚至把已滅絕的生物復活,我們將進入一個很科幻但實際上不再科幻的世界!

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

線上觀看《基因諾亞方舟 Golden Genes》

《基因諾亞方舟》劇照。圖/Giloo紀實影音提供

Gene Ng_96
295 篇文章 ・ 29 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋