0

0
0

文字

分享

0
0
0

掩星觀測顯示鬩神星和冥王星大小幾乎相等

臺北天文館_96
・2011/11/03 ・1722字 ・閱讀時間約 3 分鐘 ・SR值 508 ・六年級

-----廣告,請繼續往下閱讀-----

天文學家利用鬩神星掩星的方式,精確測量鬩神星的直徑,結果發現鬩神星的直徑幾乎與冥王星相同;這個結果同時暗示鬩神星的表面反照率比預期還高,很可能在其表面佈滿了均勻的薄冰層。相關論文發表在自然(Nature)期刊中。

鬩神星是太陽系目前已知的5顆矮行星之一,發現至今,一度認為其直徑比冥王星大,而讓天文學決定新增一個分類–矮行星,且造成冥王星被從行星改分類為矮行星的關鍵因素。當鬩神星從某顆遙遠恆星的前方通過時,會掩蓋星光,天文學家可以根據掩星時間長短來精確測定鬩神星的直徑;這是天文學家用以測定遙遠太陽系天體直徑的方法中最精確的,而且常常是唯一的方式。此外,如果多點同時觀測,綜合各地觀測結果後,可估算出這些遙遠天體的大致形狀。

由於鬩神星體積不大,而且又很遙遠,在天空中的移動速度緩慢,所以鬩神星掩星事件相當稀少且觀測難度高;下一場鬩神星掩星事件得等到2013年呢!這場鬩神星掩星事件發生於2010年11月,由於機會難得,由法國、比利時、西班牙和巴西等國的天文學家組成一個聯合團隊,在掩星事件發生前就開始小心地計畫觀測事宜,全球總觀測點則多達26處,多半沿著預測的掩星帶分佈,其中包含一些業餘天文台。

This diagram shows the path of a faint star during the occultation of the dwarf planet Eris in November 2010. Two sites in South America saw the faint star briefly disappear as its light was blocked by Eris and another recorded no change in brightness. Studies of where the event was seen, and for how long, have allowed astronomers to measure the size of Eris accurately for the first time. Surprisingly, they find it to be almost exactly the same size as Pluto and that it has a very reflective surface. Credit: ESO/L. Calcada   而專業天文台中,有2處位在南美智利;Bruno Sicardy等人利用歐南天文台(ESO)La Silla觀測站的0.6米比利時TRAPPIST望遠鏡(TRAnsiting Planets and PlanetesImals Small Telescope)進行觀測,這是La Silla最新設置的自動望遠鏡;而另一處阿卡塔瑪的聖佩卓( San Pedro de Atacama)則有兩座望遠鏡加入觀測。而在掩星之前,天文學家已經用同樣在La Silla的2.2米MPG/ESO望遠鏡確認過將被鬩神星掩過的這顆昏暗恆星。這3座望遠鏡都記錄到鬩神星掩星瞬間,恆星亮度突然下降的現象。將智利這兩處的觀測資料整合後,發現鬩神星的形狀非常幾近正球形,沒有過於龐大的山脈將此天體拉到變形。

-----廣告,請繼續往下閱讀-----

先前利用其他方式觀測鬩神星直徑,顯示鬩神星的直徑約比冥王星大25%,接近3000公里。但利用掩星方式測得的新結果則僅約2326公里,誤差僅±12公里。這個數值與冥王星直徑約2300~2400公里相當。冥王星的直徑比較不易測量,是因為冥王星具有薄薄的大氣層,讓掩星過程中,冥王星邊緣顯得有點模糊所致。

天文學家先前也曾利用鬩神星的衛星鬩衛一(Dysnomia)來估算鬩神星的質量,得出1.66×1022 kg,約比冥王星重27%,但僅及月球的22%而已。綜合直徑與質量資料後,得出鬩神星的平均密度約為2.52g/cm3,雖比月球的3.3g/cm3低,但仍顯示鬩神星很可能是一個龐大的岩質天體,其中核心處佔了約85%的是岩石,而在最外層約100公里厚的是佔了剩餘15%的水冰。

此外,鬩神星的表面反照率(反射太陽光的比例)高達0.96,換言之,每100%的陽光照射到鬩神星之後,有多達96%的陽光會被反射回太空。這個反射率比地球的雪面反射率還高,讓鬩神星和土衛二(Enceladus)一起成為太陽系中反照率最高的天體。相較之下,月球表面反照率低達0.136,和煤炭差不多。

從光譜觀測已知鬩神星表面富含氮與甲烷等成分,因此這些天文學家猜想:鬩神星表面反照率之所以這麼高,很可能是因為表面覆蓋一層富含氮冰和甲烷冰的冰層,但冰層極薄,僅約幾毫米厚而已,應是鬩神星沿著其狹長的軌道遠離太陽時,所接收到的太陽光熱愈來愈少、愈來愈冷,稀薄大氣中的氮和甲烷等成分因而在鬩神星表面凝固成霜的結果,與其下方100公里厚的水冰層不同。天文學家估計,當鬩神星未來再度沿著軌道逐漸接近太陽到近日點附近時,離太陽僅約57億公里,此時表面這些凍霜就有機會昇華成氣體,重新變成大氣的一部份。

-----廣告,請繼續往下閱讀-----

這個新觀測結果也讓這些研究團隊有機會測得鬩神星的表面溫度。估計結果顯示鬩神星表面僅約攝氏零下238度,在鬩神星背對太陽的夜晚面應該比這個溫度更低。

利用小望遠鏡,經由掩星方式,就可以獲得這麼多這顆矮行星的訊息,讓這些天文學家喜出望外。Sicardy說道:在矮行星被定義出來5年後的這時,我們才終於有機會能進一步瞭解其中一個矮行星成員了。

資料來源:Faraway Eris is Pluto’s Twin[2011.10.26]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

7
2

文字

分享

3
7
2
關於冥王星的二三事:從發現、成為第九行星到降級為矮行星
htlee
・2018/04/23 ・2713字 ・閱讀時間約 5 分鐘 ・SR值 508 ・六年級

尋找第九顆行星

1846年發現了太陽系中的第八顆行星海王星後,許多科學家就試著要去找第九顆行星。波士頓的富豪帕西瓦爾·羅威爾(Percival Lowell)非常喜歡天文,1890年代他在亞利桑納的旗竿鎮建造了羅威爾天文台(Lowell Observatory),羅威爾除了觀測火星外,也參與尋找第九顆行星的計畫。但是1916年羅威爾去世為止,第九顆行星一直沒有被發現。

帕西瓦爾·羅威爾在羅威爾天文台。source:Wikimedia

1929年,在當時只有23歲的湯博(Clyde Tombaugh)受僱於羅威爾天文台,他主要的工作便是尋找第九顆行星。湯博使用的是一部33公分的望遠鏡,他在不同晚上拍攝天空中同一個區域的天體,然後將不同的照片做比對:因為相對於天空星星的位置行星會緩慢地移動,如果發現一個不曾發現的緩慢移動的天體,那麼它可能就是正在尋找的第九顆行星!

湯博和他自製的9吋望遠鏡。

-----廣告,請繼續往下閱讀-----

1930年2月18日,湯博比較1月23日和1月29日拍攝的照片時,發現一個小亮點移動了位置。接下來一段日子的觀測,確認這個天體確實在移動!3月13日他們把發現結果公諸於世。

這個重大的發現立刻成為世界各地的頭條新聞,羅威爾天文台於是公開徵求對這個天體命名,在許多的建議當中,最後選定「Pluto」冥王這個名字,因為這個字的開頭PL和羅威爾天文台的贊助人帕西瓦爾·羅威爾(Percival Lowell)名字的縮寫是一樣的。

冥王星和其他夥伴有點不一樣?

當冥王星的軌道被計算出來後,科學家就發現它和其他的行星相當不一樣,太陽系其他行星以接近圓形的軌道繞太陽運行,但是冥王星的軌道形狀卻相當橢圓,離太陽最近和遠的距離分別是29.7 AU和49.3 AU (AU是地球到太陽的平均距離),當冥王星離太陽最近時,甚至比海王星還靠近太陽。另外,太陽系裡的其他行星幾乎都在黃道面上繞太陽運行,但是冥王星的軌道卻偏離黃道面達17度!

除了軌道特異外,冥王星的質量還比其他行星小很多。1978年發現冥王星的最大衛星夏戎(Charon)後,透過夏戎繞冥王星的軌道,科學家可以計算出冥王星的質量,冥王星的質量只有地球的0.2%!

-----廣告,請繼續往下閱讀-----

新視野號太空船飛掠冥王星時拍攝的冥王星影像。圖片來源:NASA

冥王星被發現後,就有天文學家預測在海王星外,還有許多小天體還沒被發現。但是一直到1992年才在海王星外發現另一個天體,1992 QB1。而到2017年年初為止,已經在海王星外發現了超過2000顆的這類天體,這些天體泛稱為海王星外天體(Trans-Neptunian object, TNO),其中2004年發現的妊神星(Haumea),它的質量大約是冥王星的三分之一,這些天體的軌道和冥王星類似,冥王星會不會只是海王星外天體中最大的一顆而已呢?

新天體的發現反而讓冥王星「降級」了?

2005年1月,麥克·布朗(Mike Brown)和他的團隊發現了一個新的天體,這個天體後來被稱為鬩神星(Eris),鬩神星的名字源自希臘神話,她代表著不和與紛爭,鬩神星就如同它的名字一樣,引發了冥王星是不是行星的爭論。

哈伯太空望遠鏡拍攝的鬩神星影像,中央的亮點就是鬩神星,鬩神星左邊的是它的衛星,圖片來源NASA

-----廣告,請繼續往下閱讀-----

鬩神星的質量比冥王星稍大,但是體積比冥王星稍小,當鬩神星被發現時,有人稱它為第十號行星!但是另一些科學家卻不認為鬩神星是一顆行星,他們主張冥王星和鬩神星不同於其他行星,應該另外分類成一種新的天體。

冥王星到底是不是一顆行星?這個問題應該要回到最根本的地方,什麼是「行星」?如果行星被清楚的定義,那麼就可以解決冥王星是不是行星的問題。國際天文聯合會(International Astronomical Union, IAU)邀集了專家學者討論這個問題,2006年8月時公布了行星的定義:

  1. 行星必須繞太陽運行。
  2. 行星的質量夠重足以讓自己呈圓形。
  3. 行星能夠清除軌道附近上的其他天體。

冥王星雖然符合第一和第二個定義,但是卻不符合第三個條件,因為冥王星的軌道上有許多的海王星外天體,那麼冥王星應該歸類為什麼樣的天體呢?

天文上常常用「矮」這個字來描述較小的天體,例如紅矮星是質量最小天恆星;棕矮星是比恆星質量小一些,不會產生氫核融合的天體;而矮星系是比一般星系還要小的星系。天文學家於是把不符合行星第三個條件的天體稱為「矮行星」(dwarf planet),所以冥王星和鬩神星就被歸類為這種天體。目前國際天文聯合會認定的矮行星有五顆:冥王星、鬩神星、妊神星、鳥神星(Makemake)和穀神星(Ceres),另外還有一些天體在矮行星的候選名單之中,科學家相信還有許多矮行星在海王星之外等著被發現。

-----廣告,請繼續往下閱讀-----

麥克·布朗本來以為發現了第十顆行星,但是因為鬩神星的出現,最後太陽系行星的數量,反而從九顆降為八顆,這可能是他沒有預料到的結果。麥克·布朗因為發現鬩神星,讓冥王星被降級,所以他被封為冥王星殺手,麥克·布朗似乎還蠻喜歡這個封號,他還為此寫了一本書《我是如何殺了冥王星的》!!

所以冥王星就從此過著身為矮行星的生活了嗎?

仔細看一下國際天文聯合會對行星的定義,這個定義似乎是為冥王星量身定做的,感覺就好像刻意要將冥王星排除在行星之外。

其中感觸最深的應該是艾倫·斯特恩(Alan Stern),他是新視野號太空船的計畫主持人,2006年1月新視野號(New Horizons)發射升空時,這艘太空船的最主要目的是探索太陽系裡還未被太空船探訪的最後一顆行星:冥王星,結果新視野號升空幾個月後,冥王星就被降級為矮行星,原本要探訪的冥王星,變得不再是一顆行星,情何以堪!

新視野號(New Horizons)。source:Kevin Gill @Flickr

-----廣告,請繼續往下閱讀-----

艾倫·斯特恩認為國際天文聯合會對行星的定義有問題,也不夠嚴謹。以木星為例,木星繞太陽的軌道上並不是只有木星而已,它的軌道上還有兩大群的特洛伊小行星(Trojan),這些小行星和木星一起繞著太陽運行,這表示木星並沒有清光軌道上的其他天體。另外,地球附近也有近地小行星,地球也沒有完全清光軌道上的天體。如果根據國際天文聯合會的定義,木星和地球也不能算是行星!

最近有一些人(主要是包括艾倫·斯特恩在內的新視野號團隊)主張應該把冥王星再列為行星,他們認為行星應該重新定義:行星是比恆星還要小的天體,它們不會進行核融合反應,本身的重力能夠讓自己呈球形,而且和它們的運行軌道沒有關係。根據他們的定義,太陽系裡的行星數量會暴增到大約110顆!因為一些較大的衛星(包括我們的月球)都會升級成行星!他們已經將提議交給國際天文聯合會,冥王星會不會重新回到行星的行列?就讓我們拭目以待吧!

如果新的行星定義通過國際天文聯合會的審查,我們的月球以後也會變成行星!攝影:李昫岱

-----廣告,請繼續往下閱讀-----
所有討論 3
htlee
19 篇文章 ・ 9 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!