Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

淘氣衛星你追我跑 掌握旱澇預報

李柏昱
・2014/05/12 ・1525字 ・閱讀時間約 3 分鐘 ・SR值 553 ・八年級

-----廣告,請繼續往下閱讀-----

 

GRACE衛星示意圖,透過量測兩衛星間的距離變化,科學家就能獲得全球地表的淡水資訊。(圖片來源:NASA)
GRACE衛星示意圖,透過量測兩衛星間的距離變化,科學家就能獲得全球地表的淡水資訊。(圖片來源:NASA)

台灣中南部每年春季,經常遭遇用水吃緊的困境。最近,日月潭水位新低已經威脅到水社碼頭的經營,然而一到夏天往往卻又暴雨成災。面對從乾旱到洪患的劇烈變化,美國NASA利用在天上追逐的兩顆雙子衛星,長時間的監測全球各地水資源的變化,有趣的觀測方式帶來至關重要的觀測結果。

在天上運行的「優雅」衛星

重力回復及氣候實驗(Gravity Recovery and Climate Experiment, GRACE),這對有著「優雅」之名的衛星,是NASA在2002年發射升空的一對雙子衛星,目前已經持續蒐集地球十多年來地表淡水的分布資料。
 
GRACE觀測地表水體的方式相當有趣,不禁佩服科學家的創意。GRACE藉由衡量地表重力對於其在軌道上運行速度的微小影響,從而推知地表水含量的多寡。利用「質量越大重力越大」此一定律,當地表上的冰被、河流、湖泊水量以及地下水含水量越多時,這個地區的地表總質量越多,代表有較大的重力;反之當地表乾涸時,質量較少使重力較小。
 
運用此一概念,科學家只要知道全球地表重力變化,就能推算出地表淡水資源的分布情形。但要怎麼量測呢?GRACE有前後兩顆雙子衛星,中間相隔約220公里。舉例來說,當跑在前頭的衛星接近地表重力較強的地區時,會受到較強的重力吸引而加速,拉開與後頭衛星之間的距離;而當前頭的衛星飛越重力較強的地區後,會逐漸減速,後頭的衛星則同樣受重力吸引而加速追上;最後當後頭的衛星也飛過重力較強的地區後,後頭的衛星減速,前頭的衛星速度則不再改變。
 
透過這種你追我跑的過程,科學家量測兩衛星間的距離變化,從而推算全球地表的重力場(gravity field),並得到我們最關心的水資源分布資料。
 
從全球暖化到地區乾旱

實際上,GRACE的觀測資料用途廣泛,從全球尺度的暖化危機到地區性的旱澇趨勢都能掌握。

對於全球暖化是否加速冰層融化速率,GRACE提供了南極與格陵蘭的冰被資料,但分析結果卻指出在2003〜2012年為期十年的長時間尺度中,冰被融化的速度看不出明顯的加速,無法與冰被短期的變化區隔,未來仍需要更長時間的觀測資料。
     
此外,GRACE在2006年發現非洲的剛果河、尚比西河及尼日河流域有乾涸趨勢,而美國的密西西比河與科羅拉多和水量則增加。2013年的觀測則發現美國南部出現地下水逐漸枯竭的警訊。這些資料增加科學家對於地表水循環的了解,同時也用於改善天氣、河流、洪患、乾旱的預測模式,讓各地水域管理決策機構得以防患於未然。(本文由科技部補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿/2014年/4月)
 
責任編輯:鄭國威│元智大學資訊社會研究所

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸學習:
《GRACE Sees Groundwater Losses Around the World》
《掌握地球淡水趨勢 雙子衛星監測助益大》
《Cynthia Barnett, Groundwater Wake-up.》
B. Wouters, J. L. Bamber, M. R. van den Broeke, J. T. M. Lenaerts & I. Sasgen, 2013, Limits in detecting acceleration of ice sheet mass loss due to climate variability, Nature Geoscience 6, 613–616.
-----廣告,請繼續往下閱讀-----
文章難易度
李柏昱
81 篇文章 ・ 2 位粉絲
成大都市計劃所研究生,現為防災科普小組編輯。喜歡的領域為地球科學、交通運輸與都市規劃,對於都市面臨的災害以及如何進行防災十分感興趣。

0

4
1

文字

分享

0
4
1
臺灣的水真的沒辦法生飲嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/13 ・6474字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文由 Amway 委託,泛科學企劃執行。 

根據衛福部建議,我國成人每天應該飲用約1500至2000 c.c. 的水,但在日本與歐美許多國家,只要一打開水龍頭,就能馬上擁有一杯能喝下肚的水。臺灣自詡為科技大國,為什麼卻無法擁有讓人安心的 Tap water?

冤有頭債有主,造成我們不敢生飲水的最大原因,其實不在自來水廠。從自來水廠出來的自來水,早已去除水源中的化學有機污染物、有害重金屬及致病性微生物,完全符合「飲用水水質標準」。在非常嚴密的檢驗和監控下,照理來說,你我都能夠非常安心的直接飲用這些自來水。然而,就連對水質信心滿滿的自來水廠,也大力呼籲民眾「不要直接飲用自來水」,這是怎麼一回事?

圖片來源:shutterstock

從水廠到家裡的自來水會經過哪些污染源?

首先,是管線老舊。不只是老舊管線內壁會積聚沉澱物和生物膜,管線本身若有生鏽、腐蝕的情形,還會在水中增加的鐵鏽和金屬離子。

-----廣告,請繼續往下閱讀-----

臺灣管線老舊的程度到底有多嚴重呢?根據台水公司108年的資料顯示,我國自來水管線長度超過6萬3千公里,其中超過48%的管線已經超過使用年限。再加上施工、地震、車輛超載等原因,使得管線容易破裂、漏水,進而影響水質。

除了管線品質外,蓄水池與水塔的清潔和維護也是影響自來水品質的重要因素。根據環境部指出,有高達7成以上的自來水污染事件,都是因為住戶疏忽清洗水塔的重要性,導致細菌和泥沙在儲水設施中繁衍和沉積。然而,超過45%的台灣民眾沒有定期清洗蓄水池和水塔的習慣。

這邊也要特別提醒,管線破損與蓄水池的污染,不只會讓飲用水再次受到重金屬與細菌的污染,更讓我們需要當心「新興污染物」的威脅。

什麼是「新興污染物」?

所謂新興污染物,指的是那些對環境有潛在威脅,但還沒有受到國家或國際法律廣泛監管的化學物質總稱。他們來自各種日常化工用品,並且透過城市、工業、家庭廢水進入河川與水體中。

-----廣告,請繼續往下閱讀-----

根據聯合國環境署的說明,「符合新興污染物資格的化合物清單很長,而且越來越長」。這些污染物其實離我們並不遠,是我們周遭常見的物質,例如抗生素、止痛藥、消炎藥、類固醇和荷爾蒙等藥物類,驅蟲劑、微塑膠、防腐劑、殺蟲劑、除草劑等環境荷爾蒙類,還有工業化學類的界面活性劑、火焰阻燃劑、工業添加劑、汽油添加劑、PFAS、鐵氟龍等等。

其中的全氟及多氟烷基物質PFAS,因為耐腐蝕、抗高溫,在自然環境中幾乎無法分解,又被稱為「永久性化學物質」。容易在環境及人體內累積,具有生物累積和生物放大性。而且PFAS衍伸的化合物超過一萬種,在防水、防油的紙袋、紡織品、化妝品中都很常看到。

PFAS成員全氟辛酸PFOA在2023年,被聯合國的國際癌症研究機構IARC,從2B級「可能對人類致癌」提升為一級「充分證據顯示對人類致癌」。另一個成員全氟辛烷磺酸PFOS則列為2B級致癌物。而環境部也在2024年,更針對PFOA、PFOS訂定飲用水濃度指引值。

PFOA 已被列入 IARC 第1類致癌物質,圖:Wikipedia

麻煩的是,這些新興污染物在都市中大多還未納入常規監測項目,我們對於他們對環境與人體的影響也還未全盤了解。甚至很多污染物,可能是十年前都還沒出現的。我們也不知道十年後,新興污染物的名單上,還會增加哪些名字。我們能做的事,就是盡量避免再避免。而徹底解決管線破損,與城市污水滲入蓄水池的可能性,我們才能避免這些新興污染物,進入到我們的飲用水中。

-----廣告,請繼續往下閱讀-----

使用淨水器過濾,會是淨化水質更好的方法嗎?

淨水器比起單純加熱煮沸,裡面包含了許多科技結晶,確實可以一口氣解決所有問題。但相對的,材料的選用與設計,就會更直接影響水質的好壞。

例如今天要介紹的eSpring益之源淨水器Pro,裡面用的濾材,是很常聽見的「活性碳」。

活性碳的作用是「過濾」,就像麵粉通過篩網,可以篩掉較大的顆粒。活性碳的製備,很多來自木材、椰子殼等高碳含量的原料。在經過高溫碳化,並通過活化劑或化學藥劑處理之後,會形成多孔結構,這些不規則的微小孔隙可以有效過濾水中的污染物。然而,活性碳的作用遠不止如此!其實,活性碳的過濾原理是「吸附」雜質。

活性碳是常見的濾材,圖:Wikipedia

有研究透過光譜和密度泛函理論(DFT)分析顯示,活性碳表面的含氧官能團,如羧基(carboxyl groups)和酚基(phenol groups),能夠與鉛離子(Pb(II))形成穩定的化合物,達到淨水的效果。這意味著活性碳能有效吸附和去除水中的重金屬,如鉛、銅、汞等重金屬,從而保證飲用水的安全性。

-----廣告,請繼續往下閱讀-----

也就是說,活性碳不僅通過物理吸附去除水中的懸浮物和大分子,還可以通過化學吸附來處理更複雜的污染物。除了重金屬以外,眾多的有機物、臭味分子甚至是餘氯,也都在活性碳的守備範圍內。一篇發表在《Reviews in Chemical Engineering》的論文也指出,面對日益增加的新興污染物,活性碳也正是一種具有前景的選擇之一,尤其農藥、個人保健與衛生藥(PPCPs)以及內分泌干擾物質(EDC)與活性碳有很強的吸附性,能有效的過濾這些新興污染物。

更進一步,科學家們正在研究各種農業廢棄物和不同的活化方式。他們發現,透過不同的原料和活化方式,活性碳表面官能基和結構的差異可以提高對不同污染物的吸附能力。例如,當使用鷹嘴豆、甜菜甘蔗渣或咖啡渣作為前驅物時,這些活性碳材料展現出對銅離子、鉻離子、染料及其他重金屬和有機污染物的優異吸附能力。

接下來,如果你的淨水器功能只有過濾,能確保的只有有機物與重金屬的去除,細菌可能還是存在。

當我們談論淨水器的功能時,許多人誤以為只要經過過濾就能確保水質的安全。實際上,這樣的理解並不全面。如果淨水器的功能僅限於過濾,它能確保的只有去除水中的有機物質和重金屬,然而,過濾並不能消除所有細菌,因此水中的微生物仍然可能殘留。這就是為什麼,即便過濾器

-----廣告,請繼續往下閱讀-----

之外,還需要強效殺菌來進一步保證水質。

紫外線是我們日常生活中常見且高效的殺菌工具,從居家用的烘碗機到手術室、圖書館的空氣或表面消毒,紫外線技術的應用無所不在。在淨水系統中,特別是UV-C 紫外線(波長範圍100-280nm)被證明能夠有效殺滅水中的微生物。許多先進的淨水器配備 UV-C LED ,這種燈能夠針對細菌、病毒進行消毒。

圖片來源:Amway

怎樣算是一個合格的淨水器?

美國國家衛生基金會(NSF)制定了一系列針對淨水器的性能、安全性和耐用性的標準,稱為NSF/ANSI標準。

針對台灣飲用水可能遇到的問題:細菌、重金屬、新興污染物、餘氯,各有專門的訂定標準。

-----廣告,請繼續往下閱讀-----
NSF/ANSI 標準指的是美國國家科學基金會下美國國家標準協會的所訂定的標準,

eSpring益之源淨水器Pro通過的第一跟二項標準是NSF/ANSI 53和401標準,53項針對的是健康相關的污染物,包含重金屬如鉛、銅、汞等有害金屬離子,還包括一些有機污染物如揮發性有機化合物(VOCs)。401項則是針對來自農藥、藥物等新興的有機污染物,因為在傳統的水處理過程中難以去除,因此特別訂定。

第三項,則是針對UV-C LED紫外線滅菌艙殺菌效果的NSF/ANSI 55標準。這個標準不僅規定了紫外線強度,還包括了水流量和微生物減少效果的測試與持久性,確保淨水器具有足夠的殺菌消毒能力。根據實驗數據,UV-C  LED紫外線能夠有效消滅高達99.9999% 的細菌,99.99% 的病毒,以及99.9% 的囊胞菌,為飲用水提供極高的安全保障。

最後一項標準是NSF/ANSI 42,他針對的餘氯和其他會影響味道與氣味的雜質。也就是像eSpring益之源淨水器Pro有通過第42項標準的,在確保飲用安全的標準之上,還能讓你的水更好喝哦。

這邊也要補充,除了第42、53、以及401項規定的標準,eSpring益之源淨水器Pro還請NSF做了標準之外的各項過濾性能檢測,總共有超過170種污染物的過濾符合標準,包含各種化學物質、重金屬、生物性、農藥、藥物、甚至是近年大家關注的石綿、氡氣與塑膠微粒,都在可被有效過濾的列表之中。這真的很重要,如同一開始我們講的,隨著工業文明的發展,新興污染物的名單只會越來越長而不會減少,多做幾項檢測,絕對是更安心的。如果你的淨水器已經用了很久,但擔心新興污染物沒有在獵捕名單內,可以考慮換成有通過更高標準的淨水器哦。

-----廣告,請繼續往下閱讀-----

另外,一些品牌雖然也有NSF認證,但很多都只有零件認證。eSpring益之源淨水器Pro不只針對濾心,還通過「全機認證」,確保從淨水器流出來的每一滴水都符合標準。

進一步了解商品: eSpring益之源淨水器Pro

參考資料:

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
全球與台灣面臨怎樣的水資源困境?有解方嗎?【2023 臺灣國際水論壇】
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・3777字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 經濟部水利署 委託,泛科學企劃執行。

人體有 70% 是水,而地球表面亦有 70% 被水覆蓋。「水」對人類來說,是賴以為生的必要資源,又因「水」相對容易取得,讓人們不易察覺水的珍貴。

在近年氣候變遷衝擊下,旱澇交替已成常態,經濟部水利署賴建信署長接受泛科學專訪時亦表示,依據聯合國政府間氣候變遷專門委員會(IPCC)第 6 次評估報告(AR6)分析,未來臺灣連續不降雨日數及最大暴雨強度將明顯增加,對於水資源及水環境帶來嚴峻挑戰。

具體來說,未來降雨將會更集中在特定時間與地點,在降雨地區造成更嚴重的洪災,讓非降雨地區的缺水情形更加嚴重。結果是降雨地區的水庫會不斷洩洪,無法有效收集雨水,而非降雨地區的水庫又會完全沒水。

-----廣告,請繼續往下閱讀-----

這情景也預示著我們平常容易取得的「水」,將轉變為更稀缺珍貴的資源;然而,水又是人生存所必須,若現在不採取行動,水資源終將成為人類生存的最大束縛。

為了讓企業、政府、學術單位能更重視未來所面臨的水資源問題,水利署於 10 月 23 日舉辦的「2023 臺灣國際水論壇」以「水未來」(Vision for Water)為主題,針對「水與企業永續」、「水與能源鏈結」、「水與自然解方」、「水與減碳科技」,希望形成創新的漣漪,向外擴散,激盪出國內外產、官、學界合作契機。

由於氣候變遷,看似唾手可得的乾淨用水,已逐漸成為稀缺資源。圖/Pexels

而擔任「水與ESG-厚植企業永續競爭力」場次的講者,是來自東海大學國際學院永續科學與管理學士學位學程的 Aleksandra Drizo 教授,她以數據與實際案例,揭露水資源短缺到底有多麼迫在眉睫。

全球有35億人,沒有安全與衛生的水可用

Drizo 指出,聯合國 2023 年公布的 SDGs 第六項「確保所有人都能享有水、衛生及其永續管理」報告中,指出世界上 35 億人缺乏乾淨用水與基本衛生條件,並強調:「獲得安全用水,環境衛生和個人衛生是人類健康與福祉的最基本需求。」而若要達到 SDGs 的 其他目標,又以第六項為最重要的核心,因為唯有確保人人都能用上乾淨的水,才有路徑完成其他目標,例如:第二項「終止飢餓」,就必須在確保有穩定乾淨的水源情況下,才可能達成。

-----廣告,請繼續往下閱讀-----
水資源為 SDGs 中的核心,所有指標與其息息相關。圖/Aleksandra Drizo 簡報
聯合國 2023 年的報告指出, 2022 年仍有 35 億人沒有乾淨用水與衛生環境,其中 19 億人連基本用水門檻與衛生條件都無法達到。圖/Aleksandra Drizo 簡報

Drizo 進一步指出,近幾十年來,儘管在改善飲用水和衛生條件方面有所進步,但仍有大量人口無法獲得安全飲用水和基本衛生設施。根據聯合國發布的 《Development and Globalization: Facts and Figures 2016》 資料,從 1990 年到 2015 年間,全球人口增長了 26 億,對水資源的調度與供給造成了巨大壓力。而在 2023 年世界衛生組織提供的乾淨飲用水調查資料中,直到2022年,仍有 22 億人口無法獲得安全飲用水,也與前面聯合國 2023 年的調查報告呼應,再次呈現水資源問題日益棘手的趨勢。

根據聯合國發布的 《Development and Globalization: Facts and Figures 2016》 資料,從 1990 年到 2015 年間,全球人口增長了 26 億,而未開發國家有近三分之一的人,無法確保乾淨用水。圖/Aleksandra Drizo 簡報

水資源困境並非全是全球人口成長惹的禍,全球氣候變遷造成更加頻繁的極端天氣事件,正讓全球面對過往不曾出現的乾旱。《衛報》2022 年報導歐洲面臨前所未見的熱浪與旱災,法國、荷蘭、比利時、瑞士、義大利、西班牙的河流,已經能直接看到河床,當時西班牙政府宣布限水,表示全國儲水量已達歷史新低,只有總儲水量的 40%,且每周都以 1.5% 的速率持續下降。

2022 年歐洲各地都傳出規模不一的旱災災情,如今西班牙缺水問題仍持續影響當地人民的生活。圖/Aleksandra Drizo 簡報

如今全球氣候變遷造成的水資源問題,也逐漸成為常態,《紐約時報》2023 年 10 月報導,如今西班牙仍處於缺水中,西班牙南部的水龍頭已經流不出水了,甚至連水井都已經枯竭,不只農業無法正常發展,民眾還必須仰賴水罐車或罐裝水維生,根據西班牙政府的報告,若缺水成為常態,則本世紀末將有近 74% 的西班牙國土,將面臨沙漠化的問題。

臺灣也面臨缺水問題

臺灣也未能逃離缺水的命運。2021 年春天,發生了 56 年來最嚴重的乾旱,當時外國媒體全都持續關注這場旱災,深怕缺水影響新竹科學園區的產線。而水利署搶先在 2021 年開通的「桃園—新竹備援管線」,從桃園每日調度 20 萬噸的水給新竹,才讓外媒的擔心沒有成真。

-----廣告,請繼續往下閱讀-----
2021年臺灣大缺水,外國媒體都十分關注。圖/Aleksandra Drizo 簡報

此外,臺灣水污染與地下水過度開採也導致水資源匱乏。要扭轉這一局面,則需要從多方面著手,水利署也已經開始建置相關工程並陸續投入使用,例如:高屏溪的「伏流水」與臺中水楠經貿園區淨化污水再利用的「再生水」,為地方開創多元水源,創造更有保障的用水環境。

Drizo 表示,臺灣的水庫也因氣候變遷面臨「優氧化」問題。由於水庫的水停滯過久,營養物質(氮和磷的化合物,相當於肥料)逐漸累積在水中,加上近年溫度上升,讓水中藻類與浮游生物孳生。在 2023 年的水利署水質檢測報告中,全國 20 個主要水庫中有 8 個水庫的水質已經優養化,這些優養化的水會對淨水廠造成額外負擔,而過濾出來的廢棄物處理也是個難題。

2023 年 7 月,水利署發布的水質調查報告指出,臺灣水庫有水質優養化問題。圖/Aleksandra Drizo 簡報

而 Drizo 針對優養化問題,提出以自然為本的解決方案(Nature-based Solutions, NbS)),並分享過去在各地施行的案例,例如:在 2009 至 2011 年與屏東科技大學的研究計畫,架設的社區小型污水淨水廠,以及用在美國俄亥俄州的農業污水淨水方案。最後 Drizo 分享了將廢棄物轉化生成富營養肥料等高附加價值產品的相關技術研發。也就是說,在淨水的同時,還能把廢棄物轉換為有價值的肥料,這不僅可以提高水資源利用效率,也具有重要的環保意義。

Drizo 的演講代表了學界在水資源問題上的重視,也提到了水利署正一步一腳印地改善臺灣用水環境,那麼身為用水大戶的企業,又有什麼作為呢?

-----廣告,請繼續往下閱讀-----

企業面臨的永續發展難題

臺灣美光記憶體的環安衛、風險管理暨永續發展處處長江頴俊在「水與ESG-厚植企業永續競爭力」場次分享該公司的實際經驗,臺灣美光記憶體透過「綠色基礎設施」、「流程優化」和「設備更新」的措施,成功達成每一滴水重複利用三次的目標,這項措施每年節省約 6000 萬立方公尺的水,相當於 6500 座奧運游泳池的水量。

然而,像美光這樣能提出具體目標與可信成果的企業並不多見,一同演講的法國北方高等商學院基礎建設研究中心 (EDHEC infra)的資深研究工程師 Nishtha Manocha,則說明大部分企業的永續發展目標缺乏 「設定具體可行的環保目標」以及「準確量化環保成果」。

許多企業的永續發展目標僅停留在概念階段,並沒有具體的達成路徑與量化檢核指標,這種模糊不清的目標將無法帶領企業持續行動。而更嚴重的是在量化成果這塊,目前企業仍多以內部數據來評估成效,缺乏第三方機構的驗證,資料的真實性可能會遭到質疑,也衍生出了「漂綠」的相關問題。

同場演講者—資誠聯合會計師事務所所長暨執行長周建宏,則表示「永續發展」已經是熱門的投資標的,投資人也害怕自己把錢給了「漂綠」的公司,最後虧得血本無歸。因此,在投資人的引導下,企業的永續發展目標會更為清晰,加上相關監管機構陸續成立,企業勢必將花更多心思在財報與資料呈現上,不能再打著永續發展的大旗,來跟投資者畫大餅。

-----廣告,請繼續往下閱讀-----

打造全球水未來

在「水與ESG-厚植企業永續競爭力」這場演講中,我們看到政府、企業、學界一同合作,共同討論如何解決水資源匱乏的難題。無論是學界針對水質優養化問題所提出的解決方案,抑或是透過投資人監督,讓企業能落實永續發展目標,都能看見世界正迅速朝永續水資源管理轉型。然而,各項監測指標仍顯示氣候變遷亦在加速,將我們推入未知領域,我們必須加快行動,才不會讓更嚴峻的水資源稀缺成為未來世代的枷鎖。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

4
2

文字

分享

1
4
2
擺脫缺水危機:四面環海的台灣,有可能好好利用我們身邊的海水嗎?
PanSci_96
・2023/06/24 ・3755字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

這幾年颱風都不颱風了,彷彿被台灣本島的 AT 力場隔阻在外,總是甩尾或擦邊而過,雖然少了可能的災情,但也讓台灣面對嚴峻的缺水問題,尤其曾文水庫持續探底,南部的水情特別不樂觀。如果冬、春季的鋒面也無法帶來雨量,無疑是雪上加霜,啊不對,連雨都沒有,哪來的雪跟霜呢?

那麼除了積極人工造雨、開發伏流水以外,你或許也想過,既然台灣四面都是取之不盡的海水,為什麼我們不能好好利用呢?實際上,澎湖早在 1993 年就建造了國內第一座海水淡化廠,為何至今海水淡化卻還沒有普及呢?我們有機會透過海水淡化,永永遠遠擺脫缺水危機嗎?

海水淡化效率如何?能源消耗是重要的考量因素

實際上,要將海水淡化也不需要什麼先進科技,只要將水分蒸發,再蒐集水蒸氣使它們凝結成水就可以了。曬乾後的海水還會留下天然的海鹽,可以說是一舉兩得。

這種加熱蒸餾法唯一的問題就是:效率實在是不太好。水的特性之一就是沸騰時會消耗大量的能量。要將一鍋一百度的水燒乾所需的能量,已經可以將五鍋水從零度加熱到一百度。不只如此,要讓水蒸氣凝結成液態水的過程,同樣需要耗費許多能量來進行冷卻。總的來說,這種將水變成水蒸氣再變回來的蒸餾法,從能量效率的角度來看相當不划算。很難規模化量產淡水。

-----廣告,請繼續往下閱讀-----

想要淡化海水,能源消耗是很重要的考量因素。如果要用化石燃料或電能來大量蒸餾海水,對大多數國家來說是筆相當沉重的開銷。在還沒解決用水問題前就先陷入能源危機了。因此,目前各國的大型海水淡化廠都不採用加熱蒸餾法。而是使用大家很常聽到的「逆滲透」。

逆滲透顧名思義,就是逆向的滲透作用。這是什麼意思呢?如果杯子中同時存在鹽水和淡水,中間用一片只有水分子能通過的特殊半透膜隔開,這時候水就就會自己穿過半透膜移向較鹹的那側。這種「驅使水分從低濃度前往高濃度區域的現象」就稱為「滲透」。

半透膜上的滲透過程。此過程中,水分會從溶質(藍色點點)濃度較低的區域網濃度較高的區域移動。圖/維基百科

雖然眼睛看不見,但滲透卻會產生一種真實的壓力——滲透壓,滲透壓足以和重力抗衡,在半透膜兩側形成一高一低的水位。但是我們海水淡化是要將海水變成淡水。所以反過來想,我們將鹹水放在高濃度這一側,並且用力推,推贏了水的滲透壓,水份就會逆流到淡水那邊,這就是逆滲透。

決定逆滲透效率的一個重要因素,就是逆滲透膜的材質。目前而言,不論是海水淡化廠還是你家廚房的飲水機,大都是用一種叫做芳香族聚醯胺的材質,做為逆滲透膜來進行淨水。這種材料的出現讓逆滲透的濾水效率大幅提升,只要花費蒸餾法十分之一的能量就可以得到等量的淡水。這讓逆滲透法擊敗了其他競爭者,成為最普遍也最容易規模化的淨水模式。

-----廣告,請繼續往下閱讀-----

賠本生意沒人做:脫穎而出的「逆滲透」技術,仍然無法擺脫可觀的成本

雖然這樣說,可是想要用高壓逆滲透來淡化海水還是要付出非常可觀的能量。首先,海水中可不是只有鹽份,還有各式各樣的懸浮物,金屬離子與微生物。如果不先去除這些雜質,逆滲透膜上給水分子通過的微小孔洞,很快便會堵塞。因此海水得先通過一系列的過濾與處理,才能真正進入逆滲透處理。

而且隨著逆滲透產出淡水,剩餘海水的鹹度也會逐漸變高,需要更大的壓力才能對抗持續增加的滲透壓。也就是說,要將所有抽上來的海水淡化在實務上是不可能的。一般而言,最後會剩下重量約一半的海水,這些濃縮海水鹹度特別高,被稱為鹵水。這些鹵水最後還要再透過管線排回海洋中。

講到這邊,我們已經能解答開頭提出的問題,為什麼海水淡化沒有普及?為何不用海水淡化來永久擺脫缺水?答案就是成本與自來水價差太多了。逆滲透淡化的程序相當繁複,而且每個環節都要耗電。不僅浪費能源,成本也超高,根據水利署資料,台灣海水淡化的平均成本約為一度30~40元,遠高於台灣的平均家戶水價每度 9.24 元,當然沒有自來水公司願意做這種賠本生意。

沒有其他壓低成本的方法嗎?

台灣的水價真的很低,是國際水協會調查33個國家中的第四低,這也是海水淡化發展的瓶頸。但如果先撇除水價問題,我們能不能找到不同於逆滲透的新方法,進一步壓低海水淡化的成本呢?

-----廣告,請繼續往下閱讀-----

神奇的抽水小艇

全球各地有許多勇於探索的研究團隊,持續在尋找全新的海水淡化技術。這些技術以永續發展為目標,利用再生能源或是新穎材料來產出淡水資源。

例如加拿大的新創公司 Oneka 便想到,既然主要的目標是海水,就不要浪費力氣把海水抽上岸了,直接把逆滲透機組打造成像是救生小艇一樣的形狀,漂浮在海面上。更神奇的是,這些小艇竟然完全不需要用電!

只要你懂海,海就會幫你!原來,Oneka 的逆滲透機組直接以海浪作為能量來源。這些小艇以纜線固定在海床上。當浪頭上升時,便提供了逆滲透所需的水壓。可以說是百分之百取之於海洋,發揮海洋的力量。淨化完成的淡水,則可以直接透過海底管線流向岸邊的集水裝置。

Oneka 公司的海水淡化技術。圖/Onekawater

Oneka 已經與智利中部海岸的海濱小鎮阿爾加羅沃合作,在碼頭安裝了這些小艇,每台小艇每天最多可以提供1500人的日常用水。依照此規模,只要在岸邊布置十餘台小艇,就足以供應一個小型海濱社區達成「用水自由」。

-----廣告,請繼續往下閱讀-----

廢「熱」再利用

除了逆滲透之外,也有人回過頭,嘗試重新開發新型態的蒸餾法來淡化海水。雖然蒸餾法需要耗費很多能量,但如果這些是本來就不用白不用的熱能,像是太陽能或發電廠的廢熱呢?這些廢熱,除了可以用在我們先前提到過廢熱發電,也能用在蒸餾,而且由於蒸餾法的構造和原理相對簡單,在一些小規模的應用中反而具有成本上的優勢。

這種獨特的設計每天每平方公尺可以蒸餾出 10 ~ 20 公升的淡水,雖然量聽起來不多,但是體積小且效率高,可以將家庭廢水作為再生水再次使用,對缺水地區的家庭與社區是實用的解方。

仿生材料「類澱粉蛋白」

除了有效利用各種再生能源來進行逆滲透或蒸餾,有一組來自台灣的研究團隊在今年初提出了一種全新的做法。陽明交大生命科學暨基因體科學研究所的許世宜教授發現,水珠在某種特別的仿生材料上會自動往某個方向擴散,等於是一個不用插電的奈米級抽水馬達。

他們所研究的這種材料叫做類澱粉蛋白,沒錯,就是會卡在腦血管中,造成阿茲海默症的元兇。研究團隊發現,在許多類澱粉蛋白排列成的薄膜上,表面能量會出現獨特的不對稱鋸齒形狀,引導水分子往單一方向移動。只要用這種薄膜製造一個奈米吸管,水分子便會自動由一側流往另一側。

-----廣告,請繼續往下閱讀-----

雖然這份研究目前是以奈米尺度的電腦模擬進行,離規模化和商業化還有一段長路,不過研究團隊估計,一片10公分見方的類澱粉蛋白膜不需要輸入能量,就可以在一天內產出 2.5 噸的淡水,且只要額外施加小小的 5 大氣壓,就可以將產量提升到每天 3.6 公噸。單位面積產水量是傳統逆滲透的兩百倍,所需壓力也小很多,非常有潛力成為未來低耗能、高產量的海水淡化方案。

面對常見的缺水問題,台灣現在能做什麼?

僅管最近有這麼多令人期待的新技術,但是台灣的水情或許沒辦法等到這些技術發展成熟來進駐。老字號的逆滲透海水淡化廠依然是補充匱乏水資源的重要方案。台灣國內其實早就有多座海水淡化廠,不過主要集中於離島。目前水利署已經開始推動在本島六縣市興建大型海水淡化廠,目標是每個廠每日都能產出 5~20 萬噸的淡水。

至於耗電問題,根據水利署相關單位在環評會議中的說明,除了搭配光電與能源回收設施之外,海水淡化會發生在 10 月到隔年 5 月的枯水期,盡量與用電高峰的夏季隔開,降低電能負載。

除了耗能之外,還有一點需要注意,就是海淡廠排放的高鹽度鹵水,是否會對周圍環境與生態造成影響。雖然目前透過電腦模擬鹵水排放,結果發現附近海域鹽度增量僅有 3~4%,影響看起來並不明顯。未來對生態與用電是否造成衝擊,還需要持續觀察。

-----廣告,請繼續往下閱讀-----

最後,就如同我們前面講到的,海水淡化是否能普及這個問題,除了技術是否到位外,還有一個關鍵問題值得我們討論,那就是台灣的水費,是否真的太低了?

台灣的水價定位問題值得討論。圖/envatoelements

很多人都知道台灣每年每人可分配的降雨量,僅有世界平均的五分之一,位列全球排名第 18 的缺水國家。然而,我們的水費卻是世界第四低。相比跟我們一樣是島國且水資源不足的日本與新加坡,它們的水價約為一度 30 元和 37 元,是我們一度 9.24 元的三倍以上。而這個價錢,與海水淡化目前 30~40 元的成本相比,就會讓海水淡化顯得可以接受。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。