網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

【Gene思書齋】仰望夜空的宇宙奧祕

Gene Ng_96
・2015/08/06 ・1528字 ・閱讀時間約 3 分鐘 ・SR值 495 ・六年級

老實說,我過去真的不太關心發生在夜空的事,雖然懂一些星象、星座顯然比較好把妹,尤其是可以明正言順地帶正妹去暗暗的地方……

也有學妹問我,我不是興趣廣泛、好奇心旺盛的人嗎?怎麼對天文現象一點也不感興趣,我就回答說,我只對地球上的事物感興趣,地球以外的太遙遠了,沒時間和精力去多了解。

宇宙太深遠了,就一個地球,我們窮極一生也不可能瞭解徹底,還去管其他星球幹嘛?不過,我這個想法近來有些改變了,尤其是看了電影《星際效應》(Interstellar)之後。

地球,對其他星球來說,不也只是顆星球而已嗎?對,我們只有一個地球,就像地球上只有一種人類一樣。身為一個生命科學研究者,我們不也是利用其他微生物、動植物來研究生命的奧妙,期待有一天能夠解釋我們人類的各種生物學現象嗎?

或許,我們的眼界真的該擴大一些,往地球以外的地方看得愈遠,對地球這顆獨一無二的行星能夠瞭解得更深。讀了《星際效應》的科學顧問基普‧索恩(Kip Thorne)的好書《星際效應:電影幕後的科學事實、推測與想像》The Science of Interstellar),對天文現象也更加的好奇,天文學現象的觀測也改變了許多物理學的基礎理論,讓我們對世界的認知產生翻天覆地的改變,並且也是許多現代高科技的搖籃(請參見〈讀完這本書,你會再看一次《星際效應》〉)。

如果想了解許多有趣怪異的天文現象,這本《仰望夜空:全世界最想知道的 362 個宇宙奧祕》The Sky at Night: Answers to Questions from Across the Universe)是不錯的選擇之一,其作者之一摩爾爵士(Patrick Moore,1923–2012),是一部英國 BBC 出品的關於天文學的月度電視紀錄片《仰望夜空》(The Sky at Night)的主持人。

為了迎接了太空競賽的時代到來,BBC 從 1957 年四月二十四日推出了《仰望夜空》。首播以來,《仰望夜空》都由同固定的一名主持人摩爾爵士主持,成為電視史上同由一名主持人主持的最長壽的節目。

《仰望夜空》廣泛地涵蓋了所有天文學和宇航探索的相關內容,包括恆星演化、射電天文學、人造衛星、黑洞、中子星、國際太空站、太空旅行、外星生命等等。當彗星或流星雨出現時,《仰望夜空》也會即時報導。

為了慶祝《仰望夜空》開播五十五周年,摩爾爵士和新生代天文學家諾斯(Chris North),邀請全世界的觀眾提出心中最想知道答案的天文問題,並將所有問答收錄在《仰望夜空:全世界最想知道的 362 個宇宙奧祕》之中,涵蓋範圍極為廣泛,凡是你想得到的,書中應該都有吧。

書中的問題五花八門,除了廣泛的天文知識,還有摩爾爵士進入天文學領域幾十年不懈的心路歷程。看了真配服西方觀眾的好奇心和想象力之豐富。不過,這本書還是需要有一定的基本天文學知識才好讀,否則連為何有那些問題可能都不清楚。

真的對天文學產生了興趣,除了讀這本書和親自到暗暗的地方作不需告人的事,還可以到台北市立天文科學教育館或台中國立自然科學博物館參觀,還有參加台北、台中、嘉義、台南、高雄、屏東、台東等各地的天文協會或親子觀星會。另外一些年度盛會有十、十一月的台中天文學會辦的合歡山星空饗宴(Star Party),以及五、六月屏東天文協會辦的墾丁星空吶喊,相信都能滿足你的好奇心。

仰望夜空,珍惜寶貴的地球和生命吧!

本文原刊登於閱讀‧最前線【GENE思書軒】,並同步刊登於The Sky of Gene

 

文章難易度
Gene Ng_96
295 篇文章 ・ 16 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋


0

5
0

文字

分享

0
5
0

如何從茫茫大海中,找到戰爭遺留的深水炸彈?——海底掃雷行動

Else Production
・2022/01/19 ・2597字 ・閱讀時間約 5 分鐘

對於年輕人來說,我相信「深水炸彈」一詞並不會陌生,因為這近乎是每一個狂歡派對裡的必需品。但對於埋藏在深海裡的炸彈,大家又有沒有想過我們如何找出來?

這些未爆炸的軍備,我們稱之為 Unexploded Ordnance(簡稱 UXO),有可能是水雷,有可能是深水炸彈,也有可能是導彈。它們多數是第一次或第二次世界大戰遺留下來的產品,受到多年來沉積(即水流在流速減慢時,所挾帶的砂石、塵土等沉淀堆積起來)的影響,令它們埋藏在海床以下的地方。跟據 Euronews 的估計,單單在波羅的海亦有超過 30 萬的 UXO 埋在那裡。

二戰期間,桑德蘭水上飛機掛載的深水炸彈,圖/維基百科

你也許會問,既然都已經埋藏了,何況我們仍然要處理他們?這是因為我們會在海底裡鋪設電欖、水管、天然氣輸送管等輸送系統,假如鑽探過程中不小心觸碰了它們已產生意外,或是在完成工程某一天突然爆炸而令輸電系統中斷,後果可真是不堪設想。因此,最理想的方法便是把他們全部找出來並繞道而行,或是安排專家把他們處理。

真正的大海撈針:用磁場把 UXO 吸出來!

要找到這些 UXO,最容易的方法便是使用金屬探測的方法,但由於普遍的金屬探測器的探測範圍是不超過 2 公尺的,我們很難把探測器貼近凹凸不平的水底前行(這大大增加了磨損探測器的風險),因此我們會選擇較間接的方法:磁強計(Magnetometer)。由於大部份的彈藥外層是用鐵形成的,而鐵是對磁非常敏感的,因此我們能夠在較遠的範圍便能察覺他們的存在。當在外勤工作,我們會以兩個磁強計為一組去作探測,令我們更準備知道其實際位置及大小。讓我們看看以下例子:

圖 1:磁強計的探測結果

在圖 1 裡,假設我們知道標記「1」是一個 UXO 的位置,上圖的平行線為磁強計由左至右的移動路線,下圖為磁場沿路的變化。我們可以看見,當若果沒有任何金屬物件存在的話,兩個磁強計量度的數是相近的,亦即是該環境本身的磁場。但在 UXO 的附近,我們可以看到明顯的變化。藍色線代表航行路線的左方磁強計的量度值,燈色線代表右方,由於磁場強度會隨著距離而減少,因此很明顯這一個 UXO 的位置更接近藍色線,亦即是航線的上方。

我們可以透過兩者的差距估計其位置及大小,但為了確保其真實性,我們亦會在附近再次航行,假如也有磁場變異,這便是一個不會移動的金屬物品(撇除了船、飄浮中的海洋垃圾等的可能性)。

排除法:用側掃聲納窺探看不見的海底!

正如上文提要,磁場變異所告訴我們的,只是金屬物品的位置,但它亦有可能不是炸彈,也有可能不是埋在海床下,因此我們也會使用其他科學方法去驗證。其中一個便是側掃聲納(Side Scan Sonar) ,透過聲波反射的原理,我們可以看到海床的影像。假如海床是乾淨的,聲波傳送及接收的時間是一樣的,因此我們可以看到連續的晝面。但假如有異物在水中間或海床上,聲波便會被折射而形成黑影。讓我們看看以下例子:

圖2: 側掃聲納 圖片,紅色箭咀範圍代表沒有反射的區域,綠色箭頭範圖代表船與海底的距離 (圖片來源:Grothues et al., 2017)

看看圖 2。燈色的部份是海床的晝面,中間白色的部份是船的航道,亦是側掃聲納的盲點,而黑色的部份則是有物件在海床上方而形成的聲波折射,讓我們能夠清楚看見它們的形狀。有時候我們亦會看到一些海洋垃圾,如車胎、單車等,而在上圖的左上方,我們相信是一些棄置的工業廢料。

當然你也可以爭論,在圖左上方的物件有機會不是死物,而是一種未知海洋生物,因此我們也會進行多次的側掃聲納,如果在同一位置並不能再看到它,那麼這是生物的機率便很高。假如在磁場異變的位置側掃聲納沒有探測到任何物件,這進一步證明其 UXO 的可能性。但假如有黑影在上方,我們也會透過黑影分析其大小是否吻合,並會憑經驗分析該物品會否存在金屬。

此外,在看側掃聲納,我們也很重視在磁場異變的位置附近有沒有刮痕,因為形成刮痕的原因多數是船上作業頻繁的地方,有機會是漁船拖網的地點,也有機會是大船拋錨起錨的地方,而這些動作均有機會接觸或移動了這些潛在的 UXO,產生危機。因此,這些地方都會是我們首要處理的地方。

筆者按:假如大家想看看其他用側掃聲納發現的東西,如沉船、飛機等,可以到這裡觀看

萬無一失:Mission Completed !

當然,在取得數據時,我們也要儘可能減低人為因素而形成的影響。舉個例子,我們要確保磁強計遠離測量船,以免船上的儀器影響了磁強計。因此,我們並不會把磁強計綁在船底,而是把它們用纜索綁在船尾數十米以外的地方拖行。

另外,我們也要確保測量船要以均速航行,以確保所有數據都是一致的。最後,我們也要確保船上的 GPS 系統準確無誤,否則所有有可能是 UXO 的位置都是錯誤的。

完成以上的工序後,我們便會製作磁梯度圖(Magnetic Gradient Map),把剩餘下來的磁場變置點用其強度及大小表示出來,正如圖 3,再交給拆彈專家們處理。他們便會跟據他們的專業知識,加上該海岸的戰爭歷史,對比當時有可能參戰的國家、使用的武器及其金屬含量以找出存在的炸彈來處理。

要知道這些 UXO,單單在 2015 年在世界各地亦奪去了超過 6000 人的性命,因此這個科學命題可真是不容忽視!

圖 3:磁梯度圖。左邊是潛在 UXO 的位置而右邊則是它們的磁場強度的改變。(圖片來源:Salem et al., 2005)

延伸閱讀:

參考資料:

  1. Salem, A., Hamada, T., Asahina, J. K., & Ushijima, K. (2005). Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data. Exploration Geophysics, 36(1), 97–103.  
  2. Han, S., Rong, X., Bian, L., Zhong, M., & Zhang, L. (2019). The application of magnetometers and electromagnetic induction sensors in UXO detection. E3S Web of Conferences, 131, 01045.
  3. Image scans gallery. EdgeTech. (n.d.). Retrieved January 5, 2022, from https://www.edgetech.com/underwater-technology-gallery/ 
  4. Grothues, T. M., Newhall, A. E., Lynch, J. F., Vogel, K. S., & Gawarkiewicz, G. G. (2017). High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles. Canadian Journal of Fisheries and Aquatic Sciences, 74(2), 240–255.

本文亦刊載於作者部落格 Else Production ,歡迎查閱及留言

 

Else Production
76 篇文章 ・ 908 位粉絲
馬朗生,見習地球物理工程師,英國材料與礦冶學會成員,主力擔任海上測量工作,包括海床勘探、泥土分析、聲波探測等。