Loading [MathJax]/extensions/tex2jax.js

0

4
0

文字

分享

0
4
0

機器人有意識嗎?-《2050科幻大成真》

時報出版_96
・2015/06/18 ・3763字 ・閱讀時間約 7 分鐘 ・SR值 523 ・七年級

機器人有意識嗎?

想知道為何真正的自動機器人還沒有出現,最清楚的方式是看它們的意識屬於那個階層。我們在第二章說過,可以把意識分成四個階層。階層「0」能用來描述恆溫器或是植物,它們有一些回饋迴路,受到一些簡單參數影響,例如溫度和陽光。昆蟲和爬行動物具有階層「1」意識,這些生物能移動,同時有中樞神經系統,能把「空間」這個新的參數納入自身所處的世界模型中。接下來的階層「2」意識,這個階層的世界模型中納入與其他同種個體的互動,因此需要情緒。最後人類擁有階層「3」意識,其中包括時間和自我意識,好用來模擬事物未來演變的方式,並且決定自身在這些模型中的處境。

根據這個理論,我們可以給現今的機器人排位置。第一代機器人是階層「0」,因為它們不會動,沒有輪子也不能走動。現在的機器人位於階層「1」,它們可以動,但是要在真實的世界中暢行無阻還有很多困難,因此處於非常低階。這些機器人的意識可能和蠕蟲或是移動緩慢的昆蟲相同,若要製造出真正的階層「1」意識,科學家製造出的機器人就要有如昆蟲和爬行動物的意識。就算是昆蟲,也具有現在機器人所缺乏的能力,例如能快速找地方躲起來、在森林中找到交配對象、察覺掠食者而逃開,以及找尋食物與棲所。

之前提過,我們可以依照回饋迴路的數量把各階層的意識再細分。例如有眼睛的機器人就有多個迴路,因為這種感測器能偵測三度空間的影子、邊緣、曲線和幾何形狀。如果有耳朵,機器人便能偵測頻率、音量、聲壓和聲音的休止。這樣回饋迴路加起來大約有十個。(昆蟲因為要在自然環境中找尋食物、伴侶和棲所,因此回饋迴路可能有五十個以上)。因此,典型的機器人意識為階層「1:10」。

接下來,如果機器人具有階層「2」意識,它們所建立的世界模型就要能納入其他個體。我們之前說過,在階層「2」意識中,第一個計算值是群體中的個體數量乘上每個個體具有的情緒種類,和彼此溝通的表現方式數量。因此機器人可能具有階層「2:0」意識,不過現今的實驗室必須先製造出具有情緒的機器人。

-----廣告,請繼續往下閱讀-----

現在機器人所見到的人類,只是從攝影機捕捉到的像素,不過有些人工智慧的研究人員開始打造能經由表情和聲調來辨認情緒的機器人。這是機器人了解人類的第一步:人類不只是隨機排列的像素,而是具有情緒狀態。

在接下來幾十年,機器人將會慢慢在階層「2」中爬升,開始具有小鼠、大鼠、兔子、狗的智能,然後是貓。在本世紀末期,機器人可能具有猴子的智能,開始會產生自己的意識。一旦機器人具有從普通常識而來的應用知識,並且具有心智,就能對未來作出複雜的模擬,而且以自己擔任主要角色,這時便擁有階層「3」意識。它們會離開「現在」的世界,而進入「未來」的世界。對於現在的機器人來說,這還是好幾十年以後的事情。要模擬未來,意味著必須清楚掌握自然定律、因果關係和普通常識,這樣才能考慮未來的事情。這也意味著要了解人類的意圖與動機,才能預測他們未來的行動之前也提過,階層「3」意識的數值,是由個體在模擬未來各種真實情況時,所使用的因果連結數量,除以對照組的數量而得到的。現在的電腦能靠幾個參數模擬有限的狀況(例如兩個星系的碰撞,飛機周圍空氣的流動、建築物在地震時搖動的方式),但是還無法模擬未來複雜的狀況,因此它們的意識可能像是階層「3:5」。

因此我們需要花很多年工夫,才能製作出能展現人類社會中普通功能的機器人。

source:Peyri Herrera
source:Peyri Herrera

速度是障礙

機器人何時才能具有人類的智能,甚至超越人類呢?沒人知道,但是有許多人預測,其中大部分人的依據是摩爾定律,將之推廣到數十年後。但是摩爾定律並非真正的定律,因為它違背基本的物理定律:量子理論。所以摩爾定律無法永遠持續下去,而且我們現在已經看到速度減緩了。在十年或二十年內,速度的增加會平緩下來,結果會很可怕,特別是對電腦資訊產業。

-----廣告,請繼續往下閱讀-----

目前可以在指甲大小的晶片上放入數百萬個電晶體,但是能在這些晶片上放入的電晶體數量有限。奔騰晶片中最薄的一層只有二十個原子厚,但是到了二○二○年可能只有五個原子厚。接下來海森堡(Werner Heisenberg)的測不準原理(uncertainty principle)效應就會越來越明顯,你將無法確定電子的位置,電子可能從線路中漏出來,晶片會短路。(附錄會詳細討論量子理論和測不準原理。)此外,晶片發出的熱足以在上面煎蛋。除非找到替代方案,漏電和發熱的問題最後會讓摩爾定律的速度慢下來。

以二維晶片上容納電晶體的方式,計算能力已經到了極限,因此英特爾公司花費數十億美元,未來將放在三維晶片上。時間會說明這樣的賭注能否回本。(三維晶片的主要問題之一是晶片越高,產熱的__速度也越快。)微軟則採用其他方式,例如用二維晶片進行平行處理。其中一種可能的方式是把晶片水平排成一列,然後把一個軟體問題分成好幾部分,每個部分分給一個晶片,最後再集合起來。但是這個過程並不容易,而且軟體發展的速度要比我們習慣的超快速摩爾定律慢許多。

這些權宜之計可能讓摩爾定律再撐幾年,但是最後這些伎倆都有盡頭,都逃不過量子理論的掌控。因此矽晶片電腦的時代終將結束,科學家正在實驗各種不同形式的電腦,例如量子電腦、分子電腦、奈米電腦、DNA電腦、光學電腦,不過目前這些技術沒有一個可以運用。

詭異之谷

我們先假設有一天真的發展出難以置信的複雜機器人,晶片上的電晶體可能是分子而不是矽。這時,我們要這些機器人和人類多像呢?在製造類似萌寵物和小孩的機器方面,目前日本居於領先地位,但是這些設計師很小心,不要讓機器人太像人類,不然會讓人怕怕的。這種現像是日本的森政弘博士在一九七○年首先研究的,他稱之為「詭異之谷」:如果機器人太像人類,反而會恐怖。(這個效應最早是一八三九年達爾文在《小獵犬號航海記》提出的,後來佛洛伊德於一九一九年有篇文章標題就叫做〈詭異〉。)從那時起,不只人工智慧研究者,連動畫師、廣告主,以及其他要推銷人形產品的人,都仔細研究這個理論。例如CNN評論動畫電影《北極特快車》時,說:「片中出現的人類角色簡直是……嗯,讓人毛骨悚然。《北極特快車》說好聽是讓人不安,說難聽是有點驚悚。」

-----廣告,請繼續往下閱讀-----

根據森政弘的說法,如果機器人越像人類,我們對機器人的同理心就越多(但只多到某個點),如果機器人有人類的外觀,同理心便會大幅減少,這就是「詭異之谷」。如果機器人的外表和人類非常相似,但是又有一些特徵不同,這便顯得「詭異」,讓人有嫌惡和恐懼之感。如果機器人外表和人類百分之百相同,和你我無法區分出來,這時我們又會恢復正面情緒。

這個理論有實用的意義,例如,機器人應該要微笑嗎?首先,機器人應該要微笑待人,讓我們覺得舒服。微笑是世界性表示友善與歡迎的方式,但是如果機器人的微笑太真實,反而會讓人起雞皮疙瘩。(例如萬聖節面具通常做成有惡魔面貌的食屍鬼咧嘴而笑。)機器人的微笑要有童顏(例如圓臉大眼),不然就非常像真人,不能在兩者之間。(故意微笑時,我們是用前額葉皮質控制面部肌肉,如果是發自內心的微笑,則是由邊緣系統所控制,兩者運用的肌肉組合有些差異。人類腦能區分這樣的差異,這有利於演化。)

這種效應也可以用腦部掃描來研究。我們把受試者送進磁振造影機器中,讓他看一個長得和人類一模一樣的機器人圖片,不過這個機器人的身體動作有些抽象,像是機器。腦不論看到任何東西,都會預測它未來的動作。不過當機器人的動作像是機器,就和外貌無法配合,這讓我們感覺不舒服。這時頂葉會格外活躍(特別是連結運動皮質和視覺皮質的部位)。目前科學家相信鏡像神經元(mirror neuron)存在於頂葉。這是有道理的,因為視覺皮質收到人模人樣的機器人影像,運動皮質和鏡像神經元會預測機器人的動作。最後,由眼睛後面的眼窩額葉皮質彙整所有訊息,然後說:「嗯,有些地方怪怪的。」

好萊塢的製片了解這個效應。他們花很多錢製作恐怖片,也了解巨大的妖魔或是人造的怪物從草叢中突然跳出來,並不是最恐怖的畫面,最恐怖的是發生在一般人身上的扭曲現象。想想電影《大法師》吧!是哪一幕讓觀眾嘔吐著跑出電影院或昏倒在椅子上呢?是惡魔出現的那一幕嗎?不,是琳達.布萊爾(Linda Blair,被惡魔附身的少女)把頭完全轉過來的場景,讓全世界的電影院爆發出刺耳的尖叫和震耳的哀鳴。

-----廣告,請繼續往下閱讀-----

年輕猴子身上也有這種效應。如果你讓牠們看吸血鬼或是科學怪人的圖片,牠們只會嘻笑然後把圖片撕掉。如果你給牠們看的是被斬首的猴子,牠們會高聲尖叫。日常之物的扭曲,才會發出最大恐懼。(在第二章,我們用意識的時空理論解釋幽默的本質,因為腦會模擬笑話情節中的未來,但是讓人驚訝的笑點就突然出現。這個理論也可以解釋恐怖的本質。腦會模擬日常平凡的事物,但是這些事物如果突然往恐怖的方向扭曲,就會造成震撼。)

機器人將會持續有童顏的外貌,就算是有人類般智能之後也是如此。要等到機器人的動作完全像人類之後,設計師才會讓它們的外貌完全像是人類。

6e9fadc5defe44c78b4fbbff7ea4d739本文摘自泛科學2015六月選書《2050科幻大成真:超能力、心智控制、人造記憶、遺忘藥丸、奈米機器人,即將改變我們的世界》,時報出版。

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
1

文字

分享

0
7
1
你聽過「量子意識」嗎?電子雙狹縫實驗讓人猜測意識會影響物質世界,真的假的?
PanSci_96
・2024/03/06 ・3805字 ・閱讀時間約 7 分鐘

在市面上,我們常會看到號稱運用量子力學原理的商品或課程,像是量子內褲、量子能量貼片、量子首飾、量子寵物溝通、量子速讀、量子算命、量子身心靈成長課程等等。有人說,量子力學代表了意識具有能量,藉由調整心靈的共振頻率,就能保持身心健康,只要你利用量子力學原理進行療癒或冥想,就能提昇自己的能量,人能長高、身體變壯、每次考試都考一百分;又像是,量子力學就代表一種信息場,讓你跟別人有心電感應,只要轉念,讓宇宙能量幫助你,你就能發大財還能避免塞車。也有人說,別人吃一個下午茶,你也馬上吃一個下午茶,別人喝一杯咖啡,你也馬上喝一杯咖啡,別人跟家人吵架,你也馬上找一件事跟家人吵架,這就是量子糾纏。

然而,量子到底是什麼?跟身心靈、宗教和玄學真的扯得上關係嗎?是否真能幫助你維持健康又賺大錢呢?

在這一系列影片裡,我們就要來討論,量子力學的原理為何?背後又是基於哪些科學的研究成果。等你看完之後,相信對於量子力學跟上述五花八門商品究竟有沒有關係,心裡自然會有所答案。

量子力學和意識有關?

坊間常會聽到量子力學跟意識有關的說法;或許也是因為這樣,量子力學被許多身心靈成長課程甚至玄學拿來作為背書。但,量子力學真的是這樣子嗎?

說到量子力學跟意識的關係,我們就必須來看看,量子力學最著名的實驗之一,20 世紀的物理學大師費曼(Feynman)甚至曾經說過,這個實驗「包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。」它,就是雙狹縫干涉實驗。

-----廣告,請繼續往下閱讀-----

雙狹縫干涉實驗

現在我拿的器材,上面有兩道狹縫,中間間隔了非常短的距離。等一下,我們會讓雷射光通過這兩道狹縫,看看會發生什麼事。

我們看到,雷射光在打向雙狹縫之後,於後面的牆上呈現有亮有暗的條紋分布,這跟我們在國、高中學過的波的性質有關。

在兩道光波的波峰相會之處,會產生建設性干涉,即亮紋的位置;而暗紋的部分,則是來自破壞性干涉,是兩道光的波峰和波谷交會之處,亦即,光的效應被抵銷了。

在歷史上,雙狹縫干涉實驗占有非常重要的地位。19 世紀初,英國科學家、也是被譽為「世界上最後一個什麼都知道的人」的湯瑪士.楊(Thomas Young),利用雙狹縫實驗,證明了光是一種波。

-----廣告,請繼續往下閱讀-----

那麼,如果我們拿不是波的東西,來進行雙狹縫實驗,會看到什麼結果呢?讓我們試驗一下。

現在我手邊有一堆的彈珠,前面是用紙板做成的兩道狹縫,後面則是統計彈珠落點的紙板。我們讓這些彈珠朝狹縫的地方滾過去,並在彈珠最後的落點劃下記號;若在同樣位置的記號越多,就代表有越多彈珠打中該位置。

在丟了一百顆彈珠之後,我們可以看到,扣除掉一部份因為路徑被擋住、通不過狹縫的彈珠之外,彈珠最終抵達的位置,大致分別以兩道狹縫的正後方為最多,呈現兩個區塊的分布,不像先前光的雙狹縫干涉實驗中,出現明暗相間的變化。

所以,我們得到結論:若是拿具有物理實體的東西進行雙狹縫實驗,因為其一次只能選一邊通過,所以落點最終只會聚集在兩個狹縫後方的位置;而且要是行進的路徑不對,還可能會被擋住。

-----廣告,請繼續往下閱讀-----

至於波的情形,那就不同了,只要狹縫的大小適當,波可以同時通過兩個狹縫,並互相干涉,產生明暗相間的條紋。

換言之,是波,還是物質,兩者在雙狹縫實驗的表現是截然不同的。

只不過,以上的實驗似乎並沒有什麼太令人感到意外的地方,我們也看不出來,它跟量子,還有意識,到底有什麼關係?事實上,若要真正顯示出它的獨特之處,就要來看電子的雙狹縫干涉實驗。

電子的雙狹縫干涉實驗

我們知道,電子是組成原子的基本粒子之一,而原子又組成了世間萬物。可以說,電子是屬於物質的一種極微小粒子。

-----廣告,請繼續往下閱讀-----

在電子的雙狹縫干涉實驗,科學家朝雙狹縫每次發射一顆電子,並在發射了很多顆電子之後,觀察電子的最終落點分布會怎麼呈現。

既然電子是物質的微小粒子,那麼在想像中,應該會跟我們前面使用彈珠得到的結果差不多,電子會分別聚集在兩道狹縫後方的區域。

從實驗的記錄影片中可以看到,在一開始、電子數量還很少的時候,其落點比較難看得出有明顯規律,但隨著電子的數目越來越多,我們慢慢能夠看出畫面上具有明暗分布,跟使用光進行雙狹縫實驗時得到的干涉條紋,有著類似的結構。

這樣的結果,著實令人困惑。直覺來想,既然電子是一顆一顆發射的,它勢必不可能像光波一樣,同時通過兩個狹縫,並且兩邊互相干涉,產生明暗相間的條紋。

-----廣告,請繼續往下閱讀-----

但無可否認,當我們用電子進行雙狹縫實驗時,最後得到的結果,看起來就跟干涉條紋沒什麼兩樣。

對這出人意表的觀測結果,為了搞清楚發生什麼事,科學家又做了更進一步的實驗:

在狹縫旁放置偵測器,以一一確認這些電子到底是通過哪一個狹縫、又如何可能在通過狹縫後發生干涉。

這下子,謎底就能被解開了――正當大家這麼想的時候,大自然彷彿就像在嘲笑人類的智慧一樣,反將一軍。

科學家發現,如果我們去觀測電子的移動路徑,只會看到電子一顆一顆地通過兩個狹縫其中之一,並最終分別聚集在兩個狹縫的後面――換言之,干涉條紋消失了!

-----廣告,請繼續往下閱讀-----

在那之後,科學家做過無數類似的實驗,都得到一樣的結果:只要你測量了電子的路徑或確切位置,那麼干涉條紋就會消失;反過來說,只要你不去測量電子的路徑或位置,那麼電子的雙狹縫實驗就會產生干涉條紋。

在整個過程中,簡直就像是電子知道有人在看一樣,並因此調整了行為表現。

在日常生活中,若有人要做壞事,往往會挑沒人看得到的地方;反過來說,當有其他人在看,我們就會讓自己的言行舉止符合公共空間的規範。

量子系統也有點像這樣,觀測者的存在與否,會直接影響到量子系統呈現的狀態。

-----廣告,請繼續往下閱讀-----

只不過,這就帶出了一個問題:到底怎麼樣才算是觀測?如果我們在雙狹縫旁邊只放偵測器不去看結果算嗎?我們不放偵測器只用肉眼在旁邊看算嗎?或是,整個偵測過程沒有人在場算嗎?

這就是量子力學裡著名的觀測問題(measurement problem)。

結語

在量子力學剛開始發展的數十年,有許多地方都還不是那麼清楚,觀測問題就是其一。在歷史上,不乏一些物理學家,曾經認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。

如果真是這樣的話,那麼「意識」就存在非常特別的意義,而且似乎暗示人的意識能夠改變物質世界的運作。

有一些物理學家曾認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。圖/envato

可以想見地,上述出自量子力學觀測問題的猜測,後來受到部分所謂靈性導師跟身心靈作家的注意,於是,形形色色宣揚心靈力量或利用量子力學原理進行療癒、冥想或身心靈成長的偽科學紛紛出籠,直到近年都還非常流行。

另一方面,可能因為量子兩個字帶給人一種尖端科學的想像,坊間琳瑯滿目的商品即使跟量子力學一點關係都沒有,也都被冠上量子兩字;除此之外,商品宣傳裡也常出現一堆量子能量、量子共振等不知所謂的概念,不然就是濫用量子力學的專有名詞如量子糾纏、量子穿隧等,來幫自己的商品背書。只要有量子兩字,彷彿就是品質保證,讓你靈性提升、身體健康、心想事成。

對此,我就給三個字:敢按呢(Kám án-ne)?

事實上,量子力學至今仍是持續演進的學問,我們對量子力學的理解也隨時間變得越來越豐富。現代的物理學家,基本上不認為我們可以用意識改變物質世界,也不認為「意識」在「觀測」上佔據一席之地,甚至可以說正好相反,人的意識在觀測上根本無關緊要。

不過,我們不會那麼快就直接進入觀測問題的現代觀點。在之後接下來的幾集,我們會先從基本知識開始說起,循序漸進,讓你掌握量子力學的部分概念。而在本系列影片的最後一集,我們才會重新回到觀測問題,並介紹量子力學領域近幾十年來在此問題上獲得的進展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

2

4
8

文字

分享

2
4
8
「意識」是什麼?人們已經找到答案了嗎?
PanSci_96
・2023/11/26 ・6000字 ・閱讀時間約 12 分鐘

「意識」是什麼?

直到現在,仍是宗教、哲學、心理學、神經科學都還無法解答的難題。

但是今年, 2023 年,一場來自神經學家與哲學家對於「意識」解釋的賭注,在經過長達 25 年的研究後,終於要畫下句點了嗎?到底是誰贏了?對自己頭上頂著的大腦,我們又了解多少了?

25 年前,一場圍繞「意識」之謎的賭局

1998 年,神經科學家克里斯托夫・科赫(Christof Koch)和哲學家戴維・查爾莫斯(David John Chalmers)打賭一箱葡萄酒,如果 25 年後,人們已經能清楚地解釋意識背後的神經機制,那麼就是科赫贏了。反之,如果還是未能解答意識之謎,就是查爾莫斯贏了。

-----廣告,請繼續往下閱讀-----

但在揭曉勝者之前,我們要先來談談一個最基本的問題,「意識」到底是什麼?首先我們要先定義清楚,因為在中文中,意識指的可能是一個人的清醒狀態、也可以是對內在自我的一種感知、又或是包含感知、情緒、思考等等的一種總和、又甚至可以是指在精神分析理論中與前意識和潛意識的比較。

若要深入探討意識定義的發展以及不同的哲學論點,那真的不做個三十集做不完,在這集的時間內,就讓我們把重點放在感質(Qualia)的相關概念。感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等都是屬於感質。

感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。圖/wikipedia

舉一個例子。若是把一顆紅蘋果放在大家面前,詢問蘋果這是什麼顏色,相信大家應該都會說這是紅色。然而,雖然科學能解釋紅色是因為有波長約 620 到 750 奈米的光,刺激到視網膜的錐細胞,產生一連串的神經反應,最後形成大腦的表徵,但卻無法解釋我們對紅色的主觀感受是怎麼形成的。

哲學家們也常思考,你看到的紅色,和我看到的紅色究竟是否一樣,是否有可能我眼中的紅其實是你眼中的綠。

-----廣告,請繼續往下閱讀-----

舉另一個例子,這件數年前爆紅的衣服,你覺得是藍色與黑色相間,還是白色與金色相間呢?

另外,像是這張圖究竟是兔子還是鴨子?

圖/wikipedia

這張圖究竟是狗還是小女孩?

明明有張客觀的圖片存在,每個人的主觀感受卻有不同的答案。

-----廣告,請繼續往下閱讀-----

「困難問題」(Hard problem of consciousness)是找不到答案的問題?

在意識賭局中的哲學家戴維・查爾莫斯,就提出感質以及主觀經驗為什麼(why)存在以及如何(how)產生是所謂的困難問題(Hard problem of consciousness),相較於簡單的問題是討論意識相關的功能和行為,困難問題涉及意識的經驗(現象、主觀),是沒辦法客觀觀察測量。也就是這個問題,是沒有答案的。

舉一個屬於困難問題的例子,明明都只是大腦的神經在放電,為何某些神經放電後會導致飢餓感而不是其他感覺,譬如口渴?他認為即使沒有飢餓這種「感覺」,飢餓衍伸出的行為,例如進食,也可以發生。因此這些產生的感覺,無法單純簡化由大腦等物理系統解釋。

圖/giphy

然而,困難問題的說法其實也存在爭論。根據 2020 年哲學期刊文章的互動式學術資料庫 PhilPapers 的調查, 29.72% 的受訪哲學家認為難題不存在,而 62.42% 的受訪哲學家認為難題是一個真正的問題。

也有一群神經科學家們雖然接受困難問題的存在,卻也認為困難問題未來可以被解決,又或是被證明這不是一個真正的問題。並開啟了他們對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。

-----廣告,請繼續往下閱讀-----
精神科學家開啟對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。圖/PanSci YouTube

但 NCC 的研究被認為最多只能找到神經反應與意識的相關性,解決的仍然只是簡單問題而非困難問題。為了突破 NCC 本身的限制,人們又開始轉往重視意識理論(theories of consciousness (ToCs))的發展。希望透過意識理論來超越以 NCC 為基礎的方法論,轉向提供更具解釋性見解的意識模型。

在意識模型這邊還在爭論不休,讓我們先把鏡頭換到神經學家這一邊。

研究科技進步,為意識研究帶來哪些幫助?

面對意識這個艱難的大哉問,克里斯托夫・科赫當初怎麼那麼有自信,敢發起這個看起來勝算就不大的挑戰呢?有那麼愛喝嗎?

1998 年,年輕有為的克里斯托夫・科赫已經是加州理工學院的助理教授,並和生命科學領域大咖中的大咖弗朗西斯・克里克,合作研究意識這個主題。沒錯,就是和華生一同發現 DNA 是雙股螺旋結構的克里克。除此之外,克里斯托夫還擁有物理的碩士學位,擁有跨領域的知識,讓他更加相信透過實證的方式,能找到意識的神經機制。

-----廣告,請繼續往下閱讀-----
克里斯托夫・科赫合作研究意識的對象便是與華生一同發現 DNA 是雙股螺旋結構的弗朗西斯・克里克。圖/PanSci YouTube

當時有許多大腦研究的技術蓬勃發展,像是功能性磁振造影(fMRI)已經獲得廣泛使用,使得科學家們能在對象進行活動或是受外界刺激時,同步從大腦血氧濃度的變化來推斷神經反應。

此外,光學遺傳學(optogenetics)技術也在那個時期開始萌芽,這讓研究者能用極佳的時間解析度來調控特定的大腦神經元,並藉此解碼大腦的秘密。舉例來說,現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞,並在小鼠頭上裝上 LED 光纖,只要開啟 LED 的光刺激,那些特定神經細胞就會興奮或抑制。藉由觀察小鼠行為的變化,就能了解不同行為表現是由哪些神經元所調控。

現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞。圖/PanSci YouTube

厲害的是,在 1979 年光學遺傳學的技術還未誕生前,克里克就認為如果想要了解大腦的運作,精準控制大腦中一種類型的所有細胞是非常重要的,而若想要有極佳的時間和空間精細度,必須使用光的技術,這與後來光學遺傳學的發明不謀而合。

有了這些科技加持,長達 25 年對於意識的賭注也即將來到結局。

-----廣告,請繼續往下閱讀-----

所以,誰贏了賭注?

2023 年 6 月 23 日,在科學意識研究協會的年會上,揭曉了這長達 25 年的賭局。神經科學家克里斯托夫・科赫(Christof Koch)最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒(1978 Madeira)給哲學家戴維・查爾莫斯(David John Chalmers)實現諾言。

克里斯托夫・科赫最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒給戴維・查爾莫斯。圖/PanSci YouTube

當然,這不是說意識的來源永遠沒有解答,只是當初賭局設下的 25 年時限到了。實際上到了 2018 年,他們兩位根本都忘了這場賭局,直到一位科學記者佩爾・斯納普魯德重新提及這個話題,才讓大家重新想起。

恰巧那個時間點,克里斯托夫・科赫和戴維・查爾莫斯都參與了鄧普頓世界慈善基金會支持加速意識研究的大型項目。該計畫建立一系列意識理論的「對抗性」實驗,希望透過讓兩個或多個持相反觀點的競爭對手共同合作研究,來挑戰各種意識假設。

意識理論的百家爭鳴

而其中包含兩個著名的意識理論,全局工作空間理論(Global Workspace Theory (GWT))和整合資訊理論(Integrated Information Theory (IIT))。

-----廣告,請繼續往下閱讀-----
全局工作空間理論(Global Workspace Theory (GWT))。圖/PanSci YouTube

全局工作空間理論(Global Workspace Theory (GWT))的概念,最早是由認知科學家伯納德・巴爾斯和斯坦・富蘭克林在 1980 年代晚期提出。他們認為意識的產生就像是劇場聚光燈一樣,當這個意識劇場透過名為選擇性注意的聚光燈在舞台上照出內容,我們就會產生意識情境。這聚光燈的投射也代表著全局工作空間,只有當感官輸入、記憶或內在表徵受到注意時,它們才有機會整合成為全局工作空間的一部分,被我們主觀意識到。而我們的行為決策,也是透過這個全局工作空間整合訊息,並分配到其他系統所產生。目前認為全局工作是發生於大腦前方的前額葉區域。

整合資訊理論(Integrated Information Theory (IIT))。圖/PanSci YouTube

與全局工作空間理論打對臺的,是整合資訊理論(Integrated Information Theory (IIT)),最早由朱利奧・托諾尼(Giulio Tononi)在 2004 年提出。這理論認為,意識背後是有數學以及物理為基礎的因果關係。應該先肯定意識的存在,再回推尋找其背後的物質基礎,並認為主觀意識是由客觀的感覺經驗產生的。克里斯托夫・科赫就是此理論的擁護者,他進一步認為,意識背後的那個神經機制,就存在於大腦後方後皮質熱區(Posterior cortical hot zone),包括頂葉、顳葉和枕葉的感覺皮質區域。

讓我們稍微總結一下兩者差異:

全局工作空間理論——

  • 意識只能透過訊息投射到一個稱做「全局工作空間」之後才能呈現
  • 訊息本身不會形成意識
  • 訊息要被注意到才會產生意識

整合資訊理論——

  • 意識存在
  • 產生的關鍵是需要將大腦處理感覺的皮質區域訊息整合

然而,經過六個獨立實驗室的研究,雖然有較多的證據支持整合資訊理論,但兩個理論都存在缺陷和質疑,直到目前都尚未有明確解答能解釋意識的神經機制,這也讓克里斯托夫・科赫大方承認自己輸掉了這 25 年的賭局。

隨著科學測量技術的演進以及越來越多的研究進展,有一些神經科學家認為意識理論即將崛起,目前的狀態只不過是一種研究過渡期。科學哲學家托馬斯・庫恩(Thomas Kuhn)將這種過渡期以「前典範式」(preparadigmatic science)來形容,認為一門不成熟的科學在成熟前,會面臨相互競爭的思想流派並各說各話。就像是當初達爾文提出演化論的物競天擇前有拉馬克主義、災變論與均變論來試圖解釋物種起源一樣。

下一場賭約?

雖然這次的打賭由戴維・查爾莫斯獲得一勝,但克里斯托夫・科赫在今年加倍賭注,認為下一個 25 年他一定會贏。到時候克里斯托夫已經 91 歲,戴維 82 歲了。

大家別擔心,這一集是會員共同選出來的題目, 25 年之後,我們也會再為各位泛糰做一集討論賭局的結果。

最後也想問問大家, 25 年之後,你賭這場對決會是誰贏呢?

  1. 我壓在克里斯托夫・科赫身上,我們一定能解開意識之謎
  2. 我賭戴維・查爾莫斯,意識這個問題,可能很難用科學來解釋
  3. 在那之前, AI 可能都已經有意識了,直接問 AI 還比較快

趕快來留言吧,記得 25 年後要回來看啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 2