0

0
0

文字

分享

0
0
0

高粱可能擊敗玉米成為新一代能源作物新星

陳妤寧
・2014/11/21 ・1871字 ・閱讀時間約 3 分鐘 ・SR值 561 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

文 / 陳妤寧

大家都知道玉米可以用來提煉乙醇燃料,不過現在加州的一家新創公司 NexSteppe 正在開發以高粱作為原料來開發生質能的另一片天,甚至可能比玉米來得更加有效率和環保。

bc26f87a-cab1-4efa-aad2-6b92da23e937-2060x1236

身負眾望-充滿能量的高粱種子

想到高粱可不能只想到金門。高粱源於非洲,非常耐熱和耐旱,不但可被再製為麵粉、糖漿和啤酒,被使用於在無麩質的產品,也被用來餵養駱駝。被稱之為北非小米的「蒸粗麥粉」或是在非洲被廣泛食用的粥,都是高粱屬作物的化身。已經在歷史上餵養人類和其他動物們超過千年。

全世界上的科學家都在研究能夠肩負起製造能源使命的植物們-樹木、灌木和草皆然。環境學家們表示,若要降低交通運輸部門所排放的碳污染,就必須提昇生質能源的地位和比重,汽車、卡車、公車、飛機在接下來幾十年都需要汽油和柴油以外的新液態燃料。做為世界最大私營石油公司之一的英國石油(BP),一共投注了 5 億美元給美國政府和大學研究機構來研究生質能和燃料作物。而從 2006 年開始,美國相關的能源和農業部門同樣也開始資助以生物能源和植物燃料為導向的的基因學基礎研究。

去年(2013年),NexSteppe 引進了兩個品種的高粱種子-帕羅奧圖(Palo Alto)和馬里布(Malibu),這兩種品種特別被用來作為能源作物栽培。他們可以在不肥沃的土地上成長、適應多元的氣候、而且還可以在四個月內長到 20 英呎(約 6 公尺)這麼高。「馬里布(Malibu)」容易發酵糖分,有利於製作燃料;另一個品種帕羅奧圖(Palo Alto)則志在為纖維速燃料和生質能鍋爐提供低水份的原料,藉此製造熱能和電能。

時勢造英雄-市場上對乙醇燃料的龐大需求

NexSteppe 認為乙醇燃料的重要性會持續攀升,但原料的供應量和質都遠遠不足。「我們發覺市場上的需求沒有被滿足,目前除了棉花和煙草之外,經濟作物的發展遠不如糧食作物,但其實能源燃料的需求還在持續增長!」NexSteppe 的創辦人兼 CEO 安娜拉特(Anna Rath)表示。安娜拉特今年 38 歲,過去在麥肯錫顧問公司上班,擁有生物學和遺傳學的學位,也是耶魯大學法學院的博士。她在 2010 年以一百萬美元和朋友展開了 NexSteppe 的新創事業,並從眾多創投以及杜邦化工公司爭取到了四千萬美元的資金。杜邦化工公司是投資能源燃料中的領頭羊,目前在愛荷華州正在興建一座纖維素乙醇(Cellulosic ethanol)工廠。

「巴西是我們第一個、也是最大和最重要的市場。」安娜拉特表示,巴西有幾十家的乙醇工廠和生質能鍋爐,由於運輸部門和電力需求都在增長,當地的甘蔗可說是供不應求。除了巴西之外,拉特也認為中國和美國的市場充滿機會,因為今年預計將會有半打的纖維素乙醇工廠投入商業運轉。

安娜拉特表示。雖然 NexSteppe 在主要市場巴西以外的地方幾乎沒做宣傳,它的原料卻正由世界上 15 個不同國家的農夫們所耕種,包括加拿大、美國、德國、中國、印度、和其他南亞國家。現在 NexSteppe 的辦公室位於舊金山,聘有 35 位員工,其中逾半為科學家。

閃開,讓專業的來-高粱眼中的失職玉米

NexSteppe 認為乙醇燃料的重要性會持續攀升,然而現正佔據乙醇燃料霸主位置的玉米原料卻表現不佳。目前世界上燃料作物的主要來源只有兩種:美國的玉米和巴西的甘蔗,但這兩種燃料作物的使用效能都還未臻理想。

「對於現在用於提煉乙醇的玉米栽種方式我們有許多擔憂,整個過程中充滿過多的化肥、農藥和各種高濃度的化學成分。」美國自然資源保護委員會(Natural Resources Defense Council,NRDC)的資深政策研究員布萊恩邵(Brian Siu)表示,理想的生質能源應該從有機廢棄物或作物中提煉出來,而不是需要另外東加西加一堆化學品或是過多的水源。

由於成本比化石燃料來得更高,以玉米提煉的乙醇燃料需要政府補貼的事實也遭受許多爭議。相較於現在的主流能源作物玉米和甘蔗,NexSteppe 相信高粱屬的作物能夠更加優化生質能源的生產過程。NexSteppe 本身也採用傳統的育種方法,而不使用基因改造。安娜拉特表示高粱的碳排放量遠低於玉米或甘蔗,每畝能夠提供的生質能原料卻更多。

不只拿來吃更要拿來燒-能源作物和生質燃料的多元想像

「我們不認為直接把糧食作物拿來當做燃料會是個好主意。」能源作物科學研究所(Energy Biosciences Institute,EBI)的資深研究員希瑟楊斯如此表示。EBI 是由英國石油(BP)在柏克萊加州大學贊助的研究計畫,從事不同種能源作物的永續發展潛力研究。

當然,NexSteppe 也不是唯一投身於能源燃料作物的公司。一家之前 Rath 工作過小型的上市公司「Ceres」,除了高粱之外,也經營芒草和草梗粗壯的柳枝稷(switchgrass)等提煉燃料乙醇的項目。

隨著時間的推移,生質能原料的多元可能性一一浮現,生質能永續性的關鍵十分取決於原料本身、以及人類決定「在哪裡(where)」、「用什麼方式(how)」來種植這些原料。

資料來源:New energy-rich sorghum offers ethanol without the corn (theguardian, , 2014/8/12)

文章難易度
陳妤寧
38 篇文章 ・ 0 位粉絲
熱愛將知識拆解為簡單易懂的文字,喜歡把一件事的正反觀點都挖出來思考,希望用社會科學的視角創造更宏觀的視野。

0

2
1

文字

分享

0
2
1
每年有一千萬公頃的森林消失!把樹種回去,就可以解決問題了嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/19 ・1997字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

碳捕捉:把電廠排出來的二氧化碳再抓回去!

一九九〇年代,尚未開發出風能和太陽能,當時對氣候變遷的擔憂日益增加,因此有人建議捕捉和儲存那些從化石燃料發電廠排放出來的二氧化碳,如此就可將其轉變成一種低碳電力。

碳捕捉主要是透過化學反應將煙道氣(flue gas)中的二氧化碳分離出來,然後再將其壓縮液化,泵入地下洞穴,例如含水層或是廢棄的油氣田。

同時要針對傳統的發電機開收排放二氧化碳的費用。這將鼓勵電廠採用碳捕捉技術,不過前提是碳價要夠高,超過捕捉和封存二氧化碳的成本。

然而,即使在龐大的歐盟市場,碳的價格也從未高到足以讓碳捕捉在電力生產中具有競爭力,而且真正在運作的碳捕捉工廠很少。

碳捕捉將煙道氣(flue gas)中的二氧化碳分離出來,然後再加工處理。圖/Envato

即使如此,捕捉二氧化碳排放依舊可望成為一種脫碳方法,在未來某些產能製程中合乎成本效益。一個例子是將天然氣轉化為氫氣,這還能用於加熱和製造燃料電池,或用於生產水泥以及甲醇和氨等重要工業化學品。

碳捕捉的各種可行性:直接從空氣抓?多種一點樹?

也有人認真思考過直接從空氣中捕捉二氧化碳的可行性,因為目前我們所面對的現實非常危險,即二氧化碳排放量下降的速度恐怕來不及讓上升溫度控制在攝氏 1.5 度內。

種植更多的樹木可能是最簡單也最便宜的方法,但首先必須遏止每年大量的伐林問題。

每年約有一千萬公頃的森林遭到砍伐,用於種植大豆、棕櫚油和其他作物,以及放牧牲畜。這樣的伐林導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。

目前二氧化碳排放量下降的速度沒辦法使上升的溫度控制在 1.5°C 內,再加上樹木被大量的砍伐,導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。圖/Envato

此外,封存大量二氧化碳所需的樹林面積也相當大──約要美國國土面積的四分之一,需要超過六年,甚至幾十年的時間才能讓樹木長到成熟,每年只能吸收平均全球燃燒化石燃料的 10% 排放量。

而在成長期過後,還需要更換樹木,因為在建築中也會使用到木材。有人建議,可以燃燒林業的廢棄物來產生能量(熱或電),並捕捉和封存排放出來的二氧化碳。

這種生質能源的碳捕捉尚有爭議,必須要確保改變土地利用的這項變動最後的結果是產生淨負排放,而不是增加碳的排放量。此外,這種方法尚在開發中,可能會與其他對可耕地和淡水的需求產生競爭關係。

多種樹,真的可以救地球嗎?事情可沒有我們想的那麼簡單!圖/Pixabay

不過,可以使用化學吸收器直接從空氣中捕捉二氧化碳,這種方法比生質能源更緻密、更可靠, 只是目前的價格較為昂貴。

奧利金能源公司(Origen Power)正在開發將碳捕捉與具有商業價值的石灰生產相結合,這樣的製程可望降低成本。

吸碳新創公司「Carbon Engineering」也在開發另一種方法,是使用與二氧化碳接觸會形成碳酸鈣的氫氧化鉀。整個過程以石灰來合成氫氧化鉀,形成碳酸鈣,然後將其加熱,釋放出二氧化碳,進行壓縮和封存──這時便會再度合成石灰。他們預估,以這種方式捕捉二氧化碳的成本可望降低至每噸 100 美元。

碳捕捉的展望與未來

為了增加產值,可以將捕捉來的二氧化碳與氫結合(比方說以再生電力來電解水,製造出氫氣),這可用來合成低碳燃料,取代汽油、柴油或航空燃料,這樣一來,其總排放量會遠低於某些生質燃料。

若是要捕捉和封存燃煤發電廠排放的二氧化碳,電力成本會增加約 60%,而使用再生能源來發電,成本則低得多。

然而,隨著空氣碳捕捉的研發和大量投資,再加上在某些工業製程中捕捉二氧化碳,以及重新造林,預估到二〇五〇年時,碳捕捉可能會吸收掉全球年排放量的 10%。

到二〇五〇年,再生能源和核能的總發電量可能接近當前全球需求量的 90%,透過碳捕捉,全世界可能會達到二氧化碳淨零排放。但要處理大量再生電力,電網在輸送和分配上需要適應風場和太陽光電場輸出量的種種變數,因此發展儲能設備非常重要。

——本文摘自《牛津通識課|再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

1

8
0

文字

分享

1
8
0
發電量增加 25 倍卻還是不夠用!再生能源是人類未來的救星嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/18 ・1730字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

我們的能源從哪裡來、往哪裡去?

全球每年對能源的需求量相當巨大,若用「瓩時」──即一度電這樣的度量單位──來表示會出現天文數字,因此改用「太瓦時」(TWh)來表示,太瓦時等於 10 億瓩時。

在一八〇〇年,全球約有 10 億人口,當時對能源的需求約為 6000 太瓦時;而且幾乎全部來自傳統的生質能源。到了二〇一七年,全球人口達到 76 億,發電量增加了 25 倍(156000 太瓦時)。

在 2017 年的全球能源使用比例中,煤炭、石油和天然氣等化石燃料占了大約 80 %左右。圖/ Pixabay

下圖顯示在二〇一七年全球主要能源消耗總量的百分比,其中近 8 成為化石燃料。其他再生能源包括風能、太陽能和地熱能,其中成長最快的是風場和太陽光電場。生質能源則主要來自傳統生質能源。

2017 年的能源消耗總量,顯示出不同能源的百分占比。圖/BP Statistical Review of World Energy, 2018; World Energy Council, Bioenergy, 2016

大約有 1/3 的全球能源消耗在將化石燃料轉化為電力精煉燃料上。

剩下的稱為最終能源需求(final energy demand),是指用戶消耗掉的能源:每年約 10 萬太瓦時。

大約有 10% 是來自開發中國家傳統生質能的熱,22% 來自電力,38% 用於供熱(主要來自化石燃料) 30% 在交通運輸。熱能和電能主要都是用於工業和建築。汽油和柴油幾乎提供了所有用於運輸的燃料。

怎麼做比較不浪費?能量轉換效率大比拚!

我們看到供熱與供電一樣重要。兩者都可以用瓩時為單位,也就是一度電來測量,雖然電可以完全轉化為熱量,例如電烤箱,但只有一小部分以熱能形式存在的能量可以轉化為電能,其他的必然會散失到周圍環境裡

在火力發電廠中,存在於化石燃料中的化學能會在燃燒後轉化為熱能。這會將水加熱,產生蒸汽,蒸汽膨脹推動渦輪的葉片,轉動發電機。只有一部分熱量被轉化成電力;其餘的熱量在蒸汽冷凝,完成循環時,就轉移到環境中,成了殘熱。

這份熱電轉化的比例可透過提升高壓蒸汽的溫度來增加,但受限於高溫下鍋爐管線的耐受度。

在一座現代化的火力發電廠中,一般熱能轉化為電能的效率約為 40%。若是在較高溫的複循環燃氣發電機組(combined cycle gas turbine,CCGT)裝置中,這個比例可提高到 60%。

同樣地,在內燃機中也只有一小部分的熱量可以轉化為車子的運動能量(動能);汽油車的一般平均效率為 25%,柴油車則是 30%,而柴油卡車和公車的效率約為 40%。

另一方面,電動馬達的效率約為 90%,因此電氣化運輸將顯著減少能源消耗。這是提高效率和再生能源之間協同作用的一個範例,這將有助於提供世界所需的能源。

火力發電沒辦法 100% 轉換熱能變成電能,約有 60% 的損失。圖/envato

再生能源的過去跟未來

在十九世紀末,水力發電的再生資源幫助啟動了電網的發展,在二〇一八年時約占全世界發電量的 16%。而在再生能源──風能、太陽能、地熱能和生質能源──的投資上,相對要晚得多,是在二十世紀的最後幾十年才開始。

起初的成長緩慢,因為這些再生能源沒有成本競爭力還需要補貼。但隨著產量增加,成本下降,它們的貢獻開始增加。這些其他再生能源發電的占比已從二〇一〇年的 3.5% 上升到二〇一八年的 9.7%,包括水力發電在內,再生能源的總貢獻量為 26%。

不過,就全球能源的占比,而不是僅只是考慮用戶消耗的電力來看,再生能源僅占約 18%,而傳統生質能則提供約 10% 的能量。隨著太陽能和風能的成本在許多國家變得比化石燃料更便宜,它們在總發電量中的占比有望在未來幾十年顯著增加。

這世界花了很長的時間才意識到這一事實,從現在開始,再生能源勢必將成為主要的能源來源。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

所有討論 1
日出出版
11 篇文章 ・ 5 位粉絲

0

6
2

文字

分享

0
6
2
魚與熊掌可以兼得!不只能發電,還二氧化碳負排放的科技——《在大滅絕來臨前》
臉譜出版_96
・2022/02/06 ・3122字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

「氣候工作」公司(那間我付錢請他們把碳排放埋到冰島的公司)是由克里斯多福.格巴德(Christoph Gebald)與簡.沃茲巴赫(Jan Wurzbacher)這兩位大學時代的朋友共同創辦的。「我們是上大學第一天認識的,」沃茲巴赫回憶道,「我想我們第一週就問了彼此:『嘿,你想要做什麼?』然後我說:『嗯,我想要創立自己的公司。』」他們後來將研究所的獎學金分為兩份;兩人都花一半時間做博士班的研究,並且用另一半時間讓公司成長。

就跟拉克納一樣,他們兩個人面對了許多質疑。有人說,他們做的事情只是在轉移焦點。如果大家認為有方法能從大氣中抽走二氧化碳,那他們就會排放更多。「大家會反對我們說:『嗯,老兄,你們不該這麼做,』」沃茲巴赫跟我說,「但我們一直很頑固。」現年 35、6 歲的沃茲巴赫身材纖瘦,頂著一頭孩子般的蓬亂黑髮。我和他在「氣候工作」公司的蘇黎世總部碰面。那棟建物裡不僅有辦公室,也有金屬加工廠,現場不僅帶著科技新創的氛圍,也有點腳踏車店的感覺。

「把二氧化碳從流動的空氣中抽出來並不是什麼尖端科技,」沃茲巴赫跟我說,「這也不是什麼新鮮事。過去五十年來,人類都會從氣流中過濾二氧化碳,只是用途不同。」

「氣候工作」公司的二氧化碳移除系統有兩道程序。※出處:MGMT. design

從空氣中抽碳所面臨的挑戰

譬如在潛水艇中,船員呼出的二氧化碳必須排出去,否則會累積出對人體而言很危險的濃度。

但是能從空氣中抽出碳是一回事,要能大規模執行則又是另一回事。燃燒化石燃料會產生能源,從科技中捕捉二氧化碳也「需要」能源。只要能源是透過燃燒化石燃料所產生的,那就一定會增加必須捕捉的碳量。

第二個重大挑戰是處置方式。捕捉下來的二氧化碳需要送到安全的地方儲存。「玄武岩的好處是我們很好對外解釋,」沃茲巴赫說,「如果有人問:『嘿,但這真的安全嗎?』答案很單純:兩年內,它就會變成位在地下一公里處的石頭。就這麼簡單。」合適的地下儲存地點並不少見,但也不普遍;這表示,若要打造大型的碳捕捉工廠,要不是必須有個合適的地理位置,否則就得把二氧化碳運到遠處。

由暗色玄武岩組成的北愛爾蘭巨人堤道。圖/維基百科

最後是成本的問題。把二氧化碳從空氣中取出來需要經費,現在這需要花很多的錢。把一噸重的碳排放變成石頭,需要付給「氣候工作」公司 1000 美元。我將 544 公斤的配額,都用在飛往雷克雅維克的單程飛機上,於是包含回程飛機以及去瑞士的航程在內的碳排放,就只能留在空中飄蕩。沃茲巴赫跟我保證,隨著愈來愈多的捕捉裝置裝設完成,價格也會下降;在 10 年左右的時間內,可望降到每噸 100 美元。

如果碳排放以類似比例課稅的話,那麼就更容易計算:基本上,只要抽出一噸二氧化碳,就能少付一噸的碳稅。但如果碳仍舊能免費排入大氣中,那又有誰願意付這筆錢呢?即使一噸只要付 100 美元,把十億噸二氧化碳(只是世界年度排放量的一小部分)埋起來,就需要花上 1000 億美元。

我也問沃茲巴赫,這個世界是否已準備好為直接從空氣中捕捉碳的技術付費。「也許我們太早投入了,」沃茲巴赫若有所思地說,「也許時機正好;又或許我們遲了一步——天曉得。」

生質能與碳捕集和封存 BECCS

一如有許多方式能把二氧化碳釋放進空氣中,其實也有很多(潛在的)方式能移除二氧化碳。一種名為「加速風化(enhanced weathering)」的技術可說是我在赫利舍迪電廠參觀到的工程的反向版。這個概念並非將二氧化碳注入石頭中,而是將石頭帶到地表與二氧化碳接觸。

首先,要先將人為開採並碾碎的玄武岩散布到世界上炎熱、潮溼地帶的農田裡,而二氧化碳與這些碎掉的石頭起化學反應後,就能將其從空氣中抽取出來。或者有人也提出,可以碾碎火山岩中常見的綠色礦物質:橄欖石,再撒入海洋中溶解。這麼做能使海洋吸收更多的二氧化碳,而且還有另一個好處:對抗海洋酸化。

另一類負排放科技(negative-emissions technologies,簡稱為 NETs)的靈感則源自於生物。植物生長時會吸收二氧化碳,而當它們腐朽時,二氧化碳就會回到大氣中。種植新的森林能在植物體成熟之前吸收碳;有一篇瑞士研究人員最新的研究評估,種植一兆棵樹就能在接下來數十年中,從大氣中移除 2000 億噸的碳。其他研究人員認為,這項數據將事實誇大了十倍甚至更多。儘管如此,他們也評道,新植林吸收碳的能力「還是很重要」。

植林吸碳的能力很重要。圖/Pexels

為了解決朽木的問題,許多人提出各種技術方案。其一是將成樹砍倒並埋在溝渠裡;因為缺乏氧氣,就能防止樹木腐朽,以及隨之而來的二氧化碳排放。另一個計畫則只需要蒐集玉米梗等作物殘留物,並倒入深海;在黑暗、冰冷的深海裡,這些農餘腐爛的速度會很慢,甚至完全不腐爛。這些聽起來可能很怪的想法,也都是從自然中汲取靈感。在石炭紀(Carboniferous),有大量的植物遭到淹沒並埋於地底。這些植物後來就變成煤礦——如果這些東西可以保留在地底,理論上就能把碳永遠留在那裡。

林地復育(Reforestation)與注入地下的技術相互結合後,即為「生質能與碳捕集和封存(Bioenergy with carbon capture and storage)」——BECCS(發音為「becks」)。

IPCC 所使用的預測模型極度傾向 BECCS,因為它可以同時達到負排放與發電兩種目的。這種「魚與熊掌兼得」的辦法,以氣候數學的角度來看,幾乎所向無敵。

BECCS 的構想是種植能從空氣中吸取碳的樹木(以及部分穀物),接著便透過燃燒樹木來發電,所產生的二氧化碳再從煙囪直接捕捉下來、送入地底。(2019 年,世界首個 BECCS 的前導實驗已在英格蘭北部一座木顆粒燃料發電廠展開。)

替代方案的土地面積要廣、數量要大

這些替代方案所面臨的挑戰就跟直接從空氣中捕捉碳一樣,問題在於規模。馬里蘭大學的教授(University of Maryland)曾寧(Ning Zeng)是首創「樹木砍伐與儲存」概念的人。根據他的計算,若要每年消去 50 億噸的碳,總共需要 1000 萬條埋樹溝渠,而且每一條都要跟奧運標準游泳池一樣大。「假設有一組一共 10 人的人馬每週可以用機械施工,挖出一條溝渠,」他寫道,「那也需要 20 萬組(200 萬名工人)人馬與機器。」

根據德國科學家一篇最新的研究,若要藉由「加速風化」移除十億噸的二氧化碳,那就得要開採、碾碎並運送約 30 億噸的玄武岩。作者群指出,需要開採、磨碎與輸送的石頭「雖然數量非常大」,但其實還比每年約 80 億噸的煤礦開採量要來得少。

若要種植十億棵樹木,大約需要造出 906.5 萬平方公里大的新林地。這片森林面積之廣,會跟包含阿拉斯加在內的美國國土差不多大。這麼大片的耕地不再用於生產農作的話,可能造成上百萬人面臨飢餓。喬治城大學的教授歐盧費米.泰伊洛(Olúfẹ́miO. Táíwò)近期表示,有一種危機是「我們每邁出一大步的同時,卻在公平正義上倒退兩步。」然而,大家也不清楚,用未開發的土地是否就會比較安全。

樹木是深色的,所以若把凍土變成森林,反而會增加地球要吸納的能量,並造成全球暖化,最後也無法達成目標。解決這個問題的方法之一,可能是用 CRISPR 技術基因改造出淺色的樹木。就我所知,目前還沒有人提出這個構想,但似乎只是遲早的事。

——本文摘自《 在大滅絕來臨前:人類能否逆轉自然浩劫?》,2022 年 1 月,臉譜出版
臉譜出版_96
67 篇文章 ・ 245 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。