0

0
0

文字

分享

0
0
0

太陽活動將步入第2次芒德極小期?

臺北天文館_96
・2011/06/27 ・2465字 ・閱讀時間約 5 分鐘

根據美國國家太陽天文台(National Solar Observatory,NSO)和空軍研究實驗室(Air Force Research Laboratory,AFRL)科學家的研究:東西向帶狀流逐漸消失、黑子數量愈來愈低、太陽兩極的活動也漸趨緩慢,在在意味著我們太陽似乎即將進入休眠期。這些研究結果在美國天文協會(American Astronomical Society,AAS)太陽物理組(Solar Physics Division)於新墨西哥州立大學(New Mexico State University)舉辦的年會中發表。

The Sun viewed in visible light, at minimum phase (2006) and maximum phase (2001)

太陽黑子數量和其他太陽活動的變化平均約為11年,是太陽22年磁週的一半,因為太陽的磁南北極約每11年會對調一次,22年後才會回覆原狀。目前太陽正處於第24太陽活動週期(Cycle 24),且逐漸邁向活動極大期。從各種不同的研究,如太陽內部、可見表面或日冕等,結果都顯示下一個太陽黑子週期,即第25太陽活動週期(Cycle 25)的活躍程度都將大幅減低,甚至可能完全不會來臨。NSO的Frank Hill表示:這真是超奇特又超意外的;但事實上,的確有3種完全不同的觀點,都指向太陽黑子週期可能會消失的相同結論。

然而,緊接著會提出的問題便是:目前這種太陽活動減緩的現象,是否意味著將出現第二個芒德極小期(Maunder Minimum)?芒德極小期是發生於西元1645~1715年間的事件,在這約70年的期間,居然幾乎沒有太陽黑子現身;而在當時,歐洲恰逢小冰河時期,黑子數量與地球氣候變遷是否有關的議題,由此開始引爆,但到目前為止並沒有兩者確實有關連的確切結論。

第一個研究結果是Hill等人利用全球日震觀測網(Global Oscillation Network Group,GONG)散佈全球的6個觀測站的太陽表面振盪觀測資料,套入理論模型中後,可獲得太陽內部的結構訊息;有點類似利用地震波來瞭解地球內部結構的方式。他們的其中一個發現是太陽內部東西向的帶狀流,即所謂的「扭轉振盪(torsional oscillation)」,是從中緯度地區開始,然後逐漸移向赤道地區。扭轉振盪是引起太陽較差自轉(differential rotation)—即太陽各緯度自轉速度有所偏差的一種現象。這種帶狀流出現的緯度往往與每個黑子活動週期中,新黑子形成的緯度相同,太陽物理學家並藉此成功預測了第24太陽活動週期發生時間會比較晚的狀況。

Hill表示:若按一般太陽活動週期平均約為11年來看,第25太陽活動週期應該會從2019年左右開始,所以他們原本預期第25活動週期的帶狀流應該近期要開始發生了,但卻一直等到現在都沒看到帶狀流出現的訊息。這意味著第25活動週期可能會推遲到2021年或2022年才開始,甚至一直不會發生。

在AAS年會中第2篇相關論文為Matt Penn和William Livingston等人發表的。太陽黑子是當太陽內部強烈的磁流管(magnetic flux tube)向上浮出太陽表面,阻斷氣體隨熱對流回到太陽內部而使此處氣體溫度降低而形成的。典型黑子的磁場強度約為2500~3500高斯(gauss),而且磁場強度必須高於1500高斯才能形成黑子,這與地球表面平均磁場強度小於1高斯相較之下,真是強了許多。

Inset shows the effect used to measure the magnetic field strength: a splitting of a spectral line in the sunspot. Magnetic fields cause single spectral lines to split into a multiple=

不過,Penn等人分析基特峰(Kitt Peak)麥克麥斯太陽望遠鏡(McMath-Pierce Telescope)長達13年的黑子觀測資料之後,發現黑子的磁場強度似乎有逐漸減弱的趨勢,從第23活動週期到現在的第24活動週期,黑子的磁場強度每年約遞減50高斯,所以他們預測第25太陽活動週期的磁場活動會非常微弱,以致於僅會形成少量太陽黑子。此外,他們還注意到黑子溫度升高幅度與磁場強度的變化相符。如果這個趨勢持續不變,那麼磁場強度一旦低於1500高斯的下限,再也無法抵擋太陽表面熱對流的擾動,那麼黑子就會大量消失。

除了在AAS年會發表的論文之外,第3個相關研究結果是在NSO利用40公分日冕觀測望遠鏡(coronagraphic telescope)進行黑子活動觀測的美國空軍日冕研究計畫Richard Altrock等人,觀察到太陽日冕在兩極原本有相當急促的向極磁場活動,但這個活動也有趨緩的現象。這個日冕極區的活動特徵相當奇特,是根於太陽內部的強磁場結構所造成的,因此一旦觀察到這個急促向極磁場活動有變化,就代表了太陽內部深處有變化。

Altrock等人利用光度計測繪被加熱到攝氏200萬度左右的鐵離子輻射。由於外部電子被剝奪,所以帶有正電荷的鐵離子很容易受到來自太陽內部的磁場影響而聚集在一起,因此可呈現出日冕兩極的磁場狀態。目前已知一般新的太陽活動會首先從緯度70度左右之處開始浮現,然後隨著活動週期演進而漸漸向赤道聚攏;在此同時,新的磁場會迫使前一活動週期的殘餘份子向兩極方向移動,最遠可達緯度85度左右。這就是前述的急促向極磁場活動。

Plots of coronal brightness against solar latitude show a "rush to the poles" that reflects the formation of subsurface shear in the solar polar regions. The current "rush to the poles" is delayed and weak, reflecting the lack of new shear under the photosphere. Note the graph depicts both north and south hemispheres overlaid into one map of solar magnetic activity, and that the patterns correspond with the butterfly diagram above. Altrock表示:從第21活動週期到第23活動週期,太陽極大期大都發生在這個急促向極磁場活動出現在緯度76度時。不過第24活動週期原本開始的時間就比預期的還晚而慢,所以很可能無法強到足以製造這樣的急促向極磁場活動。如果前述理論正確,這意味著可能發生於2013年的第24活動週期極大期將非常微弱;甚至如果這個急促向極磁場活動一直無法完成,那麼第23活動週期的磁場無法全部被推到極區來毀滅,後果將是什麼?不幸的是,目前還沒有任何理論學家可以精確指出這會導致太陽發生什麼狀況。

上述三項各自獨立研究的結果,都顯示現今大家很熟悉的黑子週期很可能會消失一段時間。目前太陽科學家們正著手驗證他們的研究結果究竟是否正確,如果答案是YES,那麼2013~2014年很可能是未來數十年內,我們可遭遇的最後一次太陽活動極大期,由前一篇天文新知2011-06-16 太陽活動極小期如何影響地球的新說法顯示:這將會影響從太空探索地球氣候的一切事物;但是否真的會讓地球步入冰河時期,還有待觀察。

不過,這些研究結果與之前預測第24活動週期將會非常強的其他研究相反,也與目前預測全球暖化趨勢的結果相反。最後地球究竟會愈來愈暖化,還是因太陽活動減緩而進入冰河時期?事實上,究竟會遇到什麼樣的情況,可能要等到真正遇到了才會知道吧!

資料來源:http://www.boulder.swri.edu/~deforest/SPD-sunspot-release/, 2011.06.14, KLC

引用自臺北天文館之網路天文館網站

文章難易度
臺北天文館_96
477 篇文章 ・ 12 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

4
0

文字

分享

0
4
0

關鍵時刻能救命,與時間賽跑的地震預警系統發展史

鳥苷三磷酸 (PanSci Promo)_96
・2021/09/23 ・2852字 ・閱讀時間約 5 分鐘

本文由 交通部氣象局 委託,泛科學企劃執行。

位處在歐亞板塊和菲律賓海板塊交界 ,臺灣每天都有許多地震發生,可以說是生活的日常。每隔數月或數年就會發生的中大型地震,更是災防安全的一大威脅。

最近幾年,在有感地震發生後、地震波來襲之前,你的手機很有可能會收到下面的訊息:

國家級警報

[地震速報 Quake Alert] MM/DD HH:MM 左右 ○○ 地區發生 ○ 型有感地震,慎防強烈搖晃,氣象局。Beware of probable shaking. CWB

資料來源/地震測報中心

這個能夠在地震波來襲前出現的「災防告警訊息」,全稱為「災防告警細胞廣播訊息」,是利用「災防告警系統(Public Warning System,PWS)」及「細胞廣播服務(Cell Broadcast Service,CBS)」發布地震速報。

災防告警訊息提供的地震速報,雖然在盲區外的多數時候,能比地震的搖晃感來臨前再快一點點讓我們收到,但它並不是地震預測,而是「地震預警」。中央氣象局利用遍布全臺的高密度地震測站收集地動資料,在地震發生時,藉由震央附近地震站的訊號,即時解算地震資訊並迅速發出預警。

地震預警的主要功能,是在地震發生後數秒內,演算出預估地震的基本參數,包括預估震源位置深度、強度,並推估受影響地區將遭遇的震度與震波抵達時間,爭取在破壞性震波抵達之前,對可能發生災損的區域提出警示。

可別小看這短短幾秒鐘的警示,足以左右生死、讓人員離開危險的位置尋求掩護,停下精密的作業(如工業廠房或醫院),也能讓高速運行的交通運輸系統自動減速或停駛,大幅減少中大型地震可能造成的災害,保障人民生命與財產的安全。

地震預警系統的原理

這幾秒鐘珍貴的預警時間,是多年來地震預警技術及通訊設備精進的心血結晶,以電波與地震波「賽跑」搶出來的。

每次地震發生後,能量會以「地震波」的形式從震源開始往外傳播。科學家大致將地震波分成分別為 P 波S 波P 波傳播的速度較快,也是地震測站最早收到的訊號;S 波速度較慢,但為地震破壞力的主要來源,而地震預警系統便是根據這兩者計算出地震的各種參數。

在得到最初預估的地震參數之後,地震預警系統會推估各地的震度,如果達到預設門檻,就會自動發布,利用電波將地震預警訊息傳送到可能致災的區域,以利當地防災應變。舉例來說,模擬顯示 1999 年發生的 921 集集大地震,以現今的地震預警科技,北可有 31-35 秒的預警時間,可大幅減少人員傷亡。

不過,地震預警系統畢竟得在收到地震波資料後才能進行運算,過往的預警系統對於鄰近震央 40 公里內的區域幾乎趕不及預警,這個區域就被稱為「盲區」。盲區是強震即時警報無法避免的科學限制,但靠近震央的區域又是震度最強、災害最嚴重的區域,如何將地震速報的盲區最小化,也將是未來相關技術發展的目標。

地震預警發布的管道與門檻

除了藉由手機發送災防告警訊息,地震速報還有好幾個重要的通訊管道。自 2014 年起,中央氣象局即開發傳訊軟體,在預估地震規模達到 4.5 以上、預估震度達 3 級以上時,直接透過既有網路及通訊系統,將強震即時警報傳送至公務部門、公共設施、醫院、學校單位。舉例來說,學校單位如收到警報,將自動串連廣播或跑馬燈,第一時間向師生宣布警訊。

除了公部門,中央氣象局還積極推動「地震資訊傳遞服務契約」,將社會服務量能發揮最大化,透過專線 IP-VPN 與警報傳遞單位(電信公司及大眾媒體)進行連線,在各個媒體渠道轉發地震速報,而這個部分還可以由合作單位依需求自行設定「需要通知的震度門檻」。

自 2016 年 8 月起,中央氣象局即與電視台合作,當預估地震規模達 5.0 以上,且預估震度達 3 級以上時發布蓋台訊息。這些不同的訊息傳遞機制,希望達成的目的是相同的:將地震預警的資訊,在最短的時間內,傳達到會受影響的人手上。[註1]

而近年來,能夠在地震發生的 10 秒內就發出地震預警,完全是地震觀測網加上資訊、通訊技術,多年來持續累積發展的成果。

臺灣的地震預警系統

1999 年 的 921 大地震,當時中央氣象局在 102 秒內發出地震速報,速度已經令當時全球地震觀測相關單位感到驚訝,但仍緩不濟急,預警效果十分有限。

事實上,中央氣象局在 90 年代初期已開始發展「強地動觀測網」,自 1992 到 2021 年,每期五年、共五期的長期前瞻計畫,從第一期建置「都會區強地動觀測網」,主要廣泛收集台灣各地的強震資料,並提供給工程與防災研究團隊研擬修正建築物耐震設計規範。後續的延續性計畫中,逐步建置地震速報系統、發展強震即時警報系統,其後並持續建置海底地震儀與深井地震監測站,優化地震海嘯監測。

近期重點放在提升觀測的資料品質、增進系統功能、基礎資料的累積,並且拓展地震預警系統在防災的運用。中央氣象局自 2012 年起啟用 24 位元地震觀測系統,整合過往各個獨立的觀測網,包括短週期、地震速報、寬頻、井下地震觀測網及全球即時地震觀測資料,使地震測報進入聯合觀測的時代。

自 2020 年 4 月 6 日起,地震預警的發佈時間已經縮短至 10 秒內,地震盲區也縮小至震央 30 公里以內,中央氣象局地震測報中心更宣告推動「都會區強震預警精進計畫」,要在四年內將都會區的地震預警發佈縮短到  7  秒以內,長期規劃更是希望藉由大數據統計,將時間再縮短到 5 秒內。

事實上,臺灣自行開發的地震預警系統已是全球前段班,未來也將持續運轉,日夜守望每次臺灣的地牛翻身!

參考文獻

註解

  1. 地震預警發布的門檻會依需求與情況做調整,此處以撰文時間為主。

鳥苷三磷酸 (PanSci Promo)_96
207 篇文章 ・ 1123 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策