Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

天文學家說:翻轉世界或許更適合生命生存

臺北天文館_96
・2014/04/28 ・972字 ・閱讀時間約 2 分鐘 ・SR值 509 ・六年級

tilted-orbits

一般認為行星的自轉軸相對於公轉軌道面的傾角如果變動快速,將引起氣候鉅變,不利生命發展,例如:火星便是如此。但根據美國華盛頓大學(University of Washington)John Armstrong等人的最新研究:行星軌道傾角的變動並不會阻礙生命發展的可能性;有時候甚至更容易讓生命生存下去。

有些行星受到其他行星的重力擾動,可能使這顆行星的自轉軸傾角改變甚至倒置,天文學家有時戲稱這個狀況為「翻轉世界(tilt-a-worlds)」。這類翻轉世界受到母恆星的光熱更為均勻散佈,與固定轉向的行星相較之下,比較不易凍結,讓生物更適合生存。

不過這種狀況只發生在某顆恆星周圍適居區的靠外側邊緣附近,因為適居區內行星表面的水能以液態方式存在,這是生命生存的必需品。比適居區外側邊緣再遠一點的地方,溫度低到水將凍結成冰,不太可能讓生命繼續生存。Armstrong等人的最新研究有趣之處在於:能將適居區的範圍擴展10~20%左右,如此一來,銀河系中可能適合生命生存的行星數量將幾乎倍增。

這樣的「翻轉世界」之所以適合生物生存,是因為在某段時間,它的兩極會指向其母恆星,使南北極的冰帽(ice caps)快速融化成液態水。但如果沒有兩極冰帽者,單靠遍佈全球的冰河,要達到相同狀態就比較難了。因此,某顆系外行星自轉軸快速傾斜的話,實際上或許可以增加該行星表面的液態水含量。

-----廣告,請繼續往下閱讀-----

地球和鄰近的行星在太空中大致有著相同的軌道面。但有證據顯示,有些行星系統中的行星的傾角甚至是相互垂直的;在此情況下,它們將會彼此從上方或下方拖拉,改變它們的自轉軸相對於母恆星的方向。

這組研究團隊利用電腦模擬方式重建了這種失衡的行星系統排列方式,想知道類似地球這樣的行星如果擁有這類怪異的鄰居會發生什麼事?他們的發現同時質疑了天文學家和天文生物學家現行普遍接受的理論,認為;行星需要有顆較大的衛星來穩定自轉軸,像地球一樣,才能有穩定的環境讓生物發展;反之,行星傾角無須穩定以創造生命適合生存之處。

地球目前的傾角大約穩定地維持在23.5度左右,按Armstrong等人的研究結論,若少了月球的存在,地球傾角可能增加10度左右,接著天氣就會發生變動,但即使如此,地球仍可能存有生命。甚至若多了大型衛星來穩定傾角反而會抑制生命生存,至少位在適居區邊緣的行星就會如此。

資料來源:Astronomers: ‘Tilt-a-worlds’ could harbor life. University of Washington [April 15, 2014]

-----廣告,請繼續往下閱讀-----

轉載自網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

0
1

文字

分享

2
0
1
秋季星空中一抹光亮:北落師門殘屑盤的觀測史——《科學月刊》
科學月刊_96
・2024/01/19 ・4118字 ・閱讀時間約 8 分鐘

  • 謝承安/ EASY 天文地科團隊成員,因喜愛動畫《戀愛中的小行星》開始研究小行星,現就讀臺大物理系。
  • 林彥興/清大天文所碩士, EASY 天文地科團隊總編輯,努力在陰溝中仰望繁星。
  • Take Home Message
    • 殘屑盤是恆星周遭的盤狀結構,由於北落師門殘屑盤離地球僅 25 光年,數十年來天文學家時常會藉由觀測它以了解殘屑盤的特性。
    • 去(2023)年韋伯望遠鏡的觀測結果與過去不同,顯示北落師門殘屑盤其實分成多個部分,更讓他們相信北落師門中有多個行星環繞。
    • 韋伯望遠鏡提供的影像還揭露許多來源未知的構造及現象,例如內側殘屑盤與內側裂縫等,都有待繼續探索。

北落師門(Fomalhaut)又稱南魚座 α 星,是秋季星空中著名的亮星之一。去年 5 月,以美國亞利桑那大學(University of Arizona)天文學家加斯帕(András Gáspár)為首的研究團隊在《自然天文學》(Nature Astronomy)期刊上發表,他們藉由詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST,簡稱韋伯望遠鏡),在北落師門周圍殘屑盤(debris disk)中首次發現了「系外小行星帶」的存在。韋伯望遠鏡拍下美麗的照片,也瞬間席捲各大科學與科普媒體的版面(圖一)。

圖一:韋伯望遠鏡在波長約 25 微米(μm)的中紅外線拍攝的北落師門影像,首次呈現北落師門殘屑盤中的三層結構。(NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

天文學家選擇北落師門作為目標並非偶然。半個世紀以來,北落師門一直是天文學家研究殘屑盤時的首選目標之一。韋伯望遠鏡的新影像為我們帶來什麼新發現?過去與現在的觀測方式又有什麼差異?本文將帶著大家一起回顧北落師門殘屑盤的觀測史。

行星相互碰撞後的殘屑盤

殘屑盤是環繞在恆星周遭,由顆粒大小不一的塵埃所組成的盤狀結構。如果讀者們聽過行星形成的故事,也知道行星是從恆星四周、由氣體與塵埃組成的「原行星盤」(protoplanetary disk)中誕生,那你或許會認為殘屑盤可能就是行星形成後剩下的塵埃。但實際上並非如此,在恆星形成初期的數百萬年間,原行星盤中的氣體和塵埃會被恆星吸積或是吸收恆星輻射的能量後蒸發,同時也會聚集成小型天體或行星,這些原因都會使原行星盤消散。而殘屑盤則是由盤面上的小行星等天體們互相碰撞後,產生的第二代塵埃組成(圖二)。

圖二:殘屑盤想像圖(NASA/JPL-Caltech)

這些塵埃發光的機制主要有兩種。第一,塵埃本身可以散射來自母恆星的星光,從而讓天文學家能在可見光與近紅外波段看到它們。第二,塵埃在吸收來自恆星的星光之後,以熱輻射的形式將這些能量重新釋放。由於恆星的光強度與距離成平方反比,愈靠近恆星,塵埃的溫度就愈高,因此發出的輻射以近紅外線為主;反之,愈是遠離恆星,塵埃的溫度就愈低,發出的光就以中遠紅外線為主。

-----廣告,請繼續往下閱讀-----

觀測目標:北落師門

北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。

● 哈伯的觀測

2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。

圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)

● ALMA 的觀測

ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。

圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)

● 韋伯望遠鏡的觀測

最後則要來看去年韋伯望遠鏡所使用中紅外線儀(mid-infrared instrument, MIRI)拍攝的影像(圖五)。與之前的觀測不同,這次的影像顯示北落師門的殘屑盤其實分成幾個部分:

-----廣告,請繼續往下閱讀-----
圖五:韋伯望遠鏡在 25 微米波段觀測到的北落師門殘屑盤。(NASA GSFC/CIL/Adriana Manrique Gutierrez;NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

首先,哈伯望遠鏡與 ALMA 之前就已觀測到的塵埃環,它的半徑約 136~150 天文單位(AU)、寬約 20~25 AU,而溫度則落在約 50~60 K,與太陽系的古柏帶(Kuiper belt)十分相似,因此被稱為「類古柏帶環」(KBA ring)。雖然在觀測上的溫度相似,但其實此塵埃環與北落師門的距離是古柏帶到太陽的四倍;不過北落師門光度約為太陽的 16 倍,根據前述提及的平方反比關係,才導致兩者的溫度相近。此外,在更外層名為「暈」(halo)的黯淡結構則對應古柏帶外圍天體密度較低的區域。

再來,韋伯望遠鏡還發現了更多未解的謎團:內側殘屑盤(inner disk)與中間環(intermediate ring)。其實早在本次韋伯望遠鏡的觀測之前,天文學家就已經從北落師門的光譜推測,北落師門的殘屑盤中除了存在前面提過的類古柏帶環之外,應該還有另一批更靠近恆星、溫度更高的塵埃,溫度與大小對應太陽系中的環狀小行星帶。但當韋伯望遠鏡實際觀測後,卻發現與太陽系的環狀小行星帶相比,北落師門有著相當瀰散的內側殘屑盤。為什麼會有這樣的不同呢?目前天文學家也不清楚,仍待進一步研究。

最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。

此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。

-----廣告,請繼續往下閱讀-----

另一方面,天文學家也藉由數值模擬發現,如果僅考慮來自北落師門的重力影響,類古柏帶環應該要比觀測到的更寬才對。因此他們推測,很可能在類古柏帶環內外兩側有兩顆行星,像控制羊群的牧羊犬一樣以自身的重力限制塵埃移動,才產生了這麼細的塵埃環。

● 更多的殘屑盤觀測

北落師門雖然是一顆年齡僅4.4億年的年輕恆星,卻已經是一個擁有殘屑盤、形成行星的成熟恆星系統。而來自韋伯望遠鏡的最新觀測結果,無疑讓天文學家更深入地認識殘屑盤中複雜的結構,也更令他們相信北落師門系統中有多個行星環繞。

不過,北落師門系統仍舊有許多未解之謎。例如為什麼太陽系有著環狀的小行星帶,北落師門卻是瀰散的內側殘屑盤?在無數的恆星中,究竟是太陽系還是北落師門的殘屑盤構造比較常見?殘屑盤中是否有行星存在?如果有,在北落師門的演化歷史中又扮演著怎樣的角色呢?這些問題都有待更多的觀測與理論模擬來解答。

在北落師門之後,觀測團隊預計將韋伯望遠鏡指向天琴座的織女星(α Lyr, Vega),以及位於波江座的天苑四(ε Eri),兩者都是離地球非常近且擁有殘屑盤的恆星。其中織女星的溫度與質量比北落師門更大,而天苑四的質量與溫度雖然比太陽小,卻有強烈的磁場活動。藉由觀測不同系統中殘屑盤的性質差異,並與太陽系進行對比,不僅能更加認識殘屑盤的起源、與行星的交互作用,更能理解我們自己的恆星系中,數百萬顆的太陽系小天體從何而來。

-----廣告,請繼續往下閱讀-----

JWST 原始資料的處理過程影片介紹,非常值得一看!

  • 〈本文選自《科學月刊》2024 年 01 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
  2. MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
  3. Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
-----廣告,請繼續往下閱讀-----
所有討論 2
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

5
3

文字

分享

0
5
3
星光,指引地球的未來——《困惑的心》推薦跋
時報出版_96
・2023/07/17 ・4372字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

  • 潘康嫻/中研院環境變遷研究中心博士後研究員

人類是天生的科學家。我們生來就想知道為何星星會閃爍,想知道為何太陽會升起。


加來道雄

地球上有一群人總喜歡抬著頭,看著夜空中點亮大地的星燈,這些星光夾藏著宇宙的祕密,穿透無數個光年,抵達藍色的星球。除了欣賞夜色之美,這一群人更試圖從中看出點端倪,這些熠熠星光是怎麼來的?宇宙是什麼樣子?為什麼會有地球?生命從何而來?還有其他如地球般的星球嗎?那裡也有文明嗎?好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。

好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。圖/envatoelements

向遙遠的星系發送信號 尋找未知的外星文明

人類的世界觀從曾經的地球放眼到太陽系,隨著科學與科技的進步,二十世紀的物理學開創宇宙論的發展,至二十一世紀天文觀測的黃金年代,不停歇地向深邃的星空探索,走出新的視野。近二十多年的諾貝爾物理獎,多達三分之一肯定天文學的貢獻,例如 2019 年獲獎的三位學者,一位建構宇宙大霹靂理論模型,另兩位發現一顆繞著另個太陽類型恆星公轉的系外行星。宏觀的宇宙視野,加上相對微觀的行星視角,近代的天文學一再刷新人類對宇宙演化及地球定位的認知。

天文望遠鏡和太空科技的進展,讓現代的天文學家得以挖掘宇宙暗藏的驚奇,透過紅外線觀測,我們看到隱藏在可見光背後恆星誕生的搖籃,也發現了宇宙考古學的線索。2019 年諾貝爾物理學獎得主之一詹姆士・皮博斯(James Peebles)花費大半輩子,帶領我們梳理宇宙 137 億年演化的歷程,如今我們知曉實質物體的總質量佔宇宙的 5%(其餘為 68% 的暗能量,與 27% 的暗物質)。在這 5% 的質量中,粗略估計大大小小星系中的星點,加總起來約略有 1027 顆恆星。假使每顆恆星誕生時也伴隨著行星系統的發展,在如此龐大的總數下,是否也有另一顆適合生命發展的星球?

放眼望去,茫茫星海,僅吾唯一?以地球人的角度思考外星生命的可能性,德雷克公式(Drake equation)將文字的問號轉成可運算的概念,考慮環境因素和發展文明的可能性,估計銀河系中存在著少則一千,多則一億的文明數量。但這些年,沒有人聯絡我們,我們也沒有找到對方,費米悖論提醒了估算與現實的落差。天文學家藉著太空科技的發展得以主動探尋,1972 年的先鋒號和 1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。除了寫信,還可以像發電報一樣,1974 年的阿雷西波訊息(Arecibo message),對著遠在 25,000 光年外的 M13 球狀星團發送訊號,寄望能在高齡星團中找到找到高智慧文明存在的可能性。然而,這一去一回,收到回音得等上五萬年,已不知道是人類幾代以後的事了。

-----廣告,請繼續往下閱讀-----
1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。圖/wikipedia

一如 15 至 17 世紀的大航海時代,歐洲船隊面對大海,莫不引頸期盼能在望遠鏡裡看到遠方的陸地。行星猶如當時的目標,由於行星不會自行發光,尋找行星的難度如同在千里之外的明亮燈塔旁邊瞧見一隻蚊子,然而技術的困難並未讓人退卻,科學的精彩就在於想辦法突圍。

更清晰地遙望遠方 用太空望遠鏡在地球上一起遨遊宇宙

1995 年米歇爾・麥耶(Michel Mayor)迪迪爾・奎洛茲(Didier Queloz)藉由分析恆星光譜中的都卜勒效應(目標物遠離觀測者時,其光譜會往長波方向拉長稱作紅移,反之靠近則往短波壓縮稱之藍移),在飛馬座找到繞著太陽類型的恆星公轉的第一顆系外行星飛馬座 51b(51 Pegasi b),為系外行星大發現時代展開序幕,也讓他們在 2019 年共享諾貝爾物理獎的殊榮。至今近 25 年觀測資料的累積,尤其有了克卜勒太空望遠鏡和接續的凌日法系外行星巡天衛星(Transiting Exoplanet Survey Satellite,TESS),系外行星數量自 2014 年開始大幅增加,截至今年 2023 年 6 月統計,約有 5,500 顆系外行星,依據型態將系外行星分成四類:氣體巨行星(又稱熱木星)類海王星超級地球類地行星。天文學家從統計數量和行星形成動力學模型中獲得豐富的訊息,也讓太陽系的形成與演化有了更進一步的認識。以一個系統中的行星質量做序列可以分成四種:由小至大(太陽系即為此類)、由大至小、混合、和大小相似,科學家發現像太陽系八大行星的排序反而非常稀有,像 TRAPPIST-1 系統中七顆行星大小雷同的類型倒是常見,人們才驚覺原來太陽系與其八大行星的組合是如此與眾不同。這個獨特也包含太陽系的氣體行星木星,有顆大質量的木星在外,像吸塵器一樣讓闖入太陽系的天體轉向(例如 1994 年的舒梅克-李維彗星撞擊木星事件),減少外來者體撞擊內太陽系的機會,使得位在適居帶的地球有足夠安全的環境與時間孕育生命。原來要有機會誕生生命,先決條件也要天時地利「星」和。

有沒有一種可能,其實有外星訊號,只是現今的科技還無法察覺和解讀? 二十一世紀的新視野多來自百年前科學家所闢的路,例如愛因斯坦在廣義相對論提出對重力的新見解,物體質量造成的空間扭曲,只是改變的幅度之小不易測量,直至 2015 年天文學家終於在絞盡腦汁精細設計之下,成功打造觀測重力波的天文望遠鏡(Laser Interferometer Gravitational-Wave Observatory,LIGO),2017 年人類首次觀測到雙中子合併事件,解開化學元素週期表上的重金屬形成之謎。在天文學的領域,一個計畫從靈感發想、規劃藍圖、開工建造、出發觀測、收集資料到計畫結束,從開始到最後的時間跨度,往往超過科學家本身的職業生涯。科學家年輕時的構思,常須藉由後生晚輩接棒執行,有生之年不一定看得到科學成果,而這一路上牽起了一代又一代的傳承,一起讓科學的進展跑得更遠,跑向遠在未來的新發現。本篇文章談及的計畫,在筆者的學生時代,早已如火如荼地展開,伴隨著計畫的執行和觀測資料的回傳與分析,是前輩們的堅持與努力,也是帶給新生代天文學家的禮物和邀請:現在的成果來自於我們過去的努力,而未來要由現在的你們來開創。

太空望遠鏡的升空協助天文學家得以更清晰地遙望遠方,讓系外行星的發現轉為低風險的冒險之旅,安全地帶著大家想像另一個世界的雛形,正當書中的主角,天文生物學家拜恩教授,為兒子羅賓說起異星見聞時,好似向星空開啟一扇扇門,父子倆得以一起遨遊宇宙。

-----廣告,請繼續往下閱讀-----

穿越都市的水泥叢林,遠離學校與人群,當我讀到書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向,令我不禁想起,曾經只是為了想看星星,所以去登山的自己,無意間在山林尋回自己的心。臺灣的山勢陡峭地形多變,得要十分專注在腳下的步伐與眼前的山徑,此刻陪伴自己的只有呼吸和心跳。踩著吃力的腳步,一瞬間,世界難得寧靜,只聽得見自己的聲音,「離目標還有些距離,繼續是前進,回頭是放棄。若是堅持,不知還有多少難關?若是放棄,我能接受放棄的自己嗎?難道是走錯路或迷路,所以才這麼難行,那麼路又在何方?」為一睹繁星,在光害日趨嚴重的情況下只得越走越深山,不只用腳感受臺灣地貌的鬼斧神工,還要感官全開地觀察瞬息萬變的天氣,多認識她才能做出適當的應變確保登山安全。白天的路上觀察自然的氣息,與重建內在的自己,晚上終見美麗的星空,走在一條條的山岳路線,整頓人生朝著目標向前行。

書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向。圖/envatoelements

回首看看我們腳下的地球

天文學總是背對著地球往外尋找新的未知,試圖解讀新收到的觀測資料與訊息,然而來自腳下的訊號呢?地球也是行星,是離我們最近的行星,她孕育了這世界的美好,但她的語言,我們真的懂了嗎?羅賓對外界的反應多來自於他所觀察到的地球,作為父親的拜恩教授要怎麼回應孩子呢?

當我們汲汲營營想向外拓展新知識、新世界時,可曾留意腳下正在發燙?若將地球的呼喊換成人類的語言,環境變遷的種種跡象就是地球發燒的訊號。以往科幻災難片當中的賣座奇觀,漸漸成為生活新聞,熱浪、野火、水災旱災、劇烈天氣變化,讓全球不只要解決眼下的困境,也要未雨綢繆地做永續經營的規劃,即刻採取行動已是迫在眉睫。

2021 年,聯合國政府間氣候變遷專門委員會(IPCC)公布第六回的全球氣候變遷評估報告,提及全球暖化現象在冰河面積、海平面上升、全球氣溫,及海洋酸化等等的科學研究報告中,出現許多令人擔憂的新紀錄,並指出二氧化碳與溫室氣體排放量的關聯性,巨變的環境讓各類生物物種面臨生存威脅。因應這場危機,全球達成共識目標於二十一世紀的地球平均氣溫,相比十九世紀最多僅能上升攝氏 1.5 度,並且在 2050 年達成全球淨零碳排放。今日世界各國包含臺灣正積極發展替代能源減少碳排放,同時開發技術增加碳匯,企圖集結眾人的力量把大氣中的碳存回大地。但我們能在有限的時間內力挽狂瀾嗎?假使目標如期達成,是否就高枕無憂了呢?地球和我們的日子就美好了嗎?

二氧化碳與其他溫室氣體排放帶來的環境巨變,讓各類生物物種面臨生存威脅。圖/envatoelements

從人類張開眼睛認識日月星辰,建立了神話、曆法和文明,發展農耕,再到科學與工業革命,一路解析宇宙和地球的起源、歷史、環境、命運。星星帶給人類的啟發,讓人類的足跡已從地球走向太陽系,從更高的視野回頭凝視地球那令人屏息的湛藍,離開地球的探索,讓我們重新看見地球。文化藝術與科技文明的發展一直以來與大自然息息相關,進步固然帶給人類生活和思維的改變,然而過度的開發讓環境失衡,讓現在的我們必須啟動地球生命保衛戰,永續經營之前要先理解,如何理解則引發更多的提問,解答提問的過程中人類將深刻感受地球的脈動,為身為地球人感到驕傲。BE-WILD-ER-MENT 的故事在過去已開始,現在的行動是創造機會、還是命運?未來,讓我們和這顆有心跳的藍色星球一起來回答吧。

-----廣告,請繼續往下閱讀-----

——本文摘自《困惑的心》,2023 年 7 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。