0

0
0

文字

分享

0
0
0

太空人只能尿在尿布上?誤會比無知更危險—NASA特展搶先看(三)

活躍星系核_96
・2016/05/27 ・3570字 ・閱讀時間約 7 分鐘 ・SR值 429 ・四年級

文/蕭俊傑(科學 X 博士)|國家太空中心任務科學家

J 編按:在上一篇中,X 博士告訴我們原來看 NASA 不能只是看非常壯觀的「假」火箭、太空船,還有很多看似不起眼但超級重要的「真品」,需要大家去展覽中搜尋。接下來要帶大家看的是太空人的生活日常,各種太空必需品到底跟我們在地球用的、吃的有什麼不一樣?

5. 堅忍的耐力 ENDURANCE

原來,太空人要包尿布?!

太空探索的任務相當嚴苛,所以需要各種裝備配合太空人執行任務。首先從解決太空人生理問題的裝備開始,這個一看就知道是什麼東西吧?像是這一件白短褲其實就是「太空尿布」。當然尿布不是這個展區最重要的東西,擺放的地方也不是非常顯眼或突出,但是大家走過去時都會對它指指點點說上幾句,我聽不懂韓文,但是從語氣和表情大概可以猜到說話的人是驚奇加上好笑吧!

052108
太空尿布。圖/作者攝影。

其實我沒有要大家看展都像我看這麼認真,休閒的看也不錯。不過如果在過程中誤會了某些展品的意義,而讓自己在特展中吸收到錯誤的知識那就不好了。

為什麼這麼說,我回台灣時會給我朋友看我拍回來的照片,很多人看到太空尿布這張照片的反應是:「原來太空人在太空尿尿都是尿在尿布裡喔~」。我相信也有很多人知道現代的太空船裡是有廁所的。我想強調的是,如果這些人沒看到這張照片,可能根本沒有想過太空人尿尿的問題,被問到太空人怎麼尿尿時也會回答「不知道」。知道自己不知道很好啊,不知為不知,是知也。但看到尿布之後,忽然就覺得太空人應該要穿尿布,如果沒有進一步去想這個問題,那可能就真的以為太空人只能尿在尿布上。自己引用一句我在科博館「科學的態度,決定你明日的高度」演講中所講的話:「科學學習中最危險的,不是無知、而是誤會」。錯誤的知識才是最可怕的。

早期的太空任務太空人的確需要太空尿布的幫忙,但新一代的太空船就裝設了「便器」可以使用,而太空尿布就只會在發射、降落,還有進行太空船外的太空漫步時才會穿。尤其是發射過程常常會因為天侯或是其他因素延遲,但這時太空人得乖乖坐好,不能亂跑,如果發射過程延遲太久,太空人們也就只能這樣尿下去了。

最後強調一下,尿布兩個字不是我亂亂講的,我在韓國展的英文說明上真的看到它寫 diaper 這個說明,但它正式名稱應該是 Maximum Absorption Garment,翻成「高容量吸收服」好了。

那大家一定會想再問,發射、降落或太空漫步時想小便可以尿尿在尿布裡,那如果想大便怎麼辦?那……就忍著吧。

圖片中另外一個東西就是「屎袋」(這是我自己翻譯的),早期執行阿波羅任務時使用。屎袋用的時候就是貼在屁股上,便完後混入殺菌劑再包起來。因為用屎袋實在太麻煩,所以在上太空之前跟任務執行中都會吃一些消化完殘留較少,也就是比較不會變成糞便的食物。其實有些問題不一定要有人告訴你才會有答案,從常理判斷,如果明天早上就要坐飛機去美國了,今天消夜應該就會避免去吃可能會拉肚子的麻辣火鍋。

太空食物好不好吃啊?(流口水)

Rotation-of-20160109_112425
太空食物。圖/作者攝影。

生活另一件大事就是吃,也就是太空食物,這個展示櫃中有各色各樣的太空食物。

太空食物指的是為了配合太空人執行任務時,不論是食用的方式也好、保存的方式也好,把原本地球上有的食物經過特殊的加工與包裝製成的食物。太空食物為了延長保存期限,大多會以真空方式做包裝,而真空包裝可以再分為袋裝、罐裝及軟管裝(就是像牙膏)。

從照片中來看,標示 1 是葡萄柚汁,標示 2 是咖啡,像這類液態的食物就適合用袋裝。洋芋泥與沙拉放袋子裡吃起來較不方便,所以就要放在像標示 5 這樣的罐子裡,威化餅這種東西容易碎掉,所以裝在 7 號這種罐子。裝在 17 這種牙膏容器的是「混合了糖的果子」,這是俄國太空食物,猜想應該像是含有果粒的果醬。延長食物保存期限有一個方法是脫水,把水果用糖去醃漬,因為水份滲透的關係將水果脫水,這就是為什麼蜜餞是水果做的,但卻比水果更不容易腐敗的原因。

看到 19 的時候真是讓我驚呆了,旁邊的說明寫的是 AMBASSADOR VODKA,VODKA 不是伏特加酒嗎?標示 17、18、19 都是蘇聯太空食物,蘇聯人愛喝伏特加酒也是很正常的事,但太空任務怎麼可能可以喝酒呢?其實這個裡面裝的是羅宋湯,只是在標籤貼上 VODKA 而已,太空人喝的羅宋湯有沒有加 VODKA 在裡面就不知道了。

最後再強調一點,既然太空人帶上太空吃的食物就可以叫做太空食物,那有些食物本來就很「耐久」,這些食物就可以包裝好之後直接帶上太空。台灣特展的現場會有賣太空食物,現場會有哪些口味還不知道,但 X 博士在其他場合已經吃過很多種了,包括太空冰淇淋、太空草莓、太空香蕉、太空章魚燒、太空麻糬、太空布丁等。要問我是在哪裡買的,有些是在日本太空中心 JAXA 的筑波中心「JAXA宇宙航空研究開發機構筑波宇宙中心」,這也是一個可以預約參觀的地方,如果是日文版網頁找「預約見学」就有。他們在參訪後出口處的賣店有販售。從東京秋葉原坐筑波Expess可以到,下車後還要轉計程車。美國偶爾可以看到的Discovery channel store、台灣的賽先生科學玩具也可以買得到。另外一個是日本九州的太空世界Space World,這裡的賣店是我看過,在同一間店有賣最最多種太空食物的地方了。

買的時候要怎麼選?大家可以想一下,如果這個食物只是把它「包起來」就可以帶上太空的話,那你吃到的可能會跟一般地球上的味道差不多。以水果類來說,其實很多健康食品店也都有賣脫水的零食水果片,太空食物的水果就吃起來差不多。但太空冰淇淋脫水後吃起來就跟平常的冰淇淋很不一樣,至於是什麼味道,冰淇淋是乳製品,乳製品在常溫下脫水,大家可以想想看生活中有哪個東西擁有這樣的特性,大概就知道了。太空食物絕對沒有地球上食物美味,但買來吃吃看一定是難得的體驗。

太空布丁
作者與太空布丁。圖/作者攝影。

太空服用處多

接下來是太空服。展場中陳列的,下方圖中這件其實不是太空服,而是美國空軍(United States Air Force, USAF)用的高空壓力裝(high altitude pressure suit)。為什麼需要壓力裝?飛機飛得再快不會讓人不舒服;但飛機如果有很大的速度變化,或者是急轉彎,如果用國中理化的語言來講,就是有很大的「加速度」時,人的身體就會受到影響。

Rotation-of-20160109_112023
美國空軍高空壓力裝。圖/作者攝影。

戰機在空中戰鬥時,常常需要有急轉彎、急爬升等劇烈的動作。飛行員雖然是坐在椅子上,但體內的血液是保持流動的。如果有一個急速爬升的動作,飛行員體內的血液會因為慣性的關係往下半身流,這時候如果腦內沒有足夠的血液,就會造成飛行員的暈眩,這種情形跟蹲久了忽然站起來會暈的意思一樣。要避免這種情形,飛行員的壓力裝會非常的「緊」,把血液用外力把它壓住,避免在戰機做劇烈的動作時造成飛行員的暈眩。

20160109_112135
太空服。圖/作者攝影。

其他後面幾件太空服也是大有來頭。包括了雙子星計畫、阿波羅計畫、水星計畫中的太空服都有展示。講到太空服,大家馬上聯想到的就是「太空中沒有空氣」,所以需要太空服提供太空人所需要的空氣。但是空氣的功能除了讓太空人可以呼吸之外,空氣也同時提供太空人與地面環境相近的空氣壓力,讓太空人的身體狀況可以維持正常運作。

除了空氣之外,它還有一些非常重要的功能。首先,地球上因為有臭氧層的保護,所以不會接收到太多從太陽來的紫外線,但太空人的活動環境在臭氧層外,所以就需要太空服來隔絕紫外線。而地球上還有由地球磁場所建立的磁層,磁層可以阻擋太陽所噴發出來的高速電漿粒子,也就是「太陽風」。極光就是由太陽風所造成的景觀。同樣的道理,身處於太空環境的太空人不像地面上可以受到磁層充足的保護,因此太空服也需要具有阻隔太陽風的功能。

640px-Magnetosphere_rendition
太陽風作用下的地球磁場藝術想像圖。圖/NASA, public domain, wikipedia.

 

J 編按:展覽中還有更多科學 X 博士沒辦法一一介紹的有趣展品,有興趣的朋友可以到 NASA 一場人類冒險台灣展中看看人類在太空探索中做的各種努力,換個方式一圓小時候那個太空夢。

故事從人類開始太空冒險之前講起—NASA特展搶先看(一)

真品沒人看 模型搶拍照—NASA特展搶先看(二)


數感宇宙探索課程,現正募資中!

文章難易度
活躍星系核_96
755 篇文章 ・ 89 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia


0

22
2

文字

分享

0
22
2

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
29 篇文章 ・ 26 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。