0

0
0

文字

分享

0
0
0

智慧型手機讓地震無所遁形

李柏昱
・2013/10/08 ・1678字 ・閱讀時間約 3 分鐘 ・SR值 515 ・六年級
智慧型手機讓地震無所遁形,圖為美國史丹佛大學地震捕捉網路(QCN)安裝於個人電腦上的地震感應器。透過廣泛分布的智慧型裝置與網際網路,建置更密集的地震觀測網或許在不遠的未來將會成真。(圖片來源:Flickr用戶Teleyinex)
智慧型手機讓地震無所遁形,圖為美國史丹佛大學地震捕捉網路(QCN)安裝於個人電腦上的地震感應器。透過廣泛分布的智慧型裝置與網際網路,建置更密集的地震觀測網或許在不遠的未來將會成真。(圖片來源:Flickr用戶Teleyinex)

2013年9月,巴基斯坦西南部的俾路支省(Balochistan)發生芮氏規模7.7地震,許多村莊被夷為平地,預計造成數百人死亡。面對地震災害,除強化建築防震能力外,地震的即時預警亦相當重要。過去受限於地震觀測儀器分布不均,許多地區觀測資料不足,導致無法及時預警,並缺乏各地的震度資料,無法及時援助受災最嚴重的地區。

不過最近有了轉機,義大利科學家將腦筋動到了現在普遍流行的智慧型手機上,或許在不遠的將來,智慧型手機將在地震防災中扮演更重要的腳色!

近年來,裝有微電子機械加速器(micro-electro-mechanical systems, MEMS)的智慧型裝置廣泛普及。MEMS能偵測手機三維方向上的移動,讓手機螢幕得以在手機轉動時改變螢幕方向,同時能在偵測到落下時將裝置切換至安全模式以避免損害。

MEMS與用來觀測地震加速度的觀測儀器相當相似,為了檢驗MEMS是否能應用於地震觀測,義大利國家地球物理與火山研究中心(National Institute of Geophysics and Volcanology)的研究團隊決定測試MEMS的靈敏度是否能滿足地震偵測的要求。

透過把與iPhone 4、iPhone 5同款的MEMS裝置安裝到量測地震加速度的地震儀器上,再將地震儀器安放於地震模擬平台,研究人員得以比對兩者測得的數據是否相同。結果發現,MEMS的數據與標準觀測儀器不分軒輊,如果夠靠近震央,MEMS晶片能夠觀測到芮氏規模5以上的地震。這份研究結果刊登於最新一期的《美國地震學會通報》(Bulletin of the Seismological Society of America)。

「理論上,任何裝有MEMS的裝置如電腦或手機,如果同時具有網路支援,便能成為強地動觀測網的一員,這將能大幅度擴大觀測站數量。」研究的共同作者安東尼奧(Antonino D’Alessandro)表示。「強烈地震造成的傷亡人數主要與地表的搖晃程度以及救援速度有關,藉由快速傳播各地的地表搖晃程度資訊,將能顯著減少強烈地震在都市地區導致的傷亡。」

這套理論上可行的地震觀測網與美國加州史丹佛大學建立地震捕捉網路(Quack-Catcher Network, QCN)相當類似,QCN透過世界各地的自願者在自家家用電腦上安裝地震感應裝置,藉由網路即時通報地震資訊。目前台灣也由中央研究院地球科學研究所引進技術,成立其子計畫「台灣捕震網(QCN Taiwan)」,目前致力於各級學校的推廣,未來也希望能推廣到全民,也藉此提升大眾的防震防災素養。

不過即便這類網路在地震防災上極具價值,偏遠或貧窮的城市由於缺乏網路服務,這類系統還是英雄無用武之地,故研究團隊希望MEMS的製造商能生產單純用於觀測地震的MEMS晶片,提供給位於高地震風險地帶的城市的災害應變單位,讓在地團隊能在適合的地方放置感測裝置。

由於目前的MEMS晶片無法感測到較小規模的搖晃,對於規模小的地震無能為力,但是研究人員樂觀地認為,在現今MEMS技術日新月異的情況下,或許在不遠的未來智慧型手機的感測器能具有觀測小型地震的能力,並藉由無線網路的發達,建構出密集的觀測網路,讓地震無所遁形。

(本文由國科會補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威|元智大學資訊社會研究所

本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸閱讀:

文章難易度
李柏昱
81 篇文章 ・ 1 位粉絲
成大都市計劃所研究生,現為防災科普小組編輯。喜歡的領域為地球科學、交通運輸與都市規劃,對於都市面臨的災害以及如何進行防災十分感興趣。


0

0
0

文字

分享

0
0
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
156 篇文章 ・ 375 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策