0

0
0

文字

分享

0
0
0

費米太空望遠鏡發現最年輕的毫秒波霎

臺北天文館_96
・2011/11/10 ・1641字 ・閱讀時間約 3 分鐘 ・SR值 539 ・八年級

-----廣告,請繼續往下閱讀-----

一組跨國的研究小組,利用美國航太總署(NASA)的費米伽瑪射線太空望遠鏡(Fermi Gamma-ray Space Telescope)發現一顆威力超強的毫秒波霎(millisecond pulsar,或稱毫秒脈衝星),而且這項發現還讓現行對此類天體形成的理論構成威脅。在此同時,另一組研究人員則利用新發展的分析技術,從費米觀測資料定出9個新的伽瑪射線波霎(gamma-ray pulsar),這項發現同時讓費米所發現的波霎總數超過100顆了!

右上圖是9顆新波霎的位置,由於表面磁場強度極強,這些波霎又被稱為磁星(magenta);而新發現的最年輕毫秒波霎則以綠色顯示。Credit: NASA/DOE/Fermi LAT Collaboration

波霎是自轉快速、磁場極強且以固定週期發出電磁波輻射的中子星,基本上是質量高達地球的50幾萬倍、但體積卻只有一座普通城市大小而已的天體,如此稠密的性質,使得在中子星表面,一茶匙的糖會像一座聖母峰那樣重;而由於中子星表面的磁場強度非常強,伴隨其快速的自轉,促使其兩極持續發出從波長最長的無線電波到波長最短的伽瑪射線等的電磁波光束,隨中子星自轉而轉動,從地球上觀察就變成規律的脈衝訊號,像是燈塔一樣。天文學家認為中子星是到目前為止,性質最接近黑洞但可直接觀測的天體。

在2008年費米升空前,僅知7顆會發出伽瑪射線的波霎;而經由費米觀測,目前已知的伽瑪射線波霎已超過100顆,成果斐然。其中有一群波霎的自轉速度快到不可思議,每分鐘可自轉43,000轉左右,換言之,自轉一圈僅需數毫秒而已(millisecond,1毫秒=1/1000秒)。目前天文學家認為毫秒波霎的自轉速度之所以會這麼快,是因為它與另一顆一般恆星組成雙星系統所致,一般恆星是指還處在主序階段的恆星,當一般恆星的氣體物質不斷從一般恆星流向波霎的過程中,不斷撞擊波霎,因而讓波霎的自轉速度愈來愈快。

-----廣告,請繼續往下閱讀-----

典型的毫秒波霎年齡大約為10億年左右,但費米太空望遠鏡最新發現的毫秒波霎PSR J1823−3021A,年齡卻只有2500萬年而已,是迄今已知最年輕的毫秒波霎。PSR J1823−3021A位在NGC 6624球狀星團中,這個星團已經100億歲了,位在人馬座方向,距離地球約27,000光年遠。天文學家之前曾在電波輻射波段進行觀測,當時就已鑑定出PSR J1823−3021A是顆波霎。不過,新發現的9顆新伽瑪射線波霎,都不是毫秒波霎,而且只有其中一顆有發出電波輻射。

費米大面積望遠鏡(Large Area Telescope,LAT)觀測之J1823-3021A波霎所發出的伽瑪射線「開」和「關」的脈衝狀態,這個波霎的脈衝頻率約為每秒183.8次,相當於自轉一週約為5.44毫秒。Credit: NASA/DOE/Fermi LAT Collaboration

左圖顯示費米大面積望遠鏡(Large Area Telescope,LAT)觀測之J1823-3021A波霎所發出的伽瑪射線「開」和「關」的脈衝狀態,這個波霎的脈衝頻率約為每秒183.8次,相當於自轉一週約為5.44毫秒。Credit: NASA/DOE/Fermi LAT Collaboration

球狀星團基本上是由比較年老的恆星所組成的恆星集團,成員數從數萬到數十萬不等,整個星團的外觀幾乎成圓球形。從費米大面積望遠鏡(Large Area Telescope,LAT)觀測資料,天文學家發現共有11個球狀星團發出伽瑪射線輻射,這是數十顆毫秒波霎所發出的伽瑪射線累積的結果,但因每顆單獨毫秒波霎的伽瑪射線太微弱,費米無法分辨出單獨的毫秒波霎。

但是,NGC 6624中的毫秒波霎卻很特別,費米發現它的伽瑪射線只來自一個單獨的毫秒波霎。德國普朗克電波天文研究所(Max Planck Institute for Radio Astronomy)Paulo Freire等人對此結果相當驚訝,因為這表示這顆波霎應該才剛形成不久,所以才能發出這麼強的輻射。在年紀非常老的球狀星團中發現如此年輕的毫秒波霎,與天文學家認為的毫秒波霎成因有所衝突,因此關於毫秒波霎的理論勢必得重新修正。

-----廣告,請繼續往下閱讀-----

雖然費米LAT望遠鏡靈敏度很高,但這些昏暗的波霎每100,000轉中,只能偵測到一次伽瑪射線輻射。因此必須藉助改編自偵測重力波(gravitational wave)的Einstein@Home新分析技術來測定波霎的精確位置,以及光子抵達LAT的時間點。Einstein@Home是利用全球各地自願者的電腦閒置時間,協助分析觀測資料的龐大網絡,如此一來便可節省所需的分析時間。Freire等人從2011年7月開始將Einstein@Home計畫擴展到費米LAT伽瑪射線波霎的資料分析上,才讓這些發現進展的如此快速。

資料來源:NASA’s Fermi Finds Youngest Millisecond Pulsar, 100 Pulsars To-Date [2011.11.03]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

2
2

文字

分享

2
2
2
諦聽宇宙深處的低吟,宇宙低頻重力波訊號代表的意義——《科學月刊》
科學月刊_96
・2023/11/01 ・3782字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳哲佑
    • 任職於日本理化學研究所,專長為黑洞物理、宇宙學、重力理論等。
    • 熱愛旅行、排球與珍珠奶茶
  • Take Home Message
    • 今(2023)年 6 月,北美奈赫茲重力波天文臺(NANOGrav)團隊觀察到宇宙中的低頻重力波。
    • NANOGrav 團隊利用數個脈衝星組成「脈衝星陣列」(PTA),測量各脈衝星訊號到達的時間,計算不同訊號的到達時間是否存在著相關性。
    • PTA 得到的重力波訊號相當持續,沒有明確的波源。科學家推測此訊號可能來自多個超大質量雙黑洞系統互繞而產生的疊加背景。

2015 年 9 月,位於美國的雷射干涉儀重力波天文臺(Laser Interferometer Gravitational-Wave Observatory, LIGO)成功偵測來自雙黑洞碰撞的重力波訊號(請見延伸閱讀 1)。

這個發現不僅再次驗證愛因斯坦(Albert Einstein)「廣義相對論」的成功,更引領人類進入嶄新的重力波天文學時代。到了現在,我們不僅能使用各種電磁波波段進行觀測,還多了重力波這個強而有力的工具能夠窺探我們身處的宇宙,甚至還有同時結合兩者的多信使天文學(multi-messenger astronomy)註1,皆能帶給人類許多單純電磁波波段觀測無法觸及的資訊(請見延伸閱讀 2)。

如同不同波段的電磁波觀測結果為我們捎來不同的訊息,重力波也有不同的頻譜,且頻譜與產生重力波的波源性質有非常密切的關係。以雙黑洞碰撞為例,系統中黑洞的質量與碰撞過程中發出的重力波頻率大致上成反比,因此當系統中黑洞的質量愈大,它產生的重力波頻率就愈低。

目前地球上的三個重力波天文臺:LIGO、處女座重力波團隊(The Virgo Collaboration, Virgo),以及神岡重力波探測器(Kamioka Gravitational wave detector, KAGRA, or Large-scale Cryogenic Gravitational wave Telescope, LCGT)都受限於干涉儀的長度,只對頻率範圍 10~1000 赫茲(Hz)的重力波有足夠的靈敏度,此範圍的重力波對應到的波源即是一般恆星質量大小的雙黑洞系統。

-----廣告,請繼續往下閱讀-----

然而,來自超大質量黑洞互繞所發出的重力波頻率幾乎是奈赫茲(Nano Hertz,即 10-9 Hz)級別,如果想要探測到此重力波,就需要一個「星系」規模的重力波探測器。雖然這聽起來彷彿天方夜譚,但就在今年 6 月,北美奈赫茲重力波天文臺(North American Nanohertz Observatory for Gravitational Waves, NANOGrav)的團隊利用「脈衝星計時陣列」(pulsar timing array, PTA)成功地觀測到這些低頻重力波存在的證據。

以不同方式觀察不同頻率的重力波

與電磁波相似,重力波也有不同的頻率。不同頻率的重力波會對應到不同性質的波源,且需要不同的方式觀測。圖/科學月刊 資料來源/Barack, et al. 2018

NANOGrav 如何觀測低頻重力波?

讀者聽過脈衝星(pulsar)嗎?它是一種高速旋轉且高度磁化的中子星(neutron star)註2,會從磁極放出電磁波。隨著脈衝星的旋轉,它的電磁波會以非常規律的時間間隔掃過地球,因而被身處於地球上的我們偵測到,就像是海邊的燈塔所發出的光,會規律地掃過地平面一般。由於脈衝星的旋轉模式相當穩定,掃過地球的脈衝就如同宇宙中天然的時鐘,因此在天文學上有相當多的應用——甚至可以用來觀測重力波。

利用脈衝星觀測重力波的第一步,首先要記錄各個脈衝星的電磁脈衝到達地球的時間(time of arrival),並且將這些訊號與脈衝星電磁脈衝的理論模型做比對。

如果訊號和理論模型相符,那麼兩者相減後所得到的訊號差(residual)只會剩下一堆雜訊;相反的,如果宇宙中存在著重力波,並且扭曲了該脈衝星和地球之間的時空,那麼兩訊號相減之後就不會只有雜訊,而會出現時空擾動的蹤跡。

-----廣告,請繼續往下閱讀-----
利用數個脈衝星組成的脈衝星計時陣列,可用來尋找宇宙中低頻的重力波訊號。圖/Tonia Klein, NANOGrav 

然而以觀測的角度來看,即便我們從來自單一脈衝星的訊號中發現訊號差出現偏離雜訊的跡象,也不能直接推論這些跡象一定是來自重力波。畢竟科學家對脈衝星的內部機制和脈衝傳遞的過程也並未完全了解,這些未知的機制都可能會使單一脈衝星的訊號差偏離雜訊。

因此為了要判斷重力波是否存在,就必須進行更進一步的觀測:利用數個脈衝星組成脈衝星陣列,測量每個脈衝星訊號到達的時間,並且計算這些不同脈衝星訊號的到達時間是否存在某種相關性。

舉例來說,如果脈衝星和地球之間沒有重力波造成的時空擾動,那麼即便每顆脈衝星的訊號差都出現偏離雜訊的跡象,彼此之間的訊號也會完全獨立且不相干;反之,如果脈衝星和地球之間有重力波經過,這些重力波便會扭曲時空,不僅會改變這些脈衝訊號的到達時間,且不同脈衝星訊號到達的時間變化也會具有某種特定的相關性。

根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。

-----廣告,請繼續往下閱讀-----

科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。

NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。

他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。

除了 NANOGrav,其他團隊例如歐洲的脈衝星計時陣列(European Pulsar Timing Array, EPTA)、澳洲的帕克斯脈衝星計時陣列(Parkes Pulsar Timing Array, PPTA)、印度的脈衝星定時陣列(Indian Pulsar Timing Array, InPTA),以及中國的脈衝星計時陣列(Chinese Pulsar Timing Array, CPTA)等,皆得到相符的結果。

-----廣告,請繼續往下閱讀-----

NANOGrav 觀測結果帶來的意義

與先前 LIGO 觀測到的瞬時重力波訊號不同,目前利用 PTA 得到的重力波訊號是相當持續的,而且並沒有較明確的單一波源,反而像是由來自四面八方數個波源組成的隨機背景訊號。

打個比方,LIGO 收到的重力波訊號像是我們站在海邊,迎面而來一波一波分明的海浪,每一波海浪分別對應到不同黑洞碰撞事件所發出的重力波;而 PTA 的訊號則是位於大海正中央,感受到隨機且不規則的海面起伏。

目前對這些奈赫茲級別的重力波訊號最合理也最自然的解釋,是來自多個超大質量雙黑洞系統互繞而產生的疊加背景。若真是如此,那這項發現將對天文學產生重大的意義。

過去科學界對於如此巨大的雙黑洞系統能否在可觀測宇宙(observable universe)的時間內互繞仍普遍存疑,如果PTA觀測到的重力波真的來自超大質量雙黑洞互繞,那代表這類系統不僅存在,它們的出現還比過去我們預期的更為頻繁,且產生的訊號也更強。

-----廣告,請繼續往下閱讀-----

NANOGrav 的觀測結果

橫軸為脈衝星陣列中,兩脈衝星位置之間的夾角;縱軸為訊號之間的相關性;藍色數據點為 NANOGrav 15 年的觀測結果;黑色虛線為 HD 曲線。可看出數據點的分布與 HD 曲線相當吻合。圖/科學月刊 資料來源/Agazie et al. 2023

不過除了雙黑洞系統,也有其他「相對新奇」的物理機制也可能產生這樣的重力波背景,包含早期宇宙的相變、暗物質,以及其他非標準模型的物理等。若要從觀測的角度去區分這些成因,最重要的關鍵在於,能否從隨機背景中找到特定的波源方向。

如果是雙黑洞系統造成的重力波,勢必會有來自某些方向的訊號比較強;反之,如果是早期宇宙產生的重力波,那麼這些重力波將會隨著宇宙的膨脹瀰漫在整個宇宙中,因此它們勢必是相當均向的。

為了找到波源方向,提升訊號的靈敏度成為了當務之急。而若要提升 PTA 的靈敏度,最主要的方式有兩種——其一是將更多的脈衝星加入陣列;其二則是延長觀測的時間。

目前,不同的 PTA 團隊已經組成國際脈衝星計時陣列(International PTA)互相分享彼此的脈衝星觀測資料。隨著觀測技術的進步,解密這些奈赫茲級別的神祕重力波將指日可待。

-----廣告,請繼續往下閱讀-----

註解

  1. 相較於過往只能以可見光觀測宇宙,多信使天文學能利用多種探測訊號,如電磁波、微中子、重力波、宇宙射線等工具探索宇宙現象,獲得更多不同資訊及宇宙更細微的面貌。
  2. 質量較重的恆星在演化到末期、發生超新星爆炸(supernova)後,就有可能成為中子星。

延伸閱讀

  1. 林俊鈺(2016)。發現重力波!,科學月刊556,248–249。
  2. 金升光(2017)。重力波獨白落幕 多角觀測閃亮登場,科學月刊576,892–893。
  3. NANOgrav. (Jun 28 2023). Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony. NANOgrav.
  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 2
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

6
3

文字

分享

0
6
3
天文學家發現至今最年輕、威力相當於「一萬個螃蟹」的中子星
全國大學天文社聯盟
・2022/07/31 ・3383字 ・閱讀時間約 7 分鐘

  • 文/語星葉

2018 年,在特大天線陣巡天計畫(VLA Sky Survey, VLASS)的資料中,一個來自遙遠星系的不尋常電波源,吸引了天文學家的注意。經過四年的觀察與分析,他們認為這個未知電波源,最可能是來自一個非常年輕且威力強大的中子星。

圖一、畫家筆下的脈衝星,中央黃色部分為脈衝星與周遭雲氣交互作用產生的脈衝星風星雲,外圍球對稱的絲狀結構則為超新星爆炸殘骸。圖/Melissa Weiss, NRAO/AUI/NSF

這個電波源在二十年前,在特大天線陣的第一個巡天計畫「FIRST」資料中尚不存在,代表這是個「瞬變天體(Transient)」,即在人類的時間尺度中,可觀察到明顯變化的天體——別忘了,人類的千年歷史,在宇宙時間尺度下都只是一瞬。

在當今望遠鏡技術的快速推進下,瞬變天體其實並不罕見。每天都有許多新的瞬變天體被望遠鏡捕捉。然而,至今仍有許多瞬變天體覆著未知的面紗,例如 21 世紀新發現、被稱作「快速電波爆(Fast radio burst, FRB,圖二)」的瞬變天體,便是今日天文物理學的熱門主題。

科學家對其極高光度、極短時距的成因和來源都還沒有定論。不過,這個新發現的電波源未來有望為我們帶來解答!

圖二、2006 年,人類發現的第一個快速電波爆訊號。這個訊號時距僅 0.005 秒,強度卻是最小可偵測訊號的 100 倍(見右上角小圖)。不同頻率的訊號有顯著的位移,代表這個訊號來自銀河之外的遙遠星際。圖/Lorimer et al. 2007

天文學家認為,這次的未知電波源,最可能是來自一顆脈衝星(Pulsar,圖一)、甚至可能同時是一顆磁星(Magnetar,圖六),與周遭氣體交互作用所產生的星雲亮光。脈衝星和磁星都是中子星的一種,至於它們分別是什麼,以及為何會有這些不同的名稱,則要回顧一下中子星的發現史。

-----廣告,請繼續往下閱讀-----
圖三、位於美國新墨西哥州的特大天線陣(Very Large Array, VLA)為一套擁有 27 支天線的電波望遠鏡。圖/NRAO/AUI/NSF

理論推演中子星、觀測發現脈衝星,證明中子星的存在

在 1933 年的美國物理年會上,也就是查兌克宣布發現中子後一年,兩個不相干的理論團隊雙雙提出,因恆星塌縮後反彈而形成的「超新星」爆發,會促使中心區域坍縮形成「中子星」,即體積極小、非常緻密,由中子擠在一起形成的天體。這無疑是一重大突破,在此之前,天文學界還不清楚超新星跟新星(Nova)是來自不同的物理機制,而「中子星」更是沒人提過的概念。

此後,超新星的概念快速普及,觀測上古往今來的超新星也如雨後春筍般被識別與發現。然而,中子星的概念,還要等到三十多年後脈衝星的發現,才被廣為接受。[3]

1967 年,一位年僅 24 歲的劍橋大學研究生約瑟琳.貝爾.伯奈爾(Jocelyn Bell Burnell,圖四)和她的指導教授安東尼.休伊什(Antony Hewish),在無線電望遠鏡資料中,發現了一種會以極短的週期快速閃爍的未知無線電波源,她們稱之為「脈衝星」。然而究竟是什麼原因產生這樣的訊號?他們沒有頭緒。

一開始,休伊什甚至認為可能是收到了來自遠方智慧生命的訊號,還暱稱為「小綠人(Little green man,20 世紀電影中外星人時常是綠色皮膚)」。因為他難以想像這樣短促而準確的週期性訊號,不是生命體、而是自然現象產生的。[4]

-----廣告,請繼續往下閱讀-----
圖四、1967 年,時任劍橋大學研究生的約瑟琳眼尖地發現了週期性出現在電波影像的未知訊號。圖攝於當年 6 月。圖/Roger W Haworth

此時,被猜疑了三十多年的中子星概念再次登場,而且馬到成功,完美地解釋了這種短週期出現的電波訊號。原來脈衝星是高速旋轉的中子星,其高轉速及強磁場會在中子星的兩極產生高能帶電粒子,從而發射出無線電波波段的輻射。於是兩極的電波束便隨著中子星的高速自轉,如燈塔般週期性的指向地球,被電波望遠鏡所接收,這便是脈衝星的由來(見圖五)。電波脈衝星的自轉週期只有 0.1~10 秒,如此極端的物理性質,也只有中子星可以滿足了。

圖五、脈衝星的兩極高能帶電粒子會發射強電波束,隨著脈衝星高速自轉而規律地指向地球,被電波望遠鏡接收,此即脈衝星訊號的成因。

至於磁星,一種擁有超強磁場的中子星,其發現就更加戲劇性了。

發現磁星

1979 年是磁星粉墨登場的一年。時年 3 月 5 日,先是蘇聯的金星 11 號和 12 號兩顆人造衛星被不明的伽瑪射線給擊中,其搭載的光子計數器瞬間就被「打爆」,超越計數器所能計量的數額,接著這波伽瑪射線接連爆擊了 NASA 的繞太陽衛星和繞金星衛星的伽瑪射線接收器,而後通過地球(還好我們的地球大氣層會把伽瑪射線隔絕在外),襲擊數個繞地衛星後揚長而去。

當年天文學家接收到數個類似的伽瑪射線閃光,其中最亮的閃光(也就是 3 月 5 日那波)在 0.2 秒內釋放了相當於太陽燃燒 1000 年的能量!

這些閃光還具有週期性,在約一週內反覆出現並逐漸消失,有的甚至幾個月或幾年後還會再度出現。經過數十年的研究,如今天文學家認為這些訊號同樣來自中子星,但這類中子星的磁場比一般中子星強上數百到數萬倍,因此被冠以「磁星」之名。

-----廣告,請繼續往下閱讀-----
圖六、繪筆下的磁星。圖/ESO/L. Calçada

威力相當於「一萬個螃蟹」的脈衝星風星雲

回到正題,天文學家分析 2018 年特大天線陣接收到的新電波源後發現,這個電波源來自約 4 億光年遠的一個矮星系,且坐落在許多大質量恆星之間,因此極可能是大質量恆星爆發後的殘骸。

超新星爆發之際,剛形成的中子星擁有超強磁場、極高速的自旋,但仍被爆炸所拋出的恆星碎片層層包裹而不可見。需待這層外殼緩緩擴張、物質密度降低以後,中子星所發出的光才得以「撥雲見日」,進入我們眼中。

與此同時,中子星強烈的磁場會拉扯外圍的帶電粒子,使其高速撞擊周遭星際物質,從而發出強烈的電磁輻射、形成圍繞中子星的明亮星雲,稱之為脈衝星風星雲(Pulsar wind nebula, PWN)。最有名的脈衝星風星雲——蟹狀星雲(Crab nebula,圖七)距離我們僅數千光年,因此我們對它有深入的觀察。

根據分析,這個電波源隨時間的光度變化和已知的脈衝星風星雲相似,因此研究人員認為最有可能的解釋,便是一個前所未見的超明亮脈衝星風星雲。

-----廣告,請繼續往下閱讀-----
圖七、蟹狀星雲中心的中子星(圖片中央的橘紅色亮星)及周圍的脈衝星風星雲。藍色為錢卓望遠鏡拍攝的 X 射線、紅色為哈伯望遠鏡捕捉的可見光。圖/NASA

這個 20 年內便突破超新星爆炸煙塵的脈衝星,不僅是人類已知年紀最輕的中子星,更是一個威力強大的中子星。其發出的 X 光強度高達「一萬螃蟹」——不是筆者亂用,「螃蟹(Crab)」真的是一個天文學單位!

就像天文學家也常用「太陽質量」作為天體質量的單位,或是用「天文單位」衡量距離,一個「螃蟹」指的是一個蟹狀星雲發出的 X 射線強度。一個天體發出的 X 射線有幾個螃蟹,就是其亮度是蟹狀星雲幾倍的意思。之所以選擇蟹狀星雲作為標準,是因為在這個領域,它實在太近、太經典了。

言歸正傳,天文學家認為這顆脈衝星不僅是隻超級螃蟹,可能還是顆磁星——其磁場是人類目前所能製造的最強磁場的數億倍!由於磁星被認為可能是快速電波爆的來源,因此可以預期接下來這個年輕的候選磁星,將被天文學家們用望遠鏡細細關照,於其中能探究多少蛛絲馬跡,又有多少新發現尚待挖掘,讓我們引頸期待。

參考資料

  1. Astronomers Find Evidence for Most Powerful Pulsar in Distant Galaxy – National Radio Astronomy Observatory
  2. Dong, Dillon ; Hallinan, Gregg (2022). arXiv e-prints. 
  3. Baade and Zwicky: “Super-novae,” neutron stars, and cosmic rays
  4. Cosmic Search Vol. 1, No. 1 – Little Green Men, White Dwarfs or Pulsars?
  5. Kouveliotou, C.; Duncan, R. C.; Thompson, C. (February 2003). “Magnetars“. Scientific American.