Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

舌尖上的感受 大過手指上的刺激

Jacky Hsieh
・2013/03/07 ・795字 ・閱讀時間約 1 分鐘 ・SR值 482 ・五年級

photo credit: Helga Weber via photopin cc

著名的科學期刊,像是《自然》、《科學》總是不少科學研究者的投稿夢想;當研究被發表後,更希望被更多未來的研究者引用、延伸,而這些頂尖期刊的研究也通常會被大量的引用。學長跟我們分享了一篇1964年發表在《自然》的心理學研究,被引用的次數卻屈指可數,但是很具獨創性,是個有趣的跨感官造成的錯覺現象實驗。

假設你現在有顆蛀牙,用舌頭去舔舔它,感覺似乎有個不可思議的大凹洞在裡頭;要是到了牙科,把蛀牙的照片等比例放出來看,似乎比起原本你心理想像的畫面還小了一點。

劍橋大學心理系的研究者ANSTIS就做了個實驗,找來六位學生,讓受試者用舌頭去感受四種同尺寸大小的凹洞,分別是1/8, 1/4, 3/8, 7/16英吋,每次讓受試者舔其中一個,同時讓受試者看且用手摸,觸摸與觀看的大小從1/16到1/2英寸,共有29種選擇(間距為1/64)與舌尖相符的那一個。

-----廣告,請繼續往下閱讀-----

結果,當受試者舔1/8英寸的凹洞時,選出來的尺寸平均大了50%,舔1/4英寸的凹洞時只大了15%,另外兩種尺寸則沒有顯著差異。這個結果顯示了,當我們舌尖上的感受在1/8英寸與1/4英寸等較小尺寸時,感受上有放大效果,但較大的如3/8英吋或7/16英吋則沒有。

這個後續研究到了2001年有了新進展。英國的研究者Melvin,做了類似的實驗發表在《Archives of Oral Biology》:除了凹洞之外,並多比較了凸起在舌尖上的與視覺、觸覺上的跨感官錯覺,結果發現在不論舔的是凹洞或凸起,只要觸摸與看的是凹洞,就有放大效果,而且這樣的效果小至2mm大至12mm都有。不過,當觸摸與看為凸起時,放大的效果卻消失了,所以作者認為,這樣的跨感官錯覺,是因為手指對細小敏感程度造成的。

最後值得一提的是,1964年《自然》上的研究,贊助者可是美國空軍呢!

資料來源:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Jacky Hsieh
57 篇文章 ・ 0 位粉絲
中大認知所碩士。使用者經驗工程師。喜歡寫東西分享。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
藝術與科學的詩性相遇:《匯聚:從自然到社會的藝術探索》國際交流展
PanSci_96
・2024/06/04 ・3873字 ・閱讀時間約 8 分鐘

本文由策展人紀柏豪提供

想享受一場同時兼具科技與藝術的饗宴嗎?來《匯聚:從自然到社會的藝術探索》國際交流展看看吧!

在當代社會中,藝術的角色正持續演進——它創造了一種新的美學,與社會、科學以及技術變革緊密相連。當社會面臨的挑戰因其複雜性而難以僅靠單一學科解決時,藝術研究因其跨越、融合不同知識領域的能力而具有新的意義。今日,許多創作者和機構採用跨學科方法,將藝術與自然、科學與感性、想像力與現實結合,創造嶄新的經驗、知識和美學。

在藝術與科學這兩個看似迥異的領域中,存在著一個共通的追求——深入理解我們所處的世界。這一追求不僅體現了人類對知識渴望的本能,也反映了我們對於更高層次的自我認知和宇宙認識的探索。藝術家透過創作,探索人類經驗的多樣性和情感的複雜性,用畫筆、雕塑、數位媒介來表達對世界的主觀理解。這種理解可能源於個人感受,也可能反映了廣泛的社會和文化現象。

藝術提供了一種通過感知和情感來接觸和理解世界的方式,使我們能夠透過個別經驗來抵達普遍的真理。科學則通過觀察、實驗和分析來探究自然界的法則和現象,尋求對世界的客觀理解。科學方法使我們能夠系統地收集資料、建立理論並驗證假設,從而深化對物理世界的認識。不僅解答了關於自然界的問題,也幫助我們理解了人類自身在這個宇宙中的位置和作用。

-----廣告,請繼續往下閱讀-----

儘管藝術和科學在方法和目的上有所不同,但它們都反映了人類對於更加全面和深刻理解世界的共同願望。藝術讓我們透過感受和想像來擴展對世界的認識,而科學則通過理性和證據來揭示秩序和結構。由國科會指導、國家實驗研究院主辦的《匯聚:從自然到社會的藝術探索》國際交流展,邀請觀眾一同探索藝術與科學的交會,體驗它們如何共同塑造我們對世界的認識和感知,並反思這一過程如何豐富我們的文化與知識視野。

展覽單元介紹

宇宙共生 —— 科技與宇宙的多維依存

當你仰望星空,有沒有想過我們與宇宙的關係?「宇宙共生」單元展示了科技如何將人類感性延伸至浩瀚的宇宙空間。麻省理工學院媒體實驗室的太空探索倡議小組(MIT Media Lab Space Exploration Initiative)帶來了在極端環境下的實地太空模擬,研究生存策略和科技應用。與之並置的《與細菌混了三千年》(3000 Years Among Microbes)則從微生物的角度重新審視太空探索中的殖民語言,帶來全新的太空想像。藝術家利用極端地貌與顯微影像並置,模糊人與微生物的分野,探討共生體概念在星際生態系中的應用。

感官賦能 ——透過科技重塑環境感知

「感官賦能」單元探索藝術家如何通過科技媒介重塑我們對環境的感知。兩位智利藝術家妮可·拉希利耶(Nicole L’Huillier)與派翠西亞·多明格斯(Patricia Domínguez)的《全像乳糜》(Leche Holográfica)是一場冥想式祈願,透過與不同元素的共鳴和諧,讓我們得以在螺旋時空中構想未來。

值得一提的是,藝術家妮可·拉希利耶與派翠西亞·多明格斯曾透過智利與歐盟的合作,在歐洲核子研究組織(CERN)進行藝術駐村計畫,並在那裡發展她們的作品。CERN 以其在粒子物理學上的重大科研成果而聞名,但即使是最前沿的科學研究,也需要藝術家的啟發。這樣的跨域合作不僅揭示了科學現象的美麗與複雜,更為科學研究注入了新的靈感和視角。藝術家的創意與想像力,能夠以不同於科學的方法來詮釋數據與實驗結果,從而開拓更廣泛的理解和應用。

-----廣告,請繼續往下閱讀-----

拉脫維亞藝術家羅莎‧史密特(Rasa Smite)和萊提斯‧史密茨(Raitis Smits)的《深度感知》(Deep Sensing),通過拉脫維亞伊爾本(Irbene) RT-32電波望遠鏡的歷史敘事,象徵性地橋接了技術的過去與現在,探問「為何擁有地球還不足以滿足人類?」該望遠鏡被前蘇聯遺棄,而藝術家們重返此地,探索這個巨大天線在當代的價值。虛擬點雲天線追蹤從太陽到地球的宇宙粒子流動,創造出沉浸式的視覺和聲音景觀,讓觀眾更易於理解氣候變遷的影響。

羅莎‧史密特和萊提斯‧史密茨是里加RIXC新媒體文化中心的共同創辦人,他們的作品結合科學數據、聲音化和視覺化、人工智慧和擴增實境技術,創造出前瞻性的網絡藝術。他們的作品曾在威尼斯建築雙年展、拉脫維亞國家藝術博物館等地展出,並獲得多項國際獎項。

網絡交織 —— 科技與社會的複雜關係

「網絡交織」單元深入探討科技如何影響我們的社會結構和人際關係。瑪麗莎·莫蘭·賈恩(Marisa Morán Jahn)的《銅色景觀》(Copperscapes)展示了銅在全球化勞動中的角色,揭示了這一自然元素如何影響我們的日常生活。她的作品以銅色眼睛作為見證,表現出礦區社區所承受的「身體負擔」,並在影片《銅的私處史》中探討礦物經濟的複雜性,突顯採礦活動對身體及地球主權的影響。

瑪麗莎·莫蘭·賈恩是具有厄瓜多和中國血統的藝術家,其作品致力於重新分配權力,展示藝術作為社會實踐的可能性。她的作品曾在歐巴馬時期的白宮、威尼斯建築雙年展、古根漢美術館等地展出,並獲得聖丹斯電影節和創意資本等獎項。

-----廣告,請繼續往下閱讀-----

李紫彤與孫詠怡的《岔經濟》(Forkonomy)利用區塊鏈技術,重新構想財產與國家之間的連結,探討擁有權背後的政治意義。這個藝術與社會運動計畫,通過工作坊和數位契約,探討如何購買或擁有一毫升的南海,並質疑現有的性別勞動分工和所有權制度。

李紫彤是台灣的藝術家兼策展人,作品結合人類學研究與政治行動,曾在國內外多個知名展覽中展出。孫詠怡是出生於香港的藝術家和程式撰寫者,專注於數位基礎設施的文化意義及廣泛權力的不對等問題,作品曾獲得林茲電子藝術節金尼卡獎等多項國際獎項。

印度藝術家艾蒂·桑德爾(Aarti Sunder)的《深海節點故事》(Nodal Narratives of the Deep Sea)將海底電纜這一隱藏基礎設施帶入視野,探討其與現代化項目、資本主義擴張及殖民主義的關聯。她的作品通過繪畫、物件和影片,展示了數據傳輸的路徑及其對生態系統的影響。

艾蒂·桑德爾的創作涉及影像、寫作與繪畫,專注於探討科技政治和基礎設施相關議題。她的作品曾在柏林藝術學院、新加坡雙年展、世界文化之家等國際場所展出。

-----廣告,請繼續往下閱讀-----

科藝匯聚 —— 跨學科的創新邊界

「科藝匯聚」單元彰顯了藝術與科學共同探索未知領域的力量。國家太空中心的《來自遙遠的訊息》管絃樂曲選粹、麻省理工學院前衛視覺研究中心(CAVS)的歷史檔案,以及臺灣共演化研究隊的「邊界測繪學」年度計畫成果,展示了藝術家與科學家跨域合作的豐富成果和未來潛能。

跨域交流與活動

在展覽期間,策展團隊與台灣致力於促進科學家與藝術家合作的「共演化研究隊」規劃了一系列精彩的跨域交流活動,讓大家能近距離與藝術家、科學家們交流,體驗科技與藝術如何共同作用於當代社會。

活動包括圓桌論壇、藝術家講座和放映會,涵蓋了多個有趣且深入的主題。例如,在「宇宙共生」週末,觀眾可以參與討論極地科學與藝術實踐的圓桌論壇,聆聽來自麻省理工學院媒體實驗室「太空探索倡議」的成員分享他們在極端地貌探索的經驗。另一活動是國家太空中心委託製作的管弦樂曲《來自遙遠的訊息》放映會,由作曲家趙菁文進行演前導聆,帶領觀眾進入一場視覺與聽覺的雙重盛宴。

在「網絡交織」週末,藝術家李紫彤與孫詠怡將帶來一場關於區塊鏈技術應用於南海議題的討論,這場圓桌論壇將探討技術如何影響社會結構和資源分配。印度藝術家艾蒂·桑德爾則會在線上分享她對於海洋及網路基礎設施的研究與創作,揭示隱藏在我們日常生活背後的複雜科技網絡。

-----廣告,請繼續往下閱讀-----

「感官賦能」週末將邀請拉脫維亞藝術家羅莎‧史密特和萊提斯‧史密茨現場分享他們的作品《深度感知》,並探討電波望遠鏡的技術敘事,展示如何通過藝術手段使抽象的科學數據變得可以感知。這不僅讓觀眾更易於理解氣候變遷的影響,也體現了藝術在科學溝通中的重要角色。他們將分享長期研究「自然廣播」的概念,以及每年舉辦「藝術科學節」的經驗。

在「科藝匯聚」週末,觀眾可以參與科學家與藝術家的提案室,直接感受跨領域合作的火花。這些活動將展示跨學科合作如何激發創新,促進我們對世界更深層次的理解。此外,拍攝麻省理工學院前衛視覺研究中心創始人故事的紀錄片將在台灣首映,導演並將與觀眾進行映後座談,分享創作背後的故事和啟發。

藝術與科學的相互啟發,不僅僅是知識和美學的結合,更是對創新與理解的共同追求。在這個亟需跨學科解決方案的時代,這樣的合作顯得尤為重要,為我們探索未知領域提供了無限可能。這次展覽通過多樣的跨域交流活動,讓觀眾能夠親身體驗並參與其中,進一步體會到藝術與科學融合所帶來的豐富成果和未來潛力。

展覽資訊

  • 展覽名稱:《匯聚:從自然到社會的藝術探索 | 國際交流展》
  • 日期:2024/5/10 至 2024/8/10
  • 時間:週一至週五 09:00-18:00(國定假日休)
  • 地點:科技大樓一樓大廳(臺北市大安區和平東路二段106號)
  • 指導單位:國家科學及技術委員會
  • 主辦單位:國家實驗研究院
  • 策展人:紀柏豪
  • 執行單位:融聲創意
  • 協力單位:共演化研究隊
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

9
5

文字

分享

0
9
5
聲音是什麼顏色、什麼味道?談聯覺與跨感官反應
雅文兒童聽語文教基金會_96
・2023/12/21 ・3162字 ・閱讀時間約 6 分鐘

  • 文/陳品均|雅文基金會聽語科學研究中心 助理研究員

星期一,聽起來是什麼顏色?

先別急著回答藍色,對某些人來說,這個答案可不是受到情緒經驗的影響,而是真實的色彩反應。

星期怎麼可能聽起來有顏色?事實上,根據研究大約有 4% 左右的人[1],在某個認知或感官接收資訊刺激後,另一種感覺或認知會同步自發的出現,並且具有特定規律,此反應與刺激本身並不一定相關,這些人被稱為聯覺者,擁有像是聽到聲音時,除了聲音的反應外,同時認知到了形狀或顏色等的特徵。

舉例而言,若一位聯覺者聽見 A,除了聲音 A 以外還自動產生了它是紅色的聯覺認知,則不論是在 Apple 或 Angel 中,A 對他而言都是紅色的,不會因為 Angel 比較常以白色的型態出現,便轉換成白色的 A。在學界,聯覺的發展和原因尚在探索中,有些研究指出可能與小時候接觸抽象觀念時的發展、遺傳以及大腦神經機制有關 [2、3]

聽覺及視覺的聯覺者在聽到詞彙時,除了聲音外,同時自動產生了色彩的認知反應。(圖片來源:作者自行繪製)

隨著聯合反應的感官組成不同,聯覺者的異能經驗也五花八門

你能想像當單一感官接收某一訊息時,同時產生另一感官的不同認知是怎樣的經驗嗎?BBC 的科普節目《Horizon》其中一集< Derek Tastes of Earwax >記錄了數名聯覺者的跨感官連結經驗。其中,一名酒吧老闆兼有聽覺和味覺的聯覺,當他聽見各式各樣的詞彙時,宛如品嚐綜合風味豆,讓他飽嘗各種滋味[4]

-----廣告,請繼續往下閱讀-----
聽覺和味覺的聯覺者,聽見各種名詞之際,嘴巴就像是咀嚼著各種滋味。(圖片來源:pexels

另一名受訪者是聽覺及視覺的聯覺者,經實驗後科學家發現,若聽到數字或是月份日期時,這名受訪者的腦部除了聽覺區域外,視覺區域也會產生反應。特別的是,他本身是一名視覺障礙者。

聽覺及視覺的視障聯覺者聽到日期時,腦部視覺及聽覺區域都有反應。(圖片來源:作者自行繪製)

感官認知上特別的連結,讓聯覺者所經驗的世界像是搭載了酷炫的特效般,使他們在藝術創作及記憶上屢有出色的表現,代表人物有:知名文學《蘿莉塔》作者 Nabokov[5]、以引起聽眾共鳴聞名的音樂家 Olivier Messiaen、表現主義的經典畫家 Wassily Kandinsky 等。若想檢視自身是否為天選之人的聯覺者,除了自我覺察是否有異於常人的跨感官連結反應外,目前也有相關的測驗[6]可以參考。

你我的類聯覺」跨感官反應

若說聯覺是天生具有特別音感的人,那麼跨感官反應肯定就是音樂家們透過經驗累積產生的直覺判斷,兩者不盡相同、卻又有其類似之處。那麼,不具有聯覺的異能,我們難道只能認命當麻瓜了嗎?

別急,縱使不是聯覺者,普通人也多少會有類似聯覺的經驗,這樣的類聯覺稱作跨感官反應,往往在我們渾然不覺時,悄悄地舉辦同樂會,並影響人們的喜好、感知和行為等。

-----廣告,請繼續往下閱讀-----

先來看看研究者們發現的有趣現象,請看這兩個形狀:

圖片來源:作者自行繪製

過去曾有研究者以 bouba 及 kiki 兩個虛構詞進行實驗,九成受訪者傾向認為雲朵狀的形狀是 bouba,尖銳的形狀則被認為是 kiki,即使這些受訪者其實並不認識兩個假詞,但基於聲音和形狀的特徵,卻讓多數人做出這樣的選擇[7]

後續研究者也繼續投入各式各樣以不同語言文化環境為背景、不同年齡階層為對象的研究,有趣的是,結果顯示此現象幾乎是跨語言、跨文化、跨地域存在的,甚至在少與外界互動的部落居民,或是尚未識字的幼兒身上,也有這類從聲音特徵影響其視覺形狀感知歸類的效應 [8、9、10]。除了虛構的詞彙以外,有些研究者使用真實存在的詞彙(如:Bob 及 Kirk),來對應圓潤及尖銳的剪影或人臉,最後也有相似的結果[11、12]

一般人的經驗和認知,往往加速催化感官間的互相影響

除了語言與形狀外,我們生活中還有許多感官互相影響的例子,來試試看下面這張圖,你聽見聲音了嗎?

-----廣告,請繼續往下閱讀-----
(圖片來源:GIPHY

瑞克搖(Rickrolled)的影片在 2019 年突破了 10 億次的 youtube 觀看次數[13、14],迷因化後大量的連結及有聲影片傳播,使得曾經的觀眾在看見這張圖時根據經驗,腦海中自然出現了<Never Gonna Give You Up>的旋律。

然而,不同於聯覺,若沒有經驗累積,跨感官的反應便無法被觸發,以上圖為例,即便觀看次數如此驚人,對於未曾接觸過此影片的人而言,由於缺乏經驗和認知的累積,在看見該張圖片時,理所當然也無法產生相對的聲音反應。

將跨感官反應置入在行銷中的策略,現正流行中!

在大量接收資訊的生活中,我們不自覺地累積了許多感官經驗,成為由單一感官啟動與其他感官同步作用的引線。行銷高手們從中嗅出了商機,精明的將消費者們不由自主產生的跨感官反應也算進了商業行銷的一環。如:某知名咖啡品牌在過去曾進行一項實驗,將兩杯一樣的咖啡配以不同的音效提供給不知情的消費者。前一杯搭配液體沖入便宜咖啡杯、攪拌,模仿沖泡即溶咖啡的聲音,另一杯則在播放磨豆聲、蒸氣聲以及倒進陶瓷杯的聲響後,再次提供給消費者,結果發現在不同的聲音所營造的環境氛圍下,同樣的兩杯咖啡,人們覺得後一杯更加濃醇香,並願意為之付出更高的金額[15]

近年熱門的 ASMR 亦是味覺和聽覺的跨感官應用,若想了解更多,別錯過之前的專欄文章﹤加點「聲音調味料」,享受聽覺與味覺的極致饗宴吧!﹥。

-----廣告,請繼續往下閱讀-----

下次若覺得某張圖片有聲音、光看某部電影的宣傳海報就起雞皮疙瘩,或是外帶的咖啡沒有內用的美味,也許就是跨感官反應悄悄影響了你的感覺。最後,讓我們回到一開始的問題,星期一聽起來是什麼顏色的?不論是不是藍色的,何不試試透過 GIF 圖和親朋好友無聲地分享你震耳欲聾的情感吧! 

  1. Simner, J., Mulvenna, C., Sagiv, N., Tsakanikos, E., Witherby, S. A., Fraser, C., Scott, K., & Ward, J. (2006). Synaesthesia: The prevalence of atypical cross-modal experiences. Perception, 35(8), 1024–1033. https://doi.org/10.1068/p5469 
  2. Bankieris, K., & Simner, J. (2015). What is the link between synaesthesia and sound symbolism? Cognition, 136, 186–195. https://doi.org/10.1016/j.cognition.2014.11.013
  3. Freeman, E. D. (2020). Hearing what you see: Distinct excitatory and disinhibitory mechanisms contribute to visually-evoked auditory sensations. Cortex, 131, 66–78. https://doi.org/10.1016/j.cortex.2020.06.014
  4. BBC. (2014, September 17). Science & Nature – Horizon. BBC.
  5. Eagleman, D. (2023, September 6). Wednesday is Indigo Blue. David Eagleman. https://eagleman.com/books/wednesday-is-indigo-blue/
  6. Eagleman, D. M., Kagan, A. D., Nelson, S. S., Sagaram, D., & Sarma, A. K. (2007). A standardized test battery for the study of Synesthesia. Journal of Neuroscience Methods, 159(1), 139–145. https://doi.org/10.1016/j.jneumeth.2006.07.012
  7. Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia–a window into perception, thought and language. Journal of consciousness studies, 8(12), 3-34.
  8. Ozturk, O., Krehm, M., & Vouloumanos, A. (2013). Sound symbolism in infancy: Evidence for sound–shape cross-modal correspondences in 4-month-olds. Journal of Experimental Child Psychology, 114(2), 173–186. https://doi.org/10.1016/j.jecp.2012.05.004
  9. Styles, S. J., & Gawne, L. (2017). When does Maluma/takete fail? Two key failures and a meta-analysis suggest that phonology and phonotactics matter. I-Perception, 8(4), 204166951772480. https://doi.org/10.1177/2041669517724807
  10. Ćwiek, A., Fuchs, S., Draxler, C., Asu, E. L., Dediu, D., Hiovain, K., Kawahara, S., Koutalidis, S., Krifka, M., Lippus, P., Lupyan, G., Oh, G. E., Paul, J., Petrone, C., Ridouane, R., Reiter, S., Schümchen, N., Szalontai, Á., Ünal-Logacev, Ö., Winter, B. (2021). The bouba/kiki effect is robust across cultures and writing systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1841). https://doi.org/10.1098/rstb.2020.0390
  11. Barton, D. N., & Halberstadt, J. (2017). A Social Bouba/Kiki Effect: A bias for people whose names match their faces. Psychonomic Bulletin &amp; Review, 25(3), 1013–1020. https://doi.org/10.3758/s13423-017-1304-x 
  12. Sidhu, D. M., Pexman, P. M., & Saint-Aubin, J. (2016). From the bob/kirk effect to the Benoit/éric effect: Testing the mechanism of name sound symbolism in two languages. Acta Psychologica, 169, 88–99. https://doi.org/10.1016/j.actpsy.2016.05.011
  13. BBC. (2021, July 29). Rick Astley rolls into a billion YouTube views. BBC News. https://www.bbc.com/news/technology-58011677
  14. BBC. (2018, September 10). Rick Astley on the Rickroll meme that made him an online legend. BBC Scotland. https://www.bbc.co.uk/programmes/articles/5D3ZmWf1hJmCxCc5Vn0sS64/rick-astley-on-the-rickroll-meme-that-made-him-an-online-legend
  15. Jones, R. (2021)。跨感官心理學:解鎖行為背後的知覺密碼,改變他人、提升表現的生活處方箋 (陳松筠譯)。商周出版。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
61 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。