0

0
0

文字

分享

0
0
0

清大天文學家率先捕捉到雙星釋放出罕見的伽瑪射線

臺北天文館_96
・2011/07/25 ・1659字 ・閱讀時間約 3 分鐘 ・SR值 548 ・八年級

清大天文研究所江國興教授所領導的緻密天體研究小組成員博士後研究員譚?軒博士,為第一位發現一個位於南十字座的雙星系統出現「伽瑪射線瞬變現象」 的天文學家。他首先捕捉到一個包含脈衝星的雙星系統釋放出高能伽瑪射線。江國興教授領導的研究團隊,早於另一個由美國天文學家主導的團隊,率先報導了這一 發現。研究成果於2011 年7 月20 日刊登在國際頂尖期刊《天文物理期刊通訊》(The Astrophysical Journal Letters) 上。

2010 年12 月,一對罕見的雙星於彼此不到金星與太陽的距離擦身而過。一般的雙星系統是由兩顆恆星或者一顆恆星跟一顆白矮星組成。這對位於南十字座的雙星,卻是由一顆 大質量恆星和一顆脈衝星(即快速旋轉的中子星)組成。這個大質量雙星系統的特別之處在於,熾熱而呈藍白色的主星是如同太陽一般的恆星,但直徑卻比太陽大9 倍。伴星的大小則遠小於地球 (通常只有10-20 公里左右)。這對雙星是已知的伽瑪射線大質量雙星系統中,唯一確定包含脈衝星的。

全球的天文學家對於這對特別的雙星抱著極大的興趣。這不但是因為這樣近距離的接觸每3.4 年才發生一次,而且天文學家預期在這段時間會偵測到伽瑪射線,為雙星系統的互動機制提供重要的線索。在國科會的支持下,清大天文研究所江國興教授所領導的 緻密天體研究小組,也對這次事件進行了伽瑪射線和X 光的觀測。

自去年10 月上旬開始,譚?軒就定期對「費米伽瑪射線太空望遠鏡(Fermi Gamma-Ray Space Telescope)」所收集的數據進行分析。他表示:「雙星的週期長達3.4 年,使這次觀測機會很難得,而且更是費米望遠鏡自2008 年升空以來的第一次機會,天文學家都非常的期待。」小組另一位成員黃修慧博士補充說:「 過去,天文學家曾經利用無線電波和X 光等波段觀測這對雙星,卻從來沒有偵測到十億電子伏特這波段的伽瑪射線。 長期以來天文學家都在尋找雙星系統釋放的伽瑪射線,被我們找到了!」 這顯示費米伽瑪射線太空望遠鏡有著?大的潛力。

-----廣告,請繼續往下閱讀-----

這顆脈衝星名為PSR B1259-63,大小跟新竹市差不多,質量卻有太陽的兩倍。脈衝星的光束就像宇宙中的一座燈塔,只有當光束掃過地球的時候才能被看到。位於澳洲的帕可斯 電波望遠鏡(Parkes telescope)在1989 年首次發現這些脈衝,而得知PSR B1259-63 以每秒約21 次的頻率自轉。不僅如此,這顆脈衝星以一條橢圓而傾斜的軌道繞著一顆稱為LS 2883 的大質量恆星運行。這顆巨大恆星的質量是太陽的二十四倍。由赤道往外擴散的恆星風更形成一個圓盤,每當脈衝星在距離大質量恆星約一億多公里而向其接近時, 會先穿過恆星圓盤, 然後以最短距離掠過恆星, 離開時再次穿越恆星圓盤(見圖)。

研究團隊成員之一、香港大學物理系的日藉博士後研究員高田順平博士表示:「當脈衝星通過恆星圓盤時,由脈衝星產生的高能粒子與圓盤的物質產生互動,這 些粒子就有可能被進一步加速而釋放出伽瑪射線。」不過,到目前為止要完全解釋伽瑪射線的數據卻是一件不容易的事,因為伽瑪射線的光譜和亮度的變化出乎天文 學家事前的預測。江國興教授說:「在去年十一月中旬,我們首先探測到微弱的伽瑪射線,並第一時間告知全球的天文學家。因為訊號太微弱,這發現曾遭到一些天 文學家的質疑。」後來這微弱的伽瑪射線也消失了, 這現象跟一些理論所預測的不太符合。江國興繼續說:「意料不到的是,從一月中旬開始,我們又重新觀測到伽瑪射線,而強度竟然比上一次增加了好幾倍。這是前 所未有的發現, 到現在還沒有一個公認的解釋。」

「剛開始觀測的時候只是抱著一種探索的心情,想不到後來卻有突破性的發現。」譚?軒興奮的說。「我想研究工作就是要以開放且認真的態度,去接受來自宇宙的一切可能性。」

費米伽瑪射線太空望遠鏡是由美國太空總署領導的國際團隊所建造,並於2008 年8 月11 日發射升空。所有數據即時公開以供全球天文學家使用。清大天文所是全球首批利用費米伽瑪射線太空望遠鏡進行研究的團隊之一。

-----廣告,請繼續往下閱讀-----

圖片說明:在2010 年11 月到2011 年2 月,脈衝星PSR B1259-63 接近大質量恆星LS 2883。 費米伽瑪射線太空望遠鏡(Fermi Gamma-Ray Space Telescope) 偵測到兩次的伽瑪射線瞬變。圖片提供:NASA/Goddard Space Flight Center/Francis Reddy (繪圖) 及清大天文研究所譚?軒(費米伽瑪射線太空望遠鏡影像)

資料來源:清華大學天文所江國興教授提供, 2011.07.21

引用自臺北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 42 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
207 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

12
5

文字

分享

0
12
5
活躍黑洞的炙熱遺跡:費米泡泡
EASY天文地科小站_96
・2022/04/29 ・4611字 ・閱讀時間約 9 分鐘

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星
圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team.

你看過銀河嗎?

如果你在晴朗的夏日午夜旅行到沒有光害的山上,將會看到天上有一條淡淡的、若有似無的亮帶,好像一條薄薄的雲橫跨夜空,它正是我們所居住的星系 ── 銀河系(Milky Way)的盤面。在數位相機的加持之下,我們還能看到這薄薄的盤面上,其實布滿恆星、星雲、以及塵埃帶,複雜、深邃而美麗。

美麗的銀河。圖/陳子翔(CC BY-NC-ND 4.0)拍攝於清境。

但如果,你有一雙能夠看到「伽瑪射線」的眼睛,你將看到兩個視角高 50 度、寬 40 度的巨大橢圓形「泡泡」,矗立於銀河盤面兩側。它們名為「費米泡泡 Fermi Bubbles」,是銀河系中巨大且神祕的結構之一。

費米泡泡的起源,以及存在的意義,一直是過去十多年來,天文學家相當關注的研究主題。

費米泡泡示意圖。圖/NASA’s Goddard Space Flight Center

最近(2022 年 3 月),一篇刊登於《自然天文學》(Nature Astronomy)的研究顯示,壯闊的費米泡泡很可能源自兩百多萬年前,銀河系中心超大質量黑洞的一次能量爆發。

-----廣告,請繼續往下閱讀-----

費米泡泡的發現

當我們一聽到「費米泡泡」這個詞,腦海中浮現的第一個問題往往是:

「費米是誰?這個泡泡跟他有什麼關係?」

在物理界,恩里科.費米(Enrico Fermi)這個名字可謂家喻戶曉。他是 20 世紀初最重要的物理學家之一,曾參與曼哈頓計畫,設計與建造世上第一個核子反應爐和原子彈;並且在量子力學、核子物理、粒子物理和統計力學都貢獻卓越。後世以他命名的物理概念、研究計畫不計其數。這之中,就包含「費米伽瑪射線太空望遠鏡 Fermi Gamma-ray Space Telescope」。

費米太空望遠鏡。圖/NASA

正如其名,費米是一座專門用於觀測伽瑪射線的太空望遠鏡,它於 2008 年發射升空,是軌道上最好的伽瑪射線太空望遠鏡之一。比起前輩們,費米擁有更大的視野、更高的靈敏度和空間解析度,可以看得更廣、更暗、更清楚。

它的主要任務,是不斷的掃視整片天空,繪製伽瑪射線的全天地圖(all sky map),研究黑洞、中子星、超新星等宇宙中最高能的天體。

費米太空望遠鏡的十週年科學成果紀念海報。圖片中橢圓形的區域,就是費米拍攝的伽瑪射線全天圖,以等面積投影法投影成二維的圖。中間的水平亮帶源自銀河盤面上的氣體,上下兩個泡泡狀結構就是費米泡泡的示意圖。圖/NASA

費米太空望遠鏡升空短短兩年後,天文學家就從觀測資料中發現,如果我們將費米的全天伽瑪射線圖中已知的星體(比如銀河系的瀰散氣體、中子星、其他星系等)全部扣除,將會看到銀河中心的上下兩側,各有一對高 50 度、寬 40 度的巨大橢圓形區域,而這是從未發現過的銀河系新結構!

-----廣告,請繼續往下閱讀-----

天文學家於是將它命名為「費米泡泡 Fermi Bubble」,以紀念費米太空望遠鏡的重要貢獻。

相對於銀河系中的瀰散氣體,費米泡泡的亮度其實並不高。因此天文學家必須先小心翼翼的將其他伽瑪射線的來源建模並扣除,才能看到這巨大但黯淡的構造。影/NASA Video

而除了在伽瑪射線看到的費米泡泡之外,天文學家也在微波和 X 射線波段看到了相似的結構。

在微波波段,威爾金森微波各向異性探測器(WMAP)和普朗克衛星(Planck)都在費米泡泡的位置觀測到兩片橢圓形的明亮區域,天文學家稱之為「微波薄霧 microwave haze」。而在 X 射線波段,2019 年才昇空的義羅西塔(eROSITA)衛星則發現了與費米泡泡相似,但是更大的泡泡狀結構,被稱為「eROSITA 泡泡」。

另外,在紫外線波段,雖然沒辦法直接看見泡泡狀的結構,但天文學家藉由遙遠天體通過費米泡泡中的稀薄氣體時產生的吸收譜線,可以計算出費米泡泡的膨脹速率,大約是每秒數百到數千公里的等級。

綜合以上資料,天文學家認為費米泡泡應該是源自數百萬至一千萬年前,銀河系中心的一次巨大爆炸。這場爆炸大約釋放了 1048 – 1049 焦耳的龐大能量(相當於太陽終其一生釋放的能量,再乘以 10000 倍以上),並加熱了銀河系中心的氣體,使其以每秒數千公里的速度劇烈膨脹。百萬年後的今天,就成為了橫跨數萬光年巨大泡泡。

-----廣告,請繼續往下閱讀-----

但是,這張錯綜複雜的拼圖,還缺少了最核心的一塊:

這麼龐大的能量,究竟是從何而來?

超新星爆發還是黑洞噴流?費米泡泡的身世之謎

費米泡泡剛被發現不久,天文學家就對驅動費米泡泡的核心引擎,提出了兩位候選人:

第一種觀點,認為銀河系中心在數千萬年前可能曾有大量的恆星形成,其中年輕的恆星由於壽命短暫,很快的就走完它的一生,並發生超新星爆炸,釋放出巨大的能量。

另一種觀點,則認為銀河系中心的超大質量黑洞在數百萬年前可能短時間內吃進了大量氣體,並在過程中將能量以噴流(jet)或外流(outflow)的形式釋放出來。

-----廣告,請繼續往下閱讀-----

兩種說法聽起來都頗有可能,而且天文學家都有在其他星系看過類似的現象,那該怎麼知道哪邊才是對的呢?這時,天文學家們就兵分兩路,觀測學家們繼續對費米泡泡進行更多觀測,尋找更多可能的隱藏線索;理論學家則利用電腦模擬,嘗試在電腦中重現出觀測結果。

劇烈的超新星爆發(如左圖的 M82)與黑洞噴流(如右圖的 Centaurus A)都可能產生類似費米泡泡的結構。圖/NASA, ESA, CXC, and JPL-CaltechNASA/CXC/SAO, Rolf Olsen, JPL-Caltech, NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle

早年,兩派假說各有各的優勢,也有各自難以解釋的弱點。但隨著觀測資料的不斷累積,天文學家漸漸發現黑洞的噴流假說似乎更符合觀測結果,因此更具說服力。但即使如此,想要在電腦模擬中一次重現費米泡泡所有的觀測特徵,仍是相當困難的挑戰。

三個願望,一次滿足

然而今(2022)年三月,清大天文所楊湘怡教授利用三維磁流體力學電腦模擬(MHD Simulation),就一次重現了費米泡泡、義羅西塔泡泡與微波薄霧三個重要的觀測特徵。

他們假設銀河系中心的超大質量黑洞,在 260 萬年前曾經朝著銀河系盤面的上下兩側噴出兩道噴流。噴流帶有 1050 焦耳的強大能量,其中含有大量以接近光速運動的高能電子。當這些高能電子與低能量的光子碰撞時,電子會將能量傳遞給光子,就好像被保齡球打到的球瓶一樣,讓光子從低能量的可見光,變成高能量的伽瑪射線。這個被稱為「逆康普頓散射 Inverse Compton Scattering」的機制,讓我們能在伽瑪射線看到費米泡泡。

-----廣告,請繼續往下閱讀-----

與此同時,這些高能電子在銀河系的磁場中運動時,會以「同步輻射 Synchrotron Radiation」的方式放出微波與無線電波,形成我們看到的微波薄霧。最後,強大的噴流在撞擊銀河系中的氣體時,會產生以每秒數千公里高速移動的震波(Shock Wave)。震波所到之處,受到壓縮而加溫的氣體就會釋放出 X 射線,成為我們看到的義羅西塔泡泡。而且氣體運動的速度,也與紫外線觀測的結果相符。

這個研究結果,將伽瑪射線、X 光、紫外線到微波的所有觀測結果,用黑洞噴流漂亮的一次重現,這無疑是我們對費米泡泡理解的一大進展。

將理論模擬的費米泡泡投影到銀河系的可見光影像上。圖中可以清楚的看到費米泡泡(Cosmic rays)、義羅西塔泡泡(Shocks)以及它們跟太陽到銀河系中心的距離(28000 光年)的大小比較。圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team

未來展望

那麼,費米泡泡的身世之迷,就此蓋棺論定了嗎?

嗯⋯⋯還沒這麼快。

-----廣告,請繼續往下閱讀-----

無論多麼精細的模擬,終究是對真實世界的近似與簡化,理論學家永遠可以繼續考慮更多的物理機制,計算出更精細的結果。觀測天文學家也會不斷拿出更多、更好的儀器,挑戰模擬的結果。

更宏觀的看,如果銀河系中心的超大質量黑洞在兩百多萬年前真的曾經如此活躍,它釋放出的龐大的能量,是否曾對銀河系造成其他的影響?我們是否能夠從中學到更多關於銀河系的歷史,以及黑洞跟星系間複雜的共同演化機制?這些都有待天文學家的持續探索。

費米泡泡的故事,仍未完結。

銘謝

感謝論文第一作者、清大天文所楊湘怡老師對本文的指導與建議。

參考資料(學術論文)

-----廣告,請繼續往下閱讀-----
  1. Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole | Nature Astronomy
  2. Unveiling the Origin of the Fermi Bubbles – NASA/ADS
  3. X-Ray and Gamma-Ray Observations of the Fermi Bubbles and NPS/Loop I Structures – NASA/ADS
  4. Fermi Gamma-ray Space Telescope: High-Energy Results from the First Year

延伸閱讀(報導與科普文章)

  1. 本次研究相關
  2. 費米泡泡相關
  3. 其他相關天文物理科普文章
-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1556 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

1
1

文字

分享

0
1
1
重力波太強,不晃會被撞到地上:為何重力波讓整個天文學界為之震動呢?──《科學月刊》
科學月刊_96
・2017/12/11 ・2954字 ・閱讀時間約 6 分鐘 ・SR值 542 ・八年級

文/金升光|中央研究院天文及天文物理研究所

重力波的研究拿下了今年的諾貝爾物理獎。圖/Charly W. Karl@Flickr

一如許多人事前的預期,重力波研究毫無懸念的拿下了今年的諾貝爾物理獎(參閱《科學月刊》本期諾貝爾物理獎介紹)。然而,要讓大多數圈外人相信這些臂長 3、4 公里的雷射干涉儀可以分辨出信號振幅只有質子大小千分之一,而且還是來自十幾億光年的外太空、連天文學家都未能預見的大型星球質量雙黑洞碰撞,其實是有些難度。

得獎恭賀之聲尚未稍歇,美國國家科學基金會(National Science Foundation, NSF)10 月16 日在華府與重力波研究團隊--包含美國的 LIGO 計畫和 8 月初才加入聯合觀測的歐洲 Virgo 干涉儀,以及代表全球 70 多個天文台的科學家們大陣仗的召開記者會,宣布了第 5 個重力波事件 GW170817、同時也是伽瑪射線爆 GRB 170817A 的相關研究。這是人類首度透過各個電磁波段確認重力波來源,並詳細觀測爆發後的餘暉(a­irglow),推斷是來自長蛇座方向距離我們 1.3 億光年 NGC 4993 星系內兩顆中子星相互碰撞的結果。碰撞不僅實際上使全球振動,也讓許多地面和軌道上的大望遠鏡轉向同樣的目標。這原因當然不只是為了再次驗證愛因斯坦相對論的成功而已。

-----廣告,請繼續往下閱讀-----

短伽瑪射線爆與重力波的關聯

伽瑪射線爆(gamma-ray burst, GRB)是冷戰時期美國衛星為了監測前蘇聯的核子試爆活動意外發現的。這類天體的高能輻射爆發時間只有幾秒鐘,每年可偵測到上百次,遍布全天空,幾乎不重覆發生且無法預測,研究困難進展緩慢。部份的 GRB 爆發後在波長較長的電磁波段可以觀測到餘暉,亮度衰減幾小時或幾天之後就很難看見。GRB 爆發時的光度比超新星還亮,是人類肉眼可能看到的最遙遠的天體(例如 GRB 080319B)。不過,一般認為這瞬間的高能輻射應該像燈塔一樣,只集中在特定的方向。

統計發現,依照爆發時間長短和伽瑪射線頻譜分布可以將 GRB 分成長、短兩種。透過其他間接的證據,天文學家長久以來就懷疑雙中子星合併是某些短 GRB(short GRB)的前身,一夜之間得到證實。雙中子星系統經由重力波輻射損失能量、和脈衝雙星的軌道衰減觀測吻合,不僅是重力波存在的間接證據(1993 年諾貝爾物理獎),也是LIGO 計畫最初就鎖定的觀測目標之一。雖然雙中子星質量較小,GW170817 卻是 5 次事件中信號(信噪比)最強的,合併前100 秒內的周期變化清晰可辨;它和我們的距離不到前幾次雙黑洞系統的十分之一,同時也是少數已測得距離的短GRB 中最近的一個。

中子星碰撞與中子快捕獲過程

GRB 的餘暉和爆發後的產物或周遭的星際介質有關,科學家並不預期雙黑洞合併會放出強烈的電磁波。9 月底才剛發布了第 4 次重力波事件 GW170814 的研究結果,眾多大小望遠鏡搜尋仍一無所獲。但是中子星不同,它比較像是一個如臺北市般大小,質量卻比太陽稍大的巨大原子核。每立方公分的中子星物質比全人類體重加起來還多。當中子星碰撞合併,無可避免的會有些物質被釋放或噴發出來,這過程比單純的雙黑洞合併還要複雜。

一般人很少在意周期表上各種元素的含量和起源。當代科學認為,宇宙誕生不到半小時就產生了大部分的氫和氦,接著透過恆星內部的核融合反應生成碳、氮、氧等元素。也就是說,你、我、乃至身邊草木玩物的每一顆原子,都曾經是漂浮在銀河星際的星塵!

-----廣告,請繼續往下閱讀-----

宇宙間組成物質的每一顆原子,都曾經是漂浮在銀河星際的星塵!圖/Wolfram Burner@Flickr

比鐵重的原子核融合會吸收能量,需要經由一些特別的核子反應才有可能,容易克服原子核靜電斥力的中子扮演著重要角色。重原子核(例如鐵)以快慢不同的速率吸收中子,經過系列衰變後會產生原子序更高的特定穩定核種。早在1957 年的一篇經典論文(史稱「B2FH」,依四位作者姓名),就指出快速的捕獲中子(即「中子快捕獲過程(r-process)」),是核合成(nucleosynthesis)的重要關鍵之一,核心塌縮的超新星和雙中子星碰撞正是核合成研究的焦點。

自由中子的半衰期不到 15 分鐘,不穩定的核種也依照長短不同的速率衰變。就像核子反應爐的燃料棒加熱爐心周遭,隨著超新星或中子星碰撞噴發物逐漸消散,透過模擬與計算可以預估、比對爆發後幾天或幾周從紫外光到紅外光的光度變化。

超新星的研究歷史較久,對應中子星系統的「巨新星(macronova)」或「千新星(kilonova)」不僅理論變數多,觀測樣本也少。千新星之名意謂著預期光度是典型新星的千倍。新星是密近雙星系統中緻密天體(通常是白矮星)吸積物質而產生星球表面的熱核爆炸,瞬間光度約為太陽的 10 萬倍左右;超新星則是整顆星球爆炸,最亮時可和全星系千億顆恆星相匹敵。兩者顯然有些差距。這次事件,重力波觀測隱含了質量、自旋與軌道角動量以及可能存在的潮汐形變等資訊,加上光學望遠鏡觀測放射性物質的衰變、運動、輻射傳輸等特性,讓我們瞥見如黃金和鑭系、錒系元素的誕生。婚禮上新人穿戴的飾品背後,很可能有段轟轟烈烈的故事啊!

-----廣告,請繼續往下閱讀-----

從中子星物理到宇宙論研究

中子星表面及外層的結構可以透過核子物理來理解,但是核心處於極端物理條件下的那團夸克膠子電漿卻無法在實驗室驗證。若忽略磁場和對流,中學生可以用理想氣體定律來建造一個簡單的太陽模型。這定律就是一組狀態方程式(equation of state),由物質的基本特性來決定諸如溫度、壓力、體積等狀態變數之間的關係。

不同的關係求出的中子星質量、大小、形變也有差異。中子星大小有所不同,但是狀態方程式和物理基礎應該相同。預期未來更多中子星系統的精密分析,或可解決這重要的問題。

LIGO 重力波干涉儀數據顯示 GW170817 雙中子星合併前數十秒的頻 率(縱軸)變化,橫軸為時間。(圖/Courtesy Caltech/MIT/LIGO Laboratory)

重力波訊號隨著距離衰減,就像遙遠的標準燭光,是一把新的量天尺,一口氣跨到 1 億光年之外。配合望遠鏡同時觀測到的遙遠星系,可以測量宇宙膨脹。近年宇宙論學者希望能將哈柏常數的精確度推進到 1%,不同方法得到的數字卻有些出入,不難預見更多的重力波同步偵測將會提供另一種獨立的觀點。

-----廣告,請繼續往下閱讀-----

另一方面,謎樣的暗物質與暗能量和其他重力理論的關係也再次受到嚴格檢視。在中子星合併的重力波訊號 1.7 秒之後,衛星才接收到伽瑪射線(和距離 1.3 億光年相對比,精確度高過 10-15)。雖然伽瑪射線的發射機制仍有待釐清,這時間差本身的意義也有待更多的類似事件來說明,任何嘗試修正的重力理論都必須正視這樣的精確結果。

天文學的新世界

重力波與各電磁波波段的多角觀測,一如預期的開啟了多元訊息天文學(multi-messenger astronomy)的新時代。除了順風耳和千里眼,微中子和宇宙線偵測也可望在不久的將來讓我們「聞到」來自外太空的不同風味。

NSF資助重力波研究40 多年,連同早年的干涉儀原型,總耗費將近11 億美元,LIGO 計畫一路走來不能算是一帆風順。然而,在確立計畫走向正確的科學目標、雷射等相關技術工藝的成熟、釐清良好有效的計畫管理、滿足目標願景的經費規畫,重力波計畫在科學上的成功,使得一切風風雨雨都只能算是大歷史的花邊新聞。GW170817 不只為天文物理研究新添上一塊里程碑,它是解答許多問題的羅塞塔石碑,而我們只看到了冰山的一角,新的時代才剛剛開始呢!

本文選自《科學月刊》2017年12月號

-----廣告,請繼續往下閱讀-----

什麼?!你還不知道《科學月刊》,我們47歲囉!

入不惑之年還是可以當個科青

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3700 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
清大天文學家率先捕捉到雙星釋放出罕見的伽瑪射線
臺北天文館_96
・2011/07/25 ・1659字 ・閱讀時間約 3 分鐘 ・SR值 548 ・八年級

清大天文研究所江國興教授所領導的緻密天體研究小組成員博士後研究員譚?軒博士,為第一位發現一個位於南十字座的雙星系統出現「伽瑪射線瞬變現象」 的天文學家。他首先捕捉到一個包含脈衝星的雙星系統釋放出高能伽瑪射線。江國興教授領導的研究團隊,早於另一個由美國天文學家主導的團隊,率先報導了這一 發現。研究成果於2011 年7 月20 日刊登在國際頂尖期刊《天文物理期刊通訊》(The Astrophysical Journal Letters) 上。

2010 年12 月,一對罕見的雙星於彼此不到金星與太陽的距離擦身而過。一般的雙星系統是由兩顆恆星或者一顆恆星跟一顆白矮星組成。這對位於南十字座的雙星,卻是由一顆 大質量恆星和一顆脈衝星(即快速旋轉的中子星)組成。這個大質量雙星系統的特別之處在於,熾熱而呈藍白色的主星是如同太陽一般的恆星,但直徑卻比太陽大9 倍。伴星的大小則遠小於地球 (通常只有10-20 公里左右)。這對雙星是已知的伽瑪射線大質量雙星系統中,唯一確定包含脈衝星的。

全球的天文學家對於這對特別的雙星抱著極大的興趣。這不但是因為這樣近距離的接觸每3.4 年才發生一次,而且天文學家預期在這段時間會偵測到伽瑪射線,為雙星系統的互動機制提供重要的線索。在國科會的支持下,清大天文研究所江國興教授所領導的 緻密天體研究小組,也對這次事件進行了伽瑪射線和X 光的觀測。

自去年10 月上旬開始,譚?軒就定期對「費米伽瑪射線太空望遠鏡(Fermi Gamma-Ray Space Telescope)」所收集的數據進行分析。他表示:「雙星的週期長達3.4 年,使這次觀測機會很難得,而且更是費米望遠鏡自2008 年升空以來的第一次機會,天文學家都非常的期待。」小組另一位成員黃修慧博士補充說:「 過去,天文學家曾經利用無線電波和X 光等波段觀測這對雙星,卻從來沒有偵測到十億電子伏特這波段的伽瑪射線。 長期以來天文學家都在尋找雙星系統釋放的伽瑪射線,被我們找到了!」 這顯示費米伽瑪射線太空望遠鏡有著?大的潛力。

-----廣告,請繼續往下閱讀-----

這顆脈衝星名為PSR B1259-63,大小跟新竹市差不多,質量卻有太陽的兩倍。脈衝星的光束就像宇宙中的一座燈塔,只有當光束掃過地球的時候才能被看到。位於澳洲的帕可斯 電波望遠鏡(Parkes telescope)在1989 年首次發現這些脈衝,而得知PSR B1259-63 以每秒約21 次的頻率自轉。不僅如此,這顆脈衝星以一條橢圓而傾斜的軌道繞著一顆稱為LS 2883 的大質量恆星運行。這顆巨大恆星的質量是太陽的二十四倍。由赤道往外擴散的恆星風更形成一個圓盤,每當脈衝星在距離大質量恆星約一億多公里而向其接近時, 會先穿過恆星圓盤, 然後以最短距離掠過恆星, 離開時再次穿越恆星圓盤(見圖)。

研究團隊成員之一、香港大學物理系的日藉博士後研究員高田順平博士表示:「當脈衝星通過恆星圓盤時,由脈衝星產生的高能粒子與圓盤的物質產生互動,這 些粒子就有可能被進一步加速而釋放出伽瑪射線。」不過,到目前為止要完全解釋伽瑪射線的數據卻是一件不容易的事,因為伽瑪射線的光譜和亮度的變化出乎天文 學家事前的預測。江國興教授說:「在去年十一月中旬,我們首先探測到微弱的伽瑪射線,並第一時間告知全球的天文學家。因為訊號太微弱,這發現曾遭到一些天 文學家的質疑。」後來這微弱的伽瑪射線也消失了, 這現象跟一些理論所預測的不太符合。江國興繼續說:「意料不到的是,從一月中旬開始,我們又重新觀測到伽瑪射線,而強度竟然比上一次增加了好幾倍。這是前 所未有的發現, 到現在還沒有一個公認的解釋。」

「剛開始觀測的時候只是抱著一種探索的心情,想不到後來卻有突破性的發現。」譚?軒興奮的說。「我想研究工作就是要以開放且認真的態度,去接受來自宇宙的一切可能性。」

費米伽瑪射線太空望遠鏡是由美國太空總署領導的國際團隊所建造,並於2008 年8 月11 日發射升空。所有數據即時公開以供全球天文學家使用。清大天文所是全球首批利用費米伽瑪射線太空望遠鏡進行研究的團隊之一。

-----廣告,請繼續往下閱讀-----

圖片說明:在2010 年11 月到2011 年2 月,脈衝星PSR B1259-63 接近大質量恆星LS 2883。 費米伽瑪射線太空望遠鏡(Fermi Gamma-Ray Space Telescope) 偵測到兩次的伽瑪射線瞬變。圖片提供:NASA/Goddard Space Flight Center/Francis Reddy (繪圖) 及清大天文研究所譚?軒(費米伽瑪射線太空望遠鏡影像)

資料來源:清華大學天文所江國興教授提供, 2011.07.21

引用自臺北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 42 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!