2

8
1

文字

分享

2
8
1

一吃冰牙齒就痠軟無力?超過1/3臺灣人都有的敏感性牙齒,究竟從哪來?

羅夏_96
・2021/06/08 ・3760字 ・閱讀時間約 7 分鐘
相關標籤: 敏感性牙齒 (1)

-----廣告,請繼續往下閱讀-----

炎炎夏日,來上一口冰涼的飲料能讓人快速消暑,但對於有敏感性牙齒的人來說,這一口冰涼飲料雖能消暑,卻換來又痠、又痛的牙疼,根據統計,約有 44% 的國人為敏感性牙齒所困1

拜「抗敏感牙膏」的電視廣告所賜,民眾普遍對敏感性牙齒的症狀並不陌生,然而,敏感性牙齒的精準定義是什麼?人們又為何會罹患敏感性牙齒呢?近期發表在 Science Advances 的研究,讓我們能一窺造成敏感性牙齒的可能機制2

喝可樂、吃冰沙,又讓你的牙齒「敏感」了嗎?圖/envato elements

小小白色牙齒的內部構造

敏感性牙齒的正確名稱是「牙本質知覺敏感症」,要了解其中的原因,得先聊聊牙齒的構造。

人類的牙齒由外到內由三個部分組成:

-----廣告,請繼續往下閱讀-----
  • 琺瑯質:主要由鈣和磷所構成的堅硬外層,其功能為磨碎食物與保護牙本質。琺瑯質是人體內最堅硬的組成,但無法再生。
  • 牙本質:構成牙齒主體的微黃色組織,終身都會繼續不斷地再生。
  • 牙髓腔:牙齒核心,包含神經和血管等各類軟組織。
牙齒的構造。圖/維基百科

當琺瑯質因各種因素 (例如刷牙太大力、酸性物質腐蝕、蛀牙等)被耗損後,琺瑯質就會無法繼續保護牙本質,並讓牙本質暴露出來,一旦牙本質暴露後,外界的各種刺激像是溫度變化、酸性物質等就會直接影響牙本質,讓我們感到牙齒的痠軟或疼痛。

當牙本質被「見光死」後,為什麼會痛?

細看牙本質後,我們可以發現它由許多貫穿整個牙本質的牙本質小管構成。雖然牙本質沒有神經細胞分布,但位於牙髓腔內的神經細胞,其末梢會分布在充滿液體的牙本質小管內。

目前學界認為,這些液體正是導致敏感性牙齒的元凶。

牙本質小管的構造。圖/參考資料4

關於敏感性牙齒來源的主流解釋是這樣的:

正常的牙本質會有琺瑯質的保護,讓外在因素不會直接影響牙本質小管,但當牙本質小管外露,外在因素的刺激很容易改變牙本質小管的壓力,進而使牙本質小管中的液體快速流動。這個液體流動速度的改變,會刺激牙本質小管內的牙髓神經末梢,進而引發神經衝動導致疼痛發生。

-----廣告,請繼續往下閱讀-----
外界的刺激會使牙本質小管內的液體快速流動,而這會牽扯牙髓末梢神經。圖/參考資料4

那麼該如何處理敏感性牙齒呢?

由於敏感性牙齒是因為牙本質暴露並受到外在刺激所導致,因此只要不讓牙本質與外界接觸,就能有效阻止疼痛發生。

理論上最好的辦法是讓琺瑯質包裹住牙本質,但正如前文提到,琺瑯質是無法再生的,因此人們退而求其次,想辦法使用其他物質來封住牙本質小管,使其不會受到外在因素的刺激,而這也是市售抗敏感牙膏的抗敏機制。

市售抗敏感牙膏的作用機制:封住牙本質小管。圖/參考資料4

然而,以上僅僅只是學界的「主流觀點」,關於「牙本質小管內的液體流動是導致敏感性牙齒的主因」一說,尚未被有足夠的實驗和證據支持。

本文接下來將介紹近期發表在 Science Advances 的研究,這篇研究將針對敏感性牙齒的成因提出可能的分子機制。

-----廣告,請繼續往下閱讀-----

十五年前的博士後研究:TRPC5 的發現

這項研究的開端要追溯到十五年前。

當時,此篇論文的主要作者 Katharina Zimmermann 正在進行博士後研究,她和團隊發現了一種叫作 TRPC5(Short transient receptor potential channel 5)的離子通道蛋白質。

這個 TRPC5 是甚麼?讓我們先從傷害受器說起。

傷害受器(nociceptor)是中樞神經系統中的感覺神經元之一,當人體遇到高溫或強酸等的刺激時,傷害受器會被活化,並將訊號傳至中樞神經 (延髓和大腦),讓人產生不適甚至是疼痛感,使我們避開這些可能造成傷害的危險。

依據接受的刺激不同,傷害受器可分為溫度感受、機械感受和化學感受。而人體專司溫度感受的傷害受器,主要是靠感覺神經元細胞膜上的瞬態感受器電位通道 (Transient Receptor Potential Channel, TRP)這個離子通道蛋白質來接收刺激。

-----廣告,請繼續往下閱讀-----

針對不同的溫度刺激,會有不同的 TRP 蛋白來對應。

例如目前了解最多的是 TRPV1,它會對高溫作出反應,當 TRPV1 在 42℃ 以下時,通常不會活化,但一旦皮膚超過該溫度,傷害受器中的 TRPV1 就會活化,並把信號傳輸到中樞神經,讓你產生灼熱和疼痛感。

另一例是 TRPM8 ,TRPM8 對低溫刺激 (10-30℃) 有反應,不過和 TRPV1 不同的是,TRPM8 的活化是讓人感到清涼,而不是疼痛。

除了溫度會活化 TRP 蛋白,一些化學物質也會活化 TRP 蛋白:例如辣椒中的「辣椒素」就會活化 TRPV1;薄荷中的「薄荷醇」會活化 TRPM8。

TRP 是人體感知溫度的重要離子通道蛋白質,其中最著名的成員為 TRPV1 和 TRPM8。圖/2020 KAVLI PRIZE IN NEUROSCIENCE

而 Zimmermann 所發現的 TRPC5 對寒冷極為敏感,但她和研究團隊發現 TRPC5 和 TRPV1、TRPM8 不同,作用位置並不在人體的皮膚上,而這讓他們的研究陷入了死胡同。

-----廣告,請繼續往下閱讀-----

身體哪個部分也怕冷?報告:牙齒!

一天,研究團隊在午餐會上討論研究進度時,突然有人對 TRPC5 的研究提出新的想法。Zimmermann 回憶道,那時大家正在吃飯,突然有人提出:「牙齒也是人體對寒冷極為敏感的部位啊!」而這個想法,開啟了團隊的新研究方向。

雖然這個想法似乎為研究團隊開啟一道曙光,但想要研究牙齒沒這麼容易。當科學家想要研究牙齒的內部時,勢必要切開琺瑯質和牙本質這兩層硬度很高的物質,而且這個過程還不能傷到牙齒內部柔軟的牙髓。

然而,許多有經驗的研究人員都知道,在切開牙齒的過程中,整顆牙齒四分五裂是相當稀鬆平常的。

後來 Zimmermann 的團隊改變思路,他們沒有切開小鼠的牙齒,而是選擇研究整個牙齒系統:包括頜骨、牙齒和牙神經。

-----廣告,請繼續往下閱讀-----
研究團隊直接研究小鼠的牙齒系統,包含頜骨、牙齒和牙神經。圖 / 參考資料1

研究團隊將小鼠的牙齒系統放入冰涼的液體後,他們透過觀察神經訊號,顯示小鼠的牙齒系統確實能感受到寒冷。然而,當他們加入神經阻斷劑,或者將小鼠的 TRCP5 破壞後,就不會產生顯示疼痛的訊號。這個研究結果證實了小鼠牙齒系統內的 TRCP5 能偵測寒冷的訊號。

研究團隊接著發現 TRCP5 會出現在小鼠牙齒系統中,牙本質靠近牙髓的交界處,而美國麻省總醫院的病理學家 Jochen Lennerz 也進一步證實了 TRCP5 也會出現在人類牙本質中。

另外他們也發現,TRCP5 是造成小鼠牙痛的重要因素,當小鼠牙齒有損傷後,牠們飲用糖水的頻率會降低,但只要破壞 TRCP5 後,即使牙齒損傷,也不影響小鼠飲用糖水的頻率。

綜合以上的發現,Zimmermann 認為 TRCP5 是小鼠牙齒系統內,偵測寒冷並傳遞疼痛訊號的關鍵蛋白質。

-----廣告,請繼續往下閱讀-----

敏感性牙齒:液體移動 vs. 刺激蛋白?

雖然 TRP 蛋白主要受溫度刺激,但正如前文所說,一些化學物質也能刺激 TRP 蛋白。

Zimmermann 表示,溫度、化學物質、撞擊等都可以活化 TRCP5 蛋白,因此她認為比起牙本質小管內液體移動這個假說,TRCP5 的活化更有可能是引起敏感性牙齒的主因。

當牙本質失去琺瑯質的保護後,各種外界因素就非常容易刺激 TRCP5 並使其活化,進而讓人產生牙齒的痠痛感,不過她也表示,這個想法需要更多實驗才能被證實。

牙痛和敏感性牙齒雖然不是一個熱門的研究主題,但它對我們其實頗重要,俗話說:「牙痛不是病,痛起來要人命!」我們每個人或多或少都經歷過牙痛,也都知道那種難受,而這篇研究揭示了一個可能引起敏感性牙齒的分子機制,因此未來只要能專一的封鎖 TRCP5,也許就有機會有效治療敏感性牙齒了。

另外這篇研究也解釋了一個古老的治牙痛處方——丁香油的作用機制。

人類很早就知道,在牙齒上塗上丁香油,能有效緩解牙痛,目前研究已知,丁香油酚是其中的有效物質,但為何有效至今仍是謎。

丁香油是治療牙痛的古老處方。圖/維基百科

而這篇研究也發現,丁香油酚可以抑制 TRCP5 的活化,或許這就是丁香油緩解牙痛的原因,但正如前文所說,一切都還有待更多的研究來證實。Zimmermann也希望他們的研究,能給其他研究人員提供治療敏感性牙齒與牙痛的新思路。

參考資料

  1. Bernal L, Sotelo-Hitschfeld P, König C, Sinica V, Wyatt A, Winter Z, Hein A, Touska F, Reinhardt S, Tragl A, Kusuda R, Wartenberg P, Sclaroff A, Pfeifer JD, Ectors F, Dahl A, Freichel M, Vlachova V, Brauchi S, Roza C, Boehm U, Clapham DE, Lennerz JK, Zimmermann K. Odontoblast TRPC5 channels signal cold pain in teeth. Sci Adv. 2021 Mar 26;7(13):eabf5567.
  2. 台灣民眾「超敏感」不到3人就有1人敏感齒
  3. 牙齒
  4. Ji wonKim, Joo-CheolPark. Dentin hypersensitivity and emerging concepts for treatments. Journal of Oral Biosciences. Volume 59, Issue 4, November 2017. 
  5. How Teeth Sense the Cold
文章難易度
所有討論 2
羅夏_96
52 篇文章 ・ 881 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia